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- Freeze-in: general framework (reminder?)
- FIMPs and conventional dark matter searches
- Next-to-minimal freeze-in models

- Charged parent models: cosmology vs colliders



Weakly Interacting Massive Particle(WIMPs)
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Interaction Strength : Weak Scale -> A BSM theory that also solves Hierarchy problem



Status of WIMPY DM : Doomsday or not ?
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Alternative ideas ?
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FIMPS

Freeze-in: general idea

arXiv:hep-ph/0106249
arXiv:0911.1120

Tweaked from arXiv:0911.1120 arXiv:1706.07442...

— E
Y Freeze-out

Two basic premises :
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- DM interacts very weakly with the SM.
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Assume that in reaction A — B, £,/&, particles of type y are destroyed/created.
Integrated Boltzmann equation :

hX—FBHnX:Z(ﬁB}/) (A= B) <

A,B
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.1; DM produced from decays/annihilations of other particles.
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2} DM production disfavoured — Abundance freezes-in
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Freeze-in vs freeze-out

Naively, the freeze-in BE is simpler than the freeze-out one. However :

L . - FO: equilibrium erases all memory.
Initial conditions:

- FI: Qh? depends on the initial conditions.

, , + FO: pretty irrelevant (exc. coannihilations/late decays).
Heavier particles:

- FI: their decays can dominate DM production.

Need to track the evolution of heavier states

In equilibrium? Relics? FIMPs?
N J

Need dedicated Boltzmann eqs 4—\(

- FO: around mX/ZO.

- FI: several possibilities (m,/3, m__../3, T, or higher),
depending on nature of underlying theory.

Relevant temperature:

- Statistics/early Universe physics can become important.



Model-building issues

What kind of couplings do we need for successful freeze-in?

SM X X1 X2
Annihilation: >—< Decay:
SM X, +SM

. ] ~ -10 _ -12 . 3 ~ -13 1/2
Requires A A ~ 10 10 Requires A ~ 103 x (mX2 / le)

How can we justify such small numbers? |

__p Scale suppression UV dominated

Two main ways so far: ——

» Symmetries Potentially IR dominated

= = - - = e — e —— —— —

T ’ - - _]|
How to dynamically and “naturally” generate such small couplings with order 1 numbers ?|

e

Clockworking: A. Goudelis, K. Mohan ,D.S  JHEP 1810 (2018) 014



- Can we test freeze-in? Certainly not in full generality, but there are actually

numerous handles.

Primordial
nucleosynthesis

Indirect
detection

Displaced
objects

Mono-X

Disappearing
tracks

Direct
detection

Lyman-o

Freeze-in can motivate an exciting EXP search programme



An example: the singlet-doublet model

Consider the singlet-doublet fermion model: SM + 2 Weyl (2, £1/2) fermions
v, v, + a(l, 0) fermion y_

arXiv:hep-ph/0510064
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- DM can be e.g. produced through  X23i——u

W*E Zorh

X1 1Y . arXiv:1805.04423

—» Yyt decays (disappearing tracks)

—» displaced h/Z + MET
- Collider signatures: ——

—» Promptly (although: not for freeze-in)

—» Mono-X (large decay lengths)



An example: the singlet-doublet model

Consider the singlet-doublet fermion model: SM + 2 Weyl (2, £1/2) fermions
v, vy, + a(l, 0) fermion y_

arXiv:hep-ph/0510064
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Freeze-in with a charged parent

Consider an extension of the SM by a Z -odd real singlet scalar s (DM) along

with a Z,-odd vector-like SU(2)-singlet fermion F (parent).

contribution in arXiv:1803.10379
and arXiv:1811.05478

2 A
L=Ls+ 0,5 0Fs — %32 + ZSS4 + Ay 8° (HTH)

—|—F(iD)F—mFFF—ZySf <3F<1+2’y5> f—|—h.c.)
f

~—» f={e,u,1} - F transforms as (1, 1, -1)
“Heavy lepton”

Distinguish three cases: — » f = {u,c,t} - F transforms as (3, 1, -2/3)
“Heavy u-quark”

~» f={d,s,b} - F transforms as (3, 1, 1/3)

“Heavy d-quark”



Freeze-in with a charged parent

Consider an extension of the SM by a Z -odd real singlet scalar s (DM) along
with a Z,-odd vector-like SU(2)-singlet fermion F (parent).

contribution in arXiv:1803.10379
and arXiv:1811.05478

2 A
L=Lsyv+ 0ys O's — %32 + ZSS4 + Ay 8° (HTH)

+F(z’D)F—mFFF—Zy§ (sF(leS) f+h.c.) /l

f

For simplicity :

- Study three cases separately.

i.e. add a single pair of F fermions at a time

- Only couple F to the first two generations.

