Collider signatures of minimal freeze-in models

Dipan Sengupta

with

G. Belanger, N.Desai, A. Goudelis, J. Harz, A. Lessa, J.M No, A. Pukhov, S.Sekmen, B.Zaldivar, J.Zurita

based on

JHEP 1902 (2019) 186, [arXiv:1811.05478]

Outline

· Freeze-in: general framework (reminder?)

· FIMPs and conventional dark matter searches

· Next-to-minimal freeze-in models

· Charged parent models: cosmology vs colliders

Weakly Interacting Massive Particle(WIMPs)

DM in thermal equilibrium with bath particles in early universe

$$n = g \left(\frac{mT}{2\pi}\right)^{3/2} e^{-m/T}$$

$$\frac{dn_{\chi}}{dt} + 3Hn_{\chi} = \langle \sigma v \rangle \left[n_{\chi}^2 - n_{eq}^2 \right] \longrightarrow$$

Boltzmann equation for DM

$$\langle \sigma_{\rm ann} v_{\rm rel} \rangle(x) = \frac{4x}{K_2(x)^2} \int_1^{+\infty} d\overline{s} \quad \sqrt{\overline{s}} \cdot (\overline{s} - 1) \cdot K_1(2x\sqrt{\overline{s}}) \cdot \sigma_{\rm ann} \qquad x \equiv \frac{M_X}{T}$$

$$x \equiv \frac{M_X}{T}$$

$$\begin{split} \Omega_X &\equiv \frac{\rho_{X,0}}{\rho_{\rm crit,0}} \\ &= \frac{M_X n_{X,0}}{3 M_{\rm pl}^2 H_0^2} = \frac{M_X N_{X,0} s_0}{3 M_{\rm pl}^2 H_0^2} = M_X N_X^\infty \frac{s_0}{3 M_{\rm pl}^2 H_0^2} \end{split}$$

$$\Omega_{\chi}h^{2} = 0.1 \frac{x_{f}}{28} \frac{\sqrt{g_{eff}}}{10} \frac{2.10^{-26} cm^{3} s^{-1}}{<\sigma_{\chi\chi}v_{ann}>}$$

Interaction Strength: Weak Scale -> A BSM theory that also solves Hierarchy problem

Status of WIMPY DM: Doomsday or not?

Alternative ideas?

FIMPS

Freeze-in: general idea

arXiv:hep-ph/0106249 arXiv:0911.1120 arXiv:1706.07442...

Tweaked from arXiv:0911.1120

Two basic premises:

- · DM interacts very weakly with the SM.
- · DM has a negligible initial density.

Assume that in reaction $A \to B$, ξ_A/ξ_B particles of type χ are destroyed/created. Integrated Boltzmann equation :

$$\dot{n}_{\chi} + 3Hn_{\chi} = \sum_{A,B} (\xi_B - \xi_A) \mathcal{N}(A \to B) \blacktriangleleft$$

$$\mathcal{N}(in \to out) = \int \prod_{i=in} \left(\frac{d^3 p_i}{(2\pi)^3 2E_i} f_i \right) \prod_{j=out} \left(\frac{d^3 p_j}{(2\pi)^3 2E_j} (1 \mp f_j) \right) \times (2\pi)^4 \delta^4 \left(\sum_{i=in} P_i - \sum_{j=out} P_j \right) C_{in} |\mathcal{M}|^2$$

- 1 DM produced from decays/annihilations of other particles.
- 2 DM production disfavoured → Abundance freezes-in

Freeze-in vs freeze-out

Naively, the freeze-in BE is simpler than the freeze-out one. However:

Initial conditions:

- · FO: equilibrium erases all memory.
- · FI: Ωh^2 depends on the initial conditions.

Heavier particles:

- · FO: pretty irrelevant (exc. coannihilations/late decays).
- · FI: their decays can dominate DM production.

Need to track the evolution of heavier states

In equilibrium? Relics? FIMPs?

Need dedicated Boltzmann eqs

Relevant temperature:

- · FO: around $m_{\gamma}/20$.
- · FI: several possibilities ($m_{\chi}/3$, $m_{\rm parent}/3$, $T_{\rm R}$ or higher), depending on nature of underlying theory.

- Statistics/early Universe physics can become important.

Model-building issues

What kind of couplings do we need for successful freeze-in?

How can we justify such small numbers?

How to dynamically and "naturally" generate such small couplings with order 1 numbers?

· Can we test freeze-in? Certainly not in full generality, but there are actually numerous handles.

Freeze-in can motivate an exciting EXP search programme

An example: the singlet-doublet model

Consider the singlet-doublet fermion model: SM + 2 Weyl (2, $\pm 1/2$) fermions ψ_u , ψ_d + a (**1**, **0**) fermion ψ_s arXiv:hep-ph/0510064

$$-\mathcal{L} \supset \mu \ \psi_d \cdot \psi_u + y_d \ \psi_d \cdot H \ \psi_s + y_u \ H^{\dagger} \psi_u \ \psi_s + \frac{1}{2} m_s \ \psi_s \psi_s + h.c.$$

 \rightarrow ψ ± decays (disappearing tracks)

→ displaced h/Z + MET · Collider signatures: ► Promptly (although: not for freeze-in) ► Mono-X (large decay lengths)

An example: the singlet-doublet model

Consider the singlet-doublet fermion model: SM + 2 Weyl (2, $\pm 1/2$) fermions ψ_u , ψ_d + a (1, 0) fermion ψ_s

arXiv:hep-ph/0510064

$$-\mathcal{L} \supset \mu \ \psi_d \cdot \psi_u + y_d \ \psi_d \cdot H \ \psi_s + y_u \ H^{\dagger} \psi_u \ \psi_s + \frac{1}{2} m_s \ \psi_s \psi_s + h.c.$$

· Combination of all constraints :

Freeze-in with a charged parent

Consider an extension of the SM by a Z_2 -odd real singlet scalar s (DM) along with a Z_2 -odd vector-like SU(2)-singlet fermion F (parent).

contribution in arXiv:1803.10379 and arXiv:1811.05478

$$\mathcal{L} = \mathcal{L}_{SM} + \partial_{\mu} s \ \partial^{\mu} s - \frac{\mu_s^2}{2} s^2 + \frac{\lambda_s}{4} s^4 + \lambda_{sh} s^2 \left(H^{\dagger} H \right)$$
$$+ \bar{F} (iD) F - m_F \bar{F} F - \sum_f y_s^f \left(s \bar{F} \left(\frac{1 + \gamma^5}{2} \right) f + \text{h.c.} \right)$$

$$f = \{e, \mu, \tau\} \rightarrow F \text{ transforms as } (\textbf{1, 1, -1})$$
 "Heavy lepton"
$$f = \{u, c, t\} \rightarrow F \text{ transforms as } (\textbf{3, 1, -2/3})$$
 "Heavy *u*-quark"
$$f = \{d, s, b\} \rightarrow F \text{ transforms as } (\textbf{3, 1, 1/3})$$
 "Heavy *d*-quark"

Freeze-in with a charged parent

Consider an extension of the SM by a Z_2 -odd real singlet scalar s (DM) along with a Z_2 -odd vector-like SU(2)-singlet fermion F (parent).

contribution in arXiv:1803.10379 and arXiv:1