Dark Matter SUSY search at the LHC

Zhenbin Wu
(University of Illinois at Chicago)
-- On behalf of the ATLAS and CMS Collaboration
Supersymmetry (SUSY) is a spacetime symmetry that adds a fermionic partner to each SM boson and a bosonic partner to each SM fermion.

- SUSY provides the cancellation of the Higgs boson quadratic mass renormalization between top and top squark (stop)
• SUSY also provide gauge unification at GUT scale
Dark Matter Candidate

- With R-parity conservation, the lightest supersymmetric particle (LSP) is a dark matter candidate.
- Use **Simplified Model Spectra** as guideline, consider $\tilde{\chi}^0_1$ as LSP:
 - Simple decay chain, assuming 100% branch ratio.
 - Unknown LSP mass, limited are set in two dimensions.

Common search strategies:
- **Gluinos, Squarks:**
 - "Inclusive" searches based on topologies, sensitive to broad SUSY(−like) signal.
- **Stop/Sbottom, electroweakinos:**
 - "Targeted" searches, dedicated to corresponding SUSY signals.
Gluinos and Squarks

- Classic inclusive Jet and MET searches:
- Binning in H_T, H_T^{miss}, #jets, #b-jets

Main backgrounds:
- $tt\bar{t}$ and $W + \text{jets}$ where a lepton was lost, predict from single lepton control region in data
- Z invisible (genuine MET), predict from gamma + jet and $Z \rightarrow \ell\ell$ control region in data
- QCD multijets (mismeasured jets leading to fake MET), predict from smeared events in data

CMS-PAS-SUS-19-006
Gluinos and Squarks

• Classic Multi-bin analysis

<table>
<thead>
<tr>
<th></th>
<th>MB-SSd</th>
<th>MB-GGd</th>
<th>MB-C</th>
</tr>
</thead>
<tbody>
<tr>
<td>N_i</td>
<td>≥ 2</td>
<td>≥ 4</td>
<td>≥ 2</td>
</tr>
<tr>
<td>$p_T(j_1)$ [GeV]</td>
<td>> 200</td>
<td>> 200</td>
<td>> 600</td>
</tr>
<tr>
<td>$p_T(j_{i=2,\ldots,N_{j\min}})$ [GeV]</td>
<td>> 100</td>
<td>> 100</td>
<td>> 50</td>
</tr>
<tr>
<td>$</td>
<td>\eta(j_{i=1,\ldots,N_{j\min}})</td>
<td>$</td>
<td>< 2.0</td>
</tr>
<tr>
<td>$\Delta \phi(j_{1,2,(3)}, p_T^{miss})_{\min}$</td>
<td>> 0.8</td>
<td>> 0.4</td>
<td>> 0.4</td>
</tr>
<tr>
<td>$\Delta \phi(j_{i>3}, p_T^{miss})_{\min}$</td>
<td>> 0.4</td>
<td>> 0.2</td>
<td>> 0.2</td>
</tr>
<tr>
<td>Aplanarity</td>
<td>-</td>
<td>> 0.04</td>
<td>-</td>
</tr>
<tr>
<td>$E_T^{miss} / \sqrt{H_T}$ [GeV$^{1/2}$]</td>
<td>> 10</td>
<td>> 10</td>
<td>> 10</td>
</tr>
<tr>
<td>m_{eff} [GeV]</td>
<td>> 1000</td>
<td>> 1000</td>
<td>> 1600</td>
</tr>
</tbody>
</table>

