Dark Blobs

Exponentially Large Composite Dark Matter Dorota M Grabowska UC Berkeley → CERN

D.M. Grabowska

DM@LHC

08/16/2019

Allowable mass range covers ~ 90 orders of magnitude

Allowable mass range covers ~ 90 orders of magnitude 10⁶⁰ GeV 10⁵⁰ GeV keV zeV PeV 10²² GeV 10³³ GeV 1042 GeV 10¹⁰ GeV 10¹⁹ GeV DM flux at least one per year Xenon OneTon **Olympic Swimming Pool** Earth (Distance from Earth to Sun)³ D.M. Grabowska DM@LHC 08/16/2019

3

The Plan

I. Interesting paradigm for heavy dark matter

2. Several Detection Strategies

The Plan

I. Interesting paradigm for heavy dark matter

Take Away: Bound states in strongly interacting dark sectors have masses that span ~40 orders of magnitude

2. Several Detection Strategies

Take Away: Need multi-prog experimental and observational approach

Strongly Interacting Dark Sector

Example: Dark Nuclear Matter

General Properties

- Theory confines at energy scale Λ_{χ}
- Spectrum contains massive particle with $m_\chi \sim \Lambda_\chi$

"Dark Nucleon"

Strongly Interacting Dark Sector

Example: Dark Nuclear Matter

General Properties

- Theory confines at energy scale Λ_{χ}
- Spectrum contains massive particle with $m_{\chi} \sim \Lambda_{\chi}$

• Massive particles form bound states with $M_X \sim N_X \Lambda_{\gamma}$

"Dark Nucleus"

 $R_X \sim N_X^{1/3} / \Lambda_{\gamma}$

• Relic abundance set by dark baryon asymmetry

D.M. Grabowska

Maximum Size of Dark Nucleus

Semi-empirical mass formula

Treat dark nucleus as drop of liquid to determine how binding energy depends on number of constituents

$$E_{\text{Bind}} \sim \alpha_V N_X - \alpha_S N_X^{2/3} - \alpha_C N_X^{5/3}$$

Maximum Size of Dark Nucleus

Semi-empirical mass formula

Treat dark nucleus as drop of liquid to determine how binding energy depends on number of constituents

Maximum Size of Dark Nucleus

Semi-empirical mass formula

Treat dark nucleus as drop of liquid to determine how binding energy depends on number of constituents

• Assume no long range force to destabilize dark nuclei

Binding energy unbounded from above!

Early Universe Formation

Big Bang Dark Nucleosynthesis

Dark nuclei form via fusion processes in the Early Universe

* Krnjaic & Sigurdson, '14, Hardy et al, '14, Gresham, Lou & Zurek, '17

D.M. Grabowska

Early Universe Formation

Big Bang Dark Nucleosynthesis

Dark nuclei form via fusion processes in the Early Universe

* Krnjaic & Sigurdson, '14, Hardy et al, '14, Gresham, Lou & Zurek, '17

D.M. Grabowska

Dark Nuclear Matter

"Dark Nuggets"

D.M. Grabowska

DM@LHC

08/16/2019

Detection

D.M. Grabowska

DM@LHC

08/16/2019

Standard Model Couplings Nucleon Coupling

General Idea: Dark Matter couples to Standard Model nucleons via mediator of mass m_{ϕ}

$$\mathcal{L} \supset \frac{1}{2} m_{\phi}^2 \phi^2 + g_{\chi} \phi \bar{\chi} \chi + g_n \phi \bar{n} n$$

There are multiple constraints on g_n and g_χ depending on the mass of the mediator

Detection strategy depends heavily on the mass of mediator

D.M. Grabowska

Mediator Mass

Three Regimes

m_φ >> q_T

<u>Light</u>

mφ **<< q**T

Macroscopic λ_{ϕ}

D.M. Grabowska

DM@LHC

08/16/2019

||

Mediator Mass

Three Regimes

D.M. Grabowska

DM@LHC

08/16/2019

Mediator Mass

Three Regimes

Dark Matter Form Factor

Finite Size effects

General Idea: Form factors "encode" the deviation of scattering amplitudes from the point particle limit

Heavy Mediator

Mediator Mass: 10 GeV

Light Mediator

Mediator Mass: eV

Ultralight Mediator $\Lambda_x = MeV, \ \lambda = 200 \text{ km}, g_n \sim 10^{-23}$

Free hanging test mass

General Idea: Passing DM induces motion in test mass

Test Mass

D.M. Grabowska

Free hanging test mass

General Idea: Passing DM induces motion in test mass

D.M. Grabowska

Free hanging test mass

General Idea: Passing DM induces motion in test mass

D.M. Grabowska

Free hanging test mass

General Idea: Passing DM induces motion in test mass

• **Example:** LIGO sensitive to $\Delta x \sim 0.1$ fm/Hz^{1/2}

D.M. Grabowska

Extremely Long Range Mediator $\Lambda_x = MeV, \lambda = 200 \text{ km}$

Conclusions

Focus: Exponentially large composite dark matter

Take Away: Strongly interacting dark sector can give DM whose mass ranges over 40 orders of magnitude

Take Away: Need multi-prong approach to span the full parameter space of masses and confinement scales