The collider pheno of 3™ generation fermions is a bit more tricky

- Set Higgs portal to zero — Only relevant coupling: y/.



Non-LLP constraints: earth-bound

Focus on the first two models (heavy lepton, heavy u-quark).

Heavy lepton model

. LEP2: m, > 104 GeV

Actually slightly weaker, depending

on lifetime

- No EWPT constraints
arXiv:1404.4398

- Muon lifetime: u - ess

Checked, irrelevant

- LFV processes, in particular u - ey

20 (y5)* (y)?
Br(p — ~ =0
rip = e) 3m4 (167)2

~ 10—46

l.e. tiny

Heavy quark model

- Direct collider bounds subleading

Require prompt jets

- Running of a_: m,_ > few hundred GeV

- Rare decays, e.g. Kt — m1t*ss

NA62 can reach down to y, ~10°

- Meson mixing: similarly to p— ey, tiny

Globally: still lots of room for
interesting phenomenology



Parent particle lifetime and cosmology

Assuming that DM is mostly populated by F decays, we can relate the relic
abundance with the parent particle lifetime:

w 0.12 M 200GeV \ 2 102 \¥2 | [0 de oK (x)
 cT~4.5mégr ( ) /TR
| Q.2 ) \100keV M e (mp/3) 37/2

Freeze-in favours long lifetimes, unless
|

v v

Dark matter is very light The reheating temperature is low
Cosmological constraints

° Big-Bang Nucleosynthesis

we consider 1cm < ct < 10*m = T~150 MeV
— heavy fermions decay well before onset of BBN

° Lyman-a forest

S BR;A” n=19

>.:BR;

1/m
mpwm <, 12 keV ( ) 2 12 keV

A=1—m2%, /m?
WL

Boulebnane, Heeck, Nguyen, Teresi, 1709.07283



Signatures at the LHC

So what are the model’s signatures at the LHC? /

Drell-Yan (lepton model)

- First of all, production through : D

Drell-Yan +QCD (quark model)

- Several search strategies, depending on the lifetime of the parent particle, i.e.
which part of the detector it mostly decays at (if at all).

Long lifetimes Short lifetimes
i Intermediate lifetimes i
Heavy Stable Charged (for lepton model) Displaced
Particles (HSCPs) leptons/vertices
Y

Disappearing/kinked tracks




Collider constraints
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HSCP searches

General idea: look for a “heavy muon” or “heavy hadron”.

Heavy lepton model

- Some V-L leptons survive through the
tracker and leave an ionising track

Different than SM e/p

- If they also survive past the muon
chambers, one can measure their
tlme_Of_ﬂlght (TOF) Typically larger than for p’s

- Two analyses: tracker-only, tracker
+ TOF

Heavy quark model

- V-L. quarks will hadronize and give
rise to charged and neutral hadrons
(“R-hadrons”)

- Limit depends on number of produced
charged hadrons
Hadronisation as in arXiv:1305.0491

- Interactions in the calorimeter may
cause R-hadrons to flip charge
— neutral R-hadrons may appear

+ Take into account finite lifetime effects

comparison with upper limits obtained by production of staus (leptonic model)
or stops (hadronic model) in a gauge mediated SUSY breaking model

F has smallish life time — re-scale the efficiency of particles that surpasses the

tracker (L=3m) / detector (L=11 m)

Ocff = O X fLLp(L,T)

CMS Coll,, Searches for long-lived charged particles in pp collisions at vs=7 and 8 TeV, JHEP 07 (2013) 122, [arXiv:1305.0491]
CMS Coll,, Search for heavy stable charged particles with 12.9 fb—1 of 2016 data, CMS-PAS-EXO-16-036 (2016).



Disappearing tracks (lepton model)

General idea:

- The heavy leptons F are produced promptly — they leave a track in the tracker.

- A theorist’s view: if F decays before the end of the tracker, we’d observe a
“kinked” track.