• 8 BDT trained in kinematic regions of interest, for different signal points

<table>
<thead>
<tr>
<th></th>
<th>BDT-GGd1</th>
<th>BDT-GGd2</th>
<th>BDT-GGd3</th>
<th>BDT-GGd4</th>
</tr>
</thead>
<tbody>
<tr>
<td>N_i</td>
<td></td>
<td></td>
<td>≥ 4</td>
<td></td>
</tr>
<tr>
<td>$\Delta \phi(j_{1,2,(3)}, p_T^{miss})_{\min}$</td>
<td></td>
<td></td>
<td></td>
<td>≥ 0.4</td>
</tr>
<tr>
<td>$\Delta \phi(j_{i>3}, p_T^{miss})_{\min}$</td>
<td></td>
<td></td>
<td></td>
<td>≥ 0.4</td>
</tr>
<tr>
<td>$E_T^{miss} / m_{\text{eff}}(Nj)$</td>
<td></td>
<td></td>
<td></td>
<td>≥ 0.2</td>
</tr>
<tr>
<td>m_{eff} [GeV]</td>
<td></td>
<td></td>
<td>≥ 1400</td>
<td>≥ 800</td>
</tr>
<tr>
<td>BDT score</td>
<td>≥ 0.97</td>
<td>≥ 0.94</td>
<td>≥ 0.94</td>
<td>≥ 0.87</td>
</tr>
<tr>
<td>$\Delta m(\tilde{g}, X_1)$ [GeV]</td>
<td>$1600 - 1900$</td>
<td>$1000 - 1400$</td>
<td>$600 - 1000$</td>
<td>$200 - 600$</td>
</tr>
</tbody>
</table>

ATLAS-CONF-2019-040
Gluino Limits

CMS Preliminary 137 fb⁻¹ (13 TeV)

\(pp \rightarrow \tilde{g} \tilde{g}, \tilde{g} \rightarrow b \bar{b} \chi_1^0\) Approx NNLO+NNLL exclusion

- Observed \(\pm 1 \sigma_{\text{theory}}\)
- Expected \(\pm 1, \pm 2 \sigma_{\text{experiment}}\)

\[m_{\tilde{g}} \text{ [GeV]} \quad m_{\chi_1^0} \text{ [GeV]} \]

95% CL upper limit on cross section [pb]

ATLAS Preliminary \(\sqrt{s}=13 \text{ TeV}, 139 \text{ fb}^{-1}\)

- 0-leptons, 2-6 jets
- All limits at 95% CL

\[m(\tilde{g}) \text{ [GeV]} \]

Exp. limit \((\pm 1 \sigma_{\exp})\)
Obs. limit \((\pm 1 \sigma_{\text{theory}})\)
Exp. limits MB
Exp. limits BDT
0L obs. 36 fb⁻¹

[arXiv:1712.02332]
Squarks

Mass limits have reached ~ 1.2 TeV on individual squarks for low LSP masses and ~ 1.9 TeV for 8-fold degenerate squarks.
Single Lepton Search

Single lepton search using sum of large-R jet masses (M_J)

$$M_J = \sum_{j_i = \text{large-R jets}} m(j_i).$$

Single lepton + p_T^{miss}, S_T, #jets, #b-jets, M_J
Multi Lepton Search

ATLAS-CONF-2019-015

CMS-SUS-19-008

Same-sign 2l & > 3l search

Signal selection:
Binning in H_T, p_T^{miss}, m_T, #jets, #b-jets

<table>
<thead>
<tr>
<th>SR</th>
<th>n_e</th>
<th>n_b</th>
<th>n_l</th>
<th>E_T^{miss} [GeV]</th>
<th>m_{eff} [GeV]</th>
<th>E_T^{miss}/m_{eff}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rpv2L</td>
<td>≥ 2 ($\ell^+\ell^-$)</td>
<td>≥ 0</td>
<td>≥ 6 ($p_T > 40$ GeV)</td>
<td>-</td>
<td>> 2600</td>
<td>-</td>
</tr>
<tr>
<td>Rpv2L0b</td>
<td>≥ 2 ($\ell^+\ell^-$)</td>
<td>= 0</td>
<td>≥ 6 ($p_T > 40$ GeV)</td>
<td>> 200</td>
<td>> 1000</td>
<td>> 0.2</td>
</tr>
<tr>
<td>Rpv2L1b</td>
<td>≥ 2 ($\ell^+\ell^-$)</td>
<td>≥ 1</td>
<td>≥ 6 ($p_T > 40$ GeV)</td>
<td>-</td>
<td>-</td>
<td>> 0.25</td>
</tr>
<tr>
<td>Rpv2L2b</td>
<td>≥ 2 ($\ell^+\ell^-$)</td>
<td>≥ 2</td>
<td>≥ 6 ($p_T > 25$ GeV)</td>
<td>> 300</td>
<td>> 1400</td>
<td>> 0.14</td>
</tr>
<tr>
<td>Rpv3LSS1b</td>
<td>≥ 3 ($\ell^+\ell^+\ell^-$)</td>
<td>≥ 1</td>
<td>no cut but veto 81 GeV $<$ $m_{\ell^+\ell^-} <$ 101 GeV</td>
<td>-</td>
<td>-</td>
<td>> 0.14</td>
</tr>
</tbody>
</table>