D.M. Grabowska

D.M. Grabowska

DM@LHC

08/16/2019

Heavy Mediator

Mediator Mass: 10 GeV

Long Range Mediator

Mediator Mass: eV

Dark BBN

Fusion in Early Universe

Dark nuclei size is limited by how long fusion lasts during early Universe

• Compare Fusion rate to Hubble rate for rough estimate

$$\sigma_X \sim \frac{N_X^{2/3}}{\Lambda_\chi^2} \qquad v_X \sim \sqrt{\frac{T_\chi}{N_X \Lambda_\chi}} \qquad n_X \sim \frac{n_0}{N_X}$$

Dark BBN

Fusion in Early Universe

Dark nuclei size is limited by how long fusion lasts during early Universe

• Compare Fusion rate to Hubble rate for rough estimate

$$\sigma_X \sim \frac{N_X^{2/3}}{\Lambda_\chi^2} \qquad v_X \sim \sqrt{\frac{T_\chi}{N_X \Lambda_\chi}} \qquad n_X \sim \frac{n_0}{N_X}$$

Generically find exponentially large states

$$M_X \sim 10^{15} \,\mathrm{GeV} \left(\frac{g^*(T)}{10.2}\right)^{3/5} \left(\frac{100 \,\mathrm{MeV}}{\Lambda_{\chi}}\right)^{16/5} \left(\frac{T}{\mathrm{MeV}}\right)^{9/5} \left(\frac{T_{\chi}}{T}\right)^{3/5}$$

DM Form Factor

Finite Size effects

General Idea: Form factors "encode" the deviation of scattering amplitudes from the point particle limit

$$F_X(\mathbf{q}) = \frac{1}{M_X} \int d^3 \mathbf{r} \ e^{i\mathbf{q}\cdot\mathbf{r}} \rho_X^{(\text{ch.})}(\mathbf{r})$$

Charge Density

ASSUME: Uniform charge density inside dark nucleus

$$F_X(q) = 3 \frac{\sin(qR_X) - qR_X\cos(qR_X)}{(qR_X)^3}$$

q: Momentum Transfer

D.M. Grabowska

DM@LHC

08/16/2019

DM Form Factor

Finite Size effects

General Idea: Form factors "encode" the deviation of scattering amplitudes from the point particle limit

$$F_X(\mathbf{q}) = \frac{1}{M_X} \int d^3 \mathbf{r} \ e^{i\mathbf{q}\cdot\mathbf{r}} \rho_X^{(\text{ch.})}(\mathbf{r})$$

Charge Density

ASSUME: Uniform charge density inside dark nucleus

$$F_X(q) = 3 \frac{\sin(qR_X) - qR_X\cos(qR_X)}{(qR_X)^3}$$

q: Momentum Transfer

D.M. Grabowska

DM@LHC

08/16/2019

Mediator Coupling Constraints

Dark Sector Constraints

Scalar Coupling g_x Bound: Stability of Dark Nuclei

 Fermi degeneracy pressure must balance self-energy due to long range attractive interaction^{*}

$$g_\chi \lesssim N_X^{-1/3}$$

* Akin to gravitational collapse

Mediator Coupling Constraints

Dark Sector Constraints

Scalar Coupling g_x Bound: Stability of Dark Nuclei

 Fermi degeneracy pressure must balance self-energy due to long range attractive interaction^{*}

$$g_\chi \lesssim N_X^{-1/3}$$

* Akin to gravitational collapse

Additional repulsive interactions does not help as blobs become unbound

$$E_{\text{Bind}} \sim \alpha_V N_X - \alpha_S N_X^{2/3} - \alpha_C N_X^{5/3}$$

$$\sim \Lambda_\chi \qquad \qquad \sim g_\chi^2 \Lambda_\chi$$

D.M. Grabowska

Ionization and Scintillation Signals

Standard Dark Matter Search

General Idea: momentum transfer during collision between blob and **single** SM atom

D.M. Grabowska

Perimeter Institute

Ionization and Scintillation Signals

Standard Dark Matter Search

General Idea: momentum transfer during collision between blob and **single** SM atom

Perimeter Institute

Ionization and Scintillation Signals

Standard Dark Matter Search

General Idea: momentum transfer during collision between blob and **single** SM atom

- Only small angle scattering due to weak coupling
- Ionization occurs if mom. transfer above ~100 keV

Perimeter Institute

Scalar Mediator to Nucleons

Λ_x = MeV, λ = 200 km

D.M. Grabowska

Heat Deposition

Blobs with large radius

General Idea: Blobs deposit large amounts of energy without necessarily causing ionization/scintillation

• Large blob radius allows multiple SM atoms to experience significant change in momentum

Heat Deposition

Blobs with large radius

General Idea: Blobs deposit large amounts of energy without necessarily causing ionization/scintillation

• Large blob radius allows multiple SM atoms to experience significant change in momentum

$$\Delta E_{\rm Tot} \sim \left(\frac{R_X}{R_0}\right)^2 \Delta E_{\rm Single}^{\rm Max}$$

Relies on "guaranteed hit"

Heat Deposition

Blobs with large radius

General Idea: Blobs deposit large amounts of energy without necessarily causing ionization/scintillation

• Large blob radius allows multiple SM atoms to experience significant change in momentum

$$\Delta E_{\rm Tot} \sim \left(\frac{R_X}{R_0}\right)^2 \Delta E_{\rm Single}^{\rm Max}$$

Relies on "guaranteed hit"

 Example: Hydrophones in tank of water are sensitive to energy deposition of ~ 10 keV/Angstrom

Scalar Mediator to Nucleons

$\Lambda_x = MeV, \lambda = 200 \text{ km}$