- But the outgoing lepton can typically not be reconstructed.

— Experimentally, the track “disappears”

Non-trivial to assess how often the track
actually disappears, here assume it always
does so — limits rather aggressive

- Limits will differ from one experiment to the other: different hardware.

e.g. as of Run 2 ATLAS can reconstruct tracks
as short as 12 cm, while CMS ~25 cm



2 Disappearing Tracks (DT) iR

track
S QLT

® isolated track reconstructed in the pixel and strip detectors C\

without any hit in the outer tracker (CMS) or
a track with only pixel hits (ATLAS)

® ATLAS can reconstruct tracks down to 12 cm (new innermost
tracking layer); CMS 25-30 cm X1
® CMS has better coverage for longer life times ct > 1m

®* AMSB motivated scenario with mass degenerate \
lightest chargino and neutralino T

~+ ~0 .
(@) pp — X1 X1J

13 TeV ATLAS analysis 36.1 fb™
13 TeV CMS analysis 138.4 fb-"

ATLAS Coll,, Search for long-lived charginos based on a disappearing-track signature in pp collisions at vs= 13TeV with the
ATLAS detector, JHEP06(2018) 022, [arXiv:1712.02118]

CMS Coll,, Search for disappearing tracks as a signature of new long-lived particles in proton-proton collisions at vs=13
TeV, arXiv:1804.07321

® Recasting of two analyses of ATLAS and CMS

N =0, pp X e(m,7) x L



Displaced leptons/vertices

Heavy lepton model

- For shorter F lifetimes, the SM lepton
track can be reconstructed

- Look for displaced opposite-charge
e+ (one of each/event)

- Note: in principle possible to
reconstruct both ct, and m,.

— Assuming s is all of DM,
for a given m_we can infer T,

Meaning of comment to be
explained shortly

Heavy quark model

- Look for displaced jets + MET

- Performing the analysis from scratch
requires very sophisticated detector
simulation

— Instead use parametrised
efficiencies provided by ATLAS

ATLAS Coll., Search for long-lived, massive particles in events with displaced vertices and missing transverse momentum in
vs= 13 TeV pp-collisions with the ATLAS detector, Phys. Rev.D97(2018), no. 5 052012, [arXiv:1710.04901]



Results: lepton model

HSCP: Tracker + TOF analysis more powertul
for larger lifetimes, tracker-only for shorter ones.

leptonic model

m,=12keV, Ty =50GeV
m.=12keV, T = 100GeV
m,=12keV, T, =160GeV
m,=12keV, Tp =10°GeV
m,=1 MeV, T, =10GeV
m,=10 MeV, T, =10"GeV

- DLS@8TeV

g DLS@13TeV

S HSCP@8TeV (TOF)
HSCP@13TeV (TOF)

HSCP@8TeV (track.)
HSCP@13TeV (track.)
DT ATLAS

DT CMS

DT: Order-of-magnitude difference in
peak sensitivity between ATLAS/CMS

More accurate estimates require extensive input from EXP collaborations




Results: quark model

HSCP: Tracker-only analysis always more powertul,
neutral R-hadrons fail tracker + TOF selection.

hadronic model

- = my,=12keV, Ty =100GeV

— m,=12keV, Ty =10''GeV
m,=1 MeV, T, =10"'GeV

viv m,=10 MeV, T =101'GeV

— DV@13TeV

—— HSCP@8TeV (TOF)
HSCP@13TeV (TOF)

— HSCP@8TeV (track.)

— HSCP@13TeV (track.)

cr [m]

: < ;
3 \ 7
s \ T
! -~ 1
10-2 . / e S e e s e / .

| N ¥
200# 400 600 800 1000 1200 1400 1600 1800 2000

DV: Impressive reach as Clear complementarity between
high as ¢t,~ 100 m different LHC searches
F




Extrapolation to High Luminosity LHC

103 5
: High Lumi (leptonic model)
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High Lumi LHC could almost close the parameter space in which baryogenesis models
would be in tension in case of a discovery

100 5
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An interplay with baryo/leptogenesis ?

An upshot:

- In E/W baryogenesis and leptogenesis, the reheating temperature must in general
be larger than both the EW phase transition temperature (T,,~160 GeV) and the

sphaleron freeze-out one (T°~132 GeV).

- Assume s makes up all of dark matter.

If it doesn’t, argument even stronger!

