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CWoLa Hunting:
Extending the Bump Hunt with Machine Learning

Based on:
Phys. Rev. Lett. 121, 241803 (2018)

[1805.02664] Jack Collins, Kiel Howe, Ben Nachman
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Is there new physics at the LHC?

New Physics is...
1. too heavy
2. too rare
3. n’t covered by existing 

programme of dedicated searches
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LHC Searches

ML-optimised
dedicated search

ML Anomaly
Detection
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An Example Target
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An Example Target

Yesterday from Yvonne
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An Example Target

1. It is very simple (bump hunt)
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An Example Target

1. It is very simple (bump hunt)
2. It is very complex

(jet substructure)

O(100)-dimensional phase space:
– Particle 3-momenta – Vertices
– Particle ID (non-isolated leptons,
photons)
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An Example Target

1. It is very simple (bump hunt)
2. It is very complex

(jet substructure)
3. It is easily missed

With 150/fb, exclusion on 3 TeV 
dijet resonance is 5000 events
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An Example Target

More Model Specific
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Dijet
Resonance Search

Hadronic Diboson
Resonance Search

(2015)

Hadronic Diboson
Resonance Search

(2020)

Anomalous Dijet
Resonance Search

Substructure
cut

Deep
Learning
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Dark Matter

Detour
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An Example Target (Dark Matter version)
Ongoing work with 
Kaustubh Deshpande 
(UMD)
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An Example Target (Dark Matter version)

– Multi-prong substructure
– Embedded leptons
– MET collinear with jet

Ongoing work with 
Kaustubh Deshpande 
(UMD)
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An Example Target (Dark Matter version)

– Multi-prong substructure
– Embedded leptons
– MET collinear with jet

Ongoing work with 
Kaustubh Deshpande 
(UMD)
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CWoLa Hunting
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CWoLa Hunting

M
ixed S

a m
ple 1
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ixed S
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Selection for 
signal-region-like 

events

[1708.02949] E. M. Metodiev, B. Nachman, J. Thaler
[1702.00414] L. M. Dery, B. Nachman, F. Rubbo, A Schwartzman
[1801.10158] P. T. Komiske, E. M. Metodiev, B. Nachman, M. D. Schwartz
[1706.09451] T. Cohen, M. Freytsis, B. Ostdiek

Weak Supervision
References:
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CWoLa Hunting

M
ixed S
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M
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Selection for 
signal-region-like 

events

?!

[1708.02949] E. M. Metodiev, B. Nachman, J. Thaler
[1702.00414] L. M. Dery, B. Nachman, F. Rubbo, A Schwartzman
[1801.10158] P. T. Komiske, E. M. Metodiev, B. Nachman, M. D. Schwartz
[1706.09451] T. Cohen, M. Freytsis, B. Ostdiek

Weak Supervision
References:
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CWoLa Hunting

M
ixed S

a m
ple 1

M
ixed S

a m
ple 2

Selection for 
signal-region-like 

events

?!
Overfitting = Look Elsewhere 
Effect

Overfitting leads to bumps even 
in absence of signal

Solution: Train and test on 
statistically independent samples.

[1708.02949] E. M. Metodiev, B. Nachman, J. Thaler
[1702.00414] L. M. Dery, B. Nachman, F. Rubbo, A Schwartzman
[1801.10158] P. T. Komiske, E. M. Metodiev, B. Nachman, M. D. Schwartz
[1706.09451] T. Cohen, M. Freytsis, B. Ostdiek

Weak Supervision
References:
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Cross Validation
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Case Study

In signal region:
S = 522,
S/B = 0.64%
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Case Study
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Case Study
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Case Study

1.5σ
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Case Study

1.5σ

2σ

3.5σ
7σ
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No Signal → No Bump!
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Mass Scan
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Mass Scan
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Mass Scan
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Mass Scan



CWoLa Hunting
29

Mass Scan
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Mass Scan
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Mass Scan



CWoLa Hunting
32

Mass Scan
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Mass Scan
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Mass Scan
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Signal Characteristics
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400 GeV jet
With 4 prongs

80 GeV jet
With 2 prongs
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Summary

1)  Factorize space of observables into:

a) One test observable (e.g. mJJ) in which bg is smooth and 
signal has a sharp feature (doesn’t need to be a bump).

b) An additional space of auxiliary observables (either particle 
4-vectors or expert features).

2)  May need to decorrelate auxiliary observables form test.

3)  Define signal and sideband regions based on test observable

4)  Train NN on auxiliary observables to discriminate sideband from 
signal region.

5)  Use NN output as a selection cut to select events in a statistically 
independent sample.

6)  Perform a shape-based hypothesis test on the test observable.
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ML with mixed samples

Classification with labels (Fully 
Supervised)

Classification ‘without’ labels (CWoLa) Monotonic Rescaling

[1708.02949] E. M. Metodiev, B. Nachman, J. Thaler
[1702.00414] L. M. Dery, B. Nachman, F. Rubbo, A Schwartzman
[1801.10158] P. T. Komiske, E. M. Metodiev, B. Nachman, M. D. Schwartz
[1706.09451] T. Cohen, M. Freytsis, B. Ostdiek
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Machine Learning for Jets

Figure taken from Ben Nachman’s talk at BOOST 2018
https://indico.cern.ch/event/649482/contributions/2993322/attachments/1688082/2715256/WeakSupervi
sion_BOOST2018.pdf

Simulation =≠ data
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Anomaly Detection Landscape

“Anomalous Event Detection”

Autoencoders
(weak supervision)

[1808.08992] Marco Farina, Yuichiro Nakai, David Shih 
[1808.08979] Theo Heimel, Gregor Kasieczka, Tilman Plehn, 
Jennifer M. Thompson 
[1811.10276] Olmo Cerri, Thong Nguyen, Maurizio Pierini, 
Maria Spiropulu, Jean-Roch Vlimant 
[1903.02032] Tuhin Roy, Aravind Vijay

‘Model independent training sample’
(fully supervised)

[1709.01087] Jack H Collins, Rashmish Mishra, Juan 
Antonio Aguilar-Saavedra 

(See also  [1707.07084] Amit Chakraborty, Abhishek Iyer, Tuhin Roy for similar, non-ML ideas)
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Anomaly Detection Landscape

“Anomalous Overdensity Detection”

Data vs Data
Or Simulation vs data
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Background-only training vs signal/sideband:

Background-only Signal / Sideband

Tagger performance does not depend on 
signal statistics.

Tagger can never learn the specific peculiar 
features of the signal, and so cannot 
improve with greater signal rate.

Tagger relies on there being sufficient 
signal statistics for training.

Tagger can learn the specific peculiar 
features of the signal, and so improves 
with greater signal rate, and allows for 
signal characterization. 

Stronger in limit of very 
low signal statistics

Stronger in limit of very 
high signal statistics??
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Performance Comparison
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Nested Cross-Validation
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Toy Statistics
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