8/14/19

DM@LHC 2019

10
Interpretations

ATLAS-CONF-2019-015

CMS-SUS-19-008

\[m_{\tilde{\chi}_1^\pm} = 0.5(m_{\tilde{g}} + m_{\tilde{\chi}_0^0}) \]

\[\tilde{g} \tilde{g} \text{ production, } \tilde{g} \rightarrow q\bar{q}'WZ_1^0; \quad m(\tilde{g}) = (m(\tilde{q})) + m(\tilde{W})/2, \quad m(\tilde{q}) = (m(\tilde{W}) + m(\tilde{q}))/2 \]

ATLAS Preliminary

\[s=13 \text{ TeV, 139 fb}^{-1} \]

All limits at 95% CL

Expected Limit (± 1 \sigma_{\exp})

Observed Limit (± 1 \sigma_{\text{SUSY}})

SS/3L obs. 36 fb}^{-1} [arXiv:1706.03731]

CMS Preliminary

137 fb}^{-1} (13 TeV)

pp → \tilde{g}\tilde{g}, \tilde{g} → q\bar{q}'V\tilde{\chi}_1^0

NNLO+NNLL exclusion

95% CL upper limit on cross section (pb)

\[m_{\tilde{\chi}_1^0} \text{ vs. } m_{\tilde{g}} \text{ (GeV)} \]

\[m_{\tilde{\chi}_1^0} \text{ vs. } m_{\tilde{g}} \text{ (GeV)} \]

\[m_{\tilde{g}} \text{ vs. } m_{\tilde{\chi}_1^0} \text{ (GeV)} \]
Bottom Squark

- Inclusive searches in all hadronic final state, binned in H_T, N_j, N_b, M_{T2}
- Extend reach by ~ 100GeV on sbottom mass compared to 36fb$^{-1}$ result

CMS Preliminary 137 fb$^{-1}$ (13 TeV)

$pp \rightarrow \tilde{b}_1 \tilde{b}_1 \rightarrow b \tilde{\chi}_1^0$ Approx. NNLO+NNLL exclusion

| Expected ± 1, 2 σ | Observed $\pm 1 \sigma_{\text{theory}}$ |

CMS-PAS-SUS-19-005
Top Squark

Enriched final states for top squark searches

$\Delta m = m(\tilde{t}_1) - m(\tilde{\chi}^0_1)$

$m(\tilde{\chi}^0_1)$ [GeV]

$m(\tilde{t}_1) < m(\tilde{\chi}^0_1)$

$m(W)+m(b)$

$m(t)$

$m(\tilde{t}_1)$ [GeV]
Top Squark with M_{T2}

- Inclusive searches in all hadronic final state, binned in H_T, N_J, N_b, M_{T2}
- Extend reach by ~ 130 GeV on stop mass compared to 36fb^{-1} result
- Blinded top corridor due to finite granularity of the fastsim MC samples
Stop Single Lepton

Classic single lepton stop search

Signal selection:
Binning in H_T, H_T^{miss}, #jets, #b-jets
 + resolved and boosted top-tagging

Main backgrounds:
• ttbar and single top with 1 lost lepton, predicted from dilepton control region in data
• W+jets, taken from 0b control region in data