- Assume we manage to measure ct, and m_, — 2 free parameters: m_and T,.

- Difficult to access m_— take the lowest value allowed from Lyman-a.

If it’s heavier, argument even stronger!




Conclusions

¢ Although not in full generality, but freeze-in can be tested at colliders
e Simple freeze-in models have predictive and falsifiable signatures
® Leads to a wide array of exotic signatures at the LHC and beyond.

® Such scenarios also have interesting cosmological implications, in particular
baryogengesis and BBN

We argue for experimentalists to actively look for such signatures

Thanks to Julia and Andreas for some slides



1 Heavy Stable Charged Particles (HSCP)
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CMS Coll., Searches for long-lived charged particles in pp collisions at vs=7 and 8 TeV, JHEP 07 (2013) 122, [arXiv:1305.0491]
CMS Coll., Search for heavy stable charged particles with 12.9 fb-1 of 2016 data, CMS-PAS-EXO-16-036 (2016).



N
O

~t N~ ducti

10 X, %y %X, Proauction tanB =95, u >0
'a‘ :I | 1T 1T 1 | T 1T 1 | I 1 I..I. T 1T 1 I‘,‘ T T 1 | 1T 1T 1 ]
Sor A ]
fl - B - _
| o 4+ _
3r i
2 | ]
e E
0.4F -
03F ... - -
0.2_ ':":‘.,-;-T----.......--.:‘-‘:“- ............................ =
01l e 4 ATLAS _
= - (s=13TeV, 36.1 fbo" 1
. C ' Observed 95:/0 CL I.im_it (= Gtheory) |
003 0 e Expected 95% CL limit (£1 o, ) |

DO ATLAS (8 TeV, 20.3 fb™, EW prod. Obs.)
0.02 SETrY Theory (Phys. Lett. B721 (2013) 252) ]

ALEPH (Phys. Lett. B533 (2002) 223)
0 01 | L1 1 1 | | I I | | [ I | | | I I I I I | | | I I |
100 200 300 400 500 600 700
m.. [GeV]
1

isappearing Tracks (DT)

10

38.4 b (13 TeV)

CMS

tanp=5u>0
~0

B (>2;—* > ¥, %) = 100%

95% CL limit
95% expected
I 68% expected
Median expected
- QObserved

I IIIII||

| IIIII[|

| [IIIII|

200 400 600

800
m... [GeV]

ATLAS Coll,, Search for long-lived charginos based on a disappearing-track signature in pp collisions at vs= 13TeV with the
ATLAS detector, JHEP06(2018) 022, [arXiv:1712.02118]

CMS Coll., Search for disappearing tracks as a signature of new long-lived particles in proton-proton collisions at vs=13

TeV, arXiv:1804.07321



3 Displaced leptons (DL) / Vertices (DV) + MET

® Fcandecayinto both muon and electron

® CMS search for non-prompt RPV violating
SUSY decays into e/p final state

51 — bl

® search optimized for lifetimes longer than
prompt searches, but shorter than long-
lived BSM signatures

8 TeV CMS analysis 19.7 fb”
13 TeV CMS analysis 2.6 fb™

top squark ct [cm]
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o
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—
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CMS Coll,, Search for Displaced Supersymmetry in events with an electron and a muon with large impact parameters,

Phys. Rev. 1240 Lett. 114 (2015), no. 6 061801, [arXiv:1409.4789]

CMS Coll,, Search for displaced leptons in the e-mu channel, CMS-PAS-EXO-16-022 (2016).



3 Displaced leptons (DL) / Vertices (DV) + MET

®* Fcan decay and hadronize into R-hadrons

® ATLAS search for a simplified Split-
SUSY model

® Pythia 8 hadronization + 50k MC
events per given mF-ct combination

* prompt multi-jet + MET CMS 13 TeV
35.9 fb-1 analysis weaker

13 TeV ATLAS analysis 32.8 fb™

Vertex reconstruction efficiency

- ATLAS Smuaton
1.2~ 5 _13Tev ]
~ Split-SUSY Model, §->qq>z‘1’ .
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ATLAS Coll., Search for long-lived, massive particles in events with displaced vertices and missing transverse momentum in
vs= 13 TeV pp-collisions with the ATLAS detector, Phys. Rev.D97(2018), no. 5 052012, [arXiv:1710.04901]



