Searches for Missing Transverse Momentum and Standard Model Particles at the LHC

Dark Matter @ LHC 2019, Seattle Nicolas Köhler

DM production in association with SM particles

- WIMPs escape the detector without interactions
 - \blacktriangleright Looking for signatures with large missing transverse momentum $E_{\rm T}^{\rm miss}$
- However, need additional visible particle for triggering event readout and boost WIMP system

DM production in association with SM particles

- WIMPs escape the detector without interactions
 - \blacktriangleright Looking for signatures with large missing transverse momentum $E_{\rm T}^{\rm miss}$
- However, need additional visible particle for triggering event readout and boost WIMP system
- Searches for DM ($E_{\rm T}^{\rm miss}$) in association with SM (or even additional BSM) particles

SM	X
SM	$E_{\mathrm{T}}^{\mathrm{miss}}$
	SM

DM production in association with SM particles

- WIMPs escape the detector without interactions
 - \blacktriangleright Looking for signatures with large missing transverse momentum $E_{\rm T}^{\rm miss}$
- However, need additional visible particle for triggering event readout and boost WIMP system
- Searches for DM ($E_{\rm T}^{\rm miss}$) in association with SM (or even additional BSM) particles
- This talk focusses on associated production with SM particles
- BSM particles (i.e. in heavy flavor final states) covered in next talk by B. Kilminster
- Di-jet mediator searches covered by K. Whalen

final states with one high-energetic jet and $E_{
m T}^{
m miss}$

$E_{\rm T}^{\rm miss}$ and a high-energetic jet (Mono-Jet)

- Models with vector-like mediator, color-charged mediator or even full SUSY models can result in final states with one high-energetic jet and $E_{\rm T}^{\rm miss}$
- Looking for excess on top of Z/W+jets production
- Search performed by both ATLAS and CMS using 2015 and 2016 LHC Data

Mono-Jet analyses

• Z/W+jets and $t\bar{t}$ production estimated from Data using 1/2-lepton control regions

Estimate normalization of background processes to scale MC in signal regions

Mono-Jet analyses

- Further requirements to suppress SM backgrounds:
- ATLAS vetoes events containing more than four jets
- Dominating systematic uncertainties: Lepton identification and reconstruction efficiencies in control region estimates, jet and E^{miss} energy scale and resolution
- **CMS** vetoes events with b-jets to suppress backgrounds involving top quarks
- ▶ Dominating systematic uncertainties: Jet and E_{T}^{miss} energy scale and resolution, E_{T}^{miss} trigger efficiency
- No excess above SM expectation observed
- Set exclusion limits on DM and mediator masses

Mono-Jet analyses

- Further requirements to suppress SM backgrounds:
- ATLAS vetoes events containing more than four jets
- Dominating systematic uncertainties: Lepton identification and reconstruction efficiencies in control region estimates, jet and E^{miss} energy scale and resolution
- **CMS** vetoes events with b-jets to suppress backgrounds involving top quarks
- ▶ Dominating systematic uncertainties: Jet and E_{T}^{miss} energy scale and resolution, E_{T}^{miss} trigger efficiency
- No excess above SM expectation observed
- Set exclusion limits on DM and mediator masses

Mono-Jet results

Mono-Jet results

$E_{\mathrm{T}}^{\mathrm{miss}}$ and a Higgs boson

- The Higgs boson couples to every massive particle, why not to Dark Matter?
- Possible to look for invisible Higgs decays as well as for DM production in association of a Higgs boson
- Invisible Higgs decays covered by A. Elliot
- Production in association with Higgs boson realized in extended 2HDM or baryonic Z' models
- Searches performed by ATLAS (79.8fb⁻¹) and CMS (35.9fb⁻¹)

$H(\rightarrow b\bar{b}) + E_{\rm T}^{\rm miss}$

- Dominating Higgs decay is $H \rightarrow bb$ •
- Large sensitivity for boosted Higgs scenarios
- Veto leptons, require large E_{T}^{miss} •
- **CMS** exploits R = 1.5 jets using the Cambridge-Aachen algorithm for boosted Higgs bosons ($p_{\mathrm{T}}>$ 200 GeV)
- Use multivariate discriminant N₂^{DDT} to select jets • containing *b*-quarks

— t(baā')

- QCD

0.05

0.1

Λ

0.2

 N_2^{DDT}

$H(\to b\bar{b}) + E_{\rm T}^{\rm miss}$

- Dominating Higgs decay is $H o b \overline{b}$
- Large sensitivity for boosted Higgs scenarios
- Veto leptons, require large $E_{\rm T}^{\rm miss}$
- **CMS** exploits R = 1.5 jets using the Cambridge-Aachen algorithm for boosted Higgs bosons ($p_{\rm T}$ >200 GeV)
- Use multivariate discriminant N₂^{DDT} to select jets containing *b*-quarks
- Remaining backgrounds: Z+jets, $t\overline{t}$
- Estimated in 1L regions w/o b-tagged anti- $k_{\rm T}$ R = 0.4 jet outside the R = 1.5 jet

$H(\to b\bar{b}) + E_{\rm T}^{\rm miss}$

- Dominating Higgs decay is $H
 ightarrow b ar{b}$
- Large sensitivity for boosted Higgs scenarios
- Veto leptons, require large $E_{\rm T}^{\rm miss}$
- ATLAS distinguishes between *resolved* and *merged jet* regime (E_{T}^{miss} > 500 GeV)
- Use R = 0.4 anti- $k_{\rm T}$ jets for *resolved* and R=1.0 anti- $k_{\rm T}$ jets for *merged*, *b*-tag variable-*R* ($\sim 1/p_{\rm T}$) track-jets that are matched to R = 1.0 jets

ATLAS-CONF-2018-039

$H(\to b\bar{b}) + E_{\rm T}^{\rm miss}$

- Dominating Higgs decay is $H \to b \bar{b}$
- Large sensitivity for boosted Higgs scenarios
- Veto leptons, require large $E_{\rm T}^{\rm miss}$
- ATLAS distinguishes between *resolved* and *merged jet* regime (E_{T}^{miss} > 500 GeV)
- Use R=0.4 anti- $k_{\rm T}$ jets for *resolved* and R=1.0 anti- $k_{\rm T}$ jets for *merged*, *b*-tag variable-*R* ($\sim 1/p_{\rm T}$) track-jets that are matched to R=1.0 jets
- Looking at m_{jj} in different bins of $E_{\rm T}^{\rm miss}$
- Remaining backgrounds: Z+jets, $t\bar{t}$ (resolved), mainly Z+jets (merged)
- Estimated in 1L and 2L control regions

- WIMP masses up to 500GeV excluded in Z' model
- First results on 2HDM+a model

Improvement due to usage of VR track-jets

- WIMP masses up to 500GeV excluded in Z' model
- First results on 2HDM+a model

Nicolas Köhler - $E_{\mathrm{T}}^{\mathrm{miss}}$ + SM Particles at the LHC

Reinterpreting the $H(\rightarrow b\bar{b}) + E_{\rm T}^{\rm miss}$ result

- Looking at Dark Matter production in association with a hypothetical dark Higgs boson s decaying into a pair of b-quarks
- DM mass is generated by Higgs mechanism in the dark sector
- Can relax the DM relic abundance constraints by $\chi\chi \to ss\,$ annihilation
- Dark Higgs can have any mass
- Reinterpreted ATLAS 2015-2017 Mono-H analysis
- For more information cf. poster of A. Schuy: RECAST for Mono-S(bb) with ATLAS

Reinterpreting the $H(\rightarrow b\bar{b}) + E_{\rm T}^{\rm miss}$ result

- Looking at Dark Matter production in association with a hypothetical dark Higgs boson s decaying into a pair of b-quarks
- DM mass is generated by Higgs mechanism in the dark sector
- Can relax the DM relic abundance constraints by $\chi\chi\to ss\,$ annihilation
- Dark Higgs can have any mass
- Reinterpreted ATLAS 2015-2017 Mono-*H* analysis
- For more information cf. poster of A. Schuy: RECAST for Mono-S(bb) with ATLAS

$E_{\rm T}^{\rm miss}$ and a Higgs boson: Other decay channels

- $H \rightarrow \gamma \gamma$ channel: increased sensitivity towards low $E_{\rm T}^{\rm miss}$, better mass resolution: ATLAS: Phys. Rev. D 96 (2017) 112004 CMS: JHEP 09 (2018) 046
- $H \rightarrow \tau \tau$ channel (hadronic and semi-leptonic taus): less SM background contributions, increased sensitivity towards low $E_{\rm T}^{\rm miss}$ CMS: JHEP 09 (2018) 046
- $H \rightarrow ZZ$ channel (leptonic final states): low SM backgrounds, good mass resolution, but low branching ratio CMS: PAS EX0-18-011
- $H \rightarrow W^+W^-$ channel ($e\mu + E_{\rm T}^{\rm miss}$ final state): use BDT trained on transverse masses, lepton momenta and angular variables to suppress *WW* and $t\bar{t}$ backgrounds CMS: PAS EX0-18-011

$E_{\mathrm{T}}^{\mathrm{miss}}$ and a *W*/Z boson

- Looking for hadronic W/Z decays
- **CMS** requires anti- $k_{\rm T} R = 0.8$ jets with additional requirements on substructure variables
- Invariant mass of jet constituents required to be compatible with W/Z mass (CMS PAS EX0-16-048)
- ATLAS categorizes into *resolved* and *merged* (as done in Mono-*H*) using anti- $k_{\rm T} R = 1.0$ jets and *b*-jet veto in the *merged* region
- **Fit** in $E_{\rm T}^{\rm miss}$ is performed
- Interpreted in Z' model (JHEP 10 (2018) 180)
- + $Z(\rightarrow \ell \ell) + E_{\mathrm{T}}^{\mathrm{miss}}$ in CMS covered by C. Freer

$E_{\mathrm{T}}^{\mathrm{miss}}$ and a high energetic photon

- Photon trigger
- High energetic photon and large $E_{\mathrm{T}}^{\mathrm{miss}}$

	ATLAS	CMS
γ + jets suppression	$E_{\mathrm{T}}^{\mathrm{miss}}/\sqrt{\sum E_{\mathrm{T}}} > 8.5 \ \sqrt{\mathrm{GeV}}$	$E_{\rm T}^{\gamma}/E_{\rm T}^{\rm miss} < 1.4$
$W\gamma$ suppression	Lepton veto	Lepton veto for $\Delta R(\ell,\gamma) > 0.5$
Signal extraction	Single bin fit	Fit of E_{T}^{γ}

- Remaining backgrounds: $Z\gamma$ and $W\gamma$
- Dominating uncertainties: Photon fake estimation, jet energy scale, statistical uncertainty in control regions

$E_{\mathrm{T}}^{\mathrm{miss}}$ and a high energetic photon

Nicolas Köhler - $E_{\mathrm{T}}^{\mathrm{miss}}$ + SM Particles at the LHC

22

med

$E_{\rm T}^{\rm miss}$ and a top/bottom quark

- DM scenarios with minimal flavor violation assume the same Yukawa coupling structure for a DM mediator as for SM particles
- Coupling to third-generation quarks preferred
- Sensitivity to a variety of different theoretical models including single- and pair-production of heavy flavor quarks

- · Final states with heavy flavor quarks and
- Can be reinterpreted in different BSM models, e.g. leptoquarks
- DM and flavor at the LHC by B. Kilminster

Also have a look at:

Search for dark matter in third generation quarks in ATLAS by M. Anthony

Summary

- Searches for Dark Matter at the LHC can be performed in a variety of final states
- Focussed on $E_{\mathrm{T}}^{\mathrm{miss}}$ + SM particle production
- Both ATLAS and CMS have a vast Dark Matter search program, but no excess found yet!

Many analyses still in the pipeline based on the full LHC Run 2 dataset