CMS Preliminary 137 fb$^{-1}$ (13 TeV)

$pp \rightarrow \tilde{t} \tilde{\tau}, \tilde{t} \rightarrow t \tilde{\chi}_1^0$ Approx. NNLO+NNLL exclusion

- Observed ± 1 σ_{theory}
- Expected ± 1 $\sigma_{\text{experiment}}$

95% CL upper limit on cross section [pb]
Compressed Stop

- stop decay via the 3-body mode,
- Dedicated recurrent neural network
Stop to Tau

- Stop search in decays to tau leptons

Signal selection:
- Binning in H_T, P_T^{miss}, MT2

Main backgrounds:
- ttbar with two genuine taus
- mis-identified taus
Search for stop decaying to Z-boson (decaying to a lepton pair)
Chargino/neutralino pair production assuming decays to W/Z/h bosons
Compressed ewkinos

Soft opposite sign dileptons, with ISR boost

Higgsino scenario

\[\Delta m(\tilde{\chi}_2^0, \tilde{\chi}_1^0) \text{ [GeV]} \]

- **ATLAS Preliminary**
 \(\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1} \)
 - \(ee/\mu\mu, m_t \) shape fit
 - All limits at 95% CL
 - \(pp \rightarrow Z^0 \tilde{\chi}_2^0 \tilde{\chi}_1^+ \rightarrow W^+ \tilde{\chi}_1^0 \)
 - \(m(\tilde{\chi}_1^0) = [m(\tilde{\chi}_2^0) + m(\tilde{\chi}_1^0)]/2 \)

Wino scenario

\[\Delta m(\tilde{\chi}_2^0, \tilde{\chi}_1^0) \text{ [GeV]} \]

- **ATLAS Preliminary**
 \(\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1} \)
 - \(ee/\mu\mu, m_t \) shape fit
 - All limits at 95% CL
 - \(pp \rightarrow \tilde{\chi}_2^0 \tilde{\chi}_1^0 \) (Wino)
 - \(\tilde{\chi}_2^0 \rightarrow Z^0 \tilde{\chi}_2^0 \rightarrow W^+ \tilde{\chi}_1^0 \)
 - \(m(\tilde{\chi}_2^0) \times m(\tilde{\chi}_1^0) > 0 \)
Summary

• Broad SUSY signal and decay modes leads to broad coverage of topologies from SUSY searches

• Robust performance of LHC during Run 2, ATLAS and CMS collected ~137/fb integrated luminosity

• Early searches with full Run 2 exclude gluino mass up to ~2.2TeV, sbottom and stop up to ~1.2TeV

• Many more to come. Stay tune

• SUSY searches with long live signatures will covered in the Long-lived particles session tomorrow afternoon

CMS Public SUSY Result: https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS

ATLAS SUSY Result: https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults
BACKUP
Relic Density Model

- Motivated by naturalness arguments and provides a dark matter candidate with the right relic density.
- The lightest neutralinos and charginos are an admixture of bino and higgsino.
- Corresponding branching ratios vary mostly as a function of the stop left-right mixing, and the sum of the branching ratios is bound to unity.

ATLAS Preliminary

\[\sqrt{s} = 13 \text{ TeV}, 36.1 \text{ fb}^{-1} \]

All limits at 95% CL

\[
\begin{align*}
\tilde{t}_1 &\rightarrow b \tilde{\chi}_1^{0}, t \tilde{\chi}_{1,2,3}^{0} \\
\tilde{b}_1 &\rightarrow t \tilde{\chi}_1^{0}, b \tilde{\chi}_{1,2,3}^{0} \\
\tilde{\chi}_1^{0} &\rightarrow W^+ \tilde{\chi}_{1,2}^{0} \\
\tilde{\chi}_3^{0} &\rightarrow W^+ \tilde{\chi}_1^{+}, Z/h^+ \tilde{\chi}_{1,2}^{0} \\
\tilde{\chi}_2^{0} &\rightarrow Z/h^+ \tilde{\chi}_1^{0}
\end{align*}
\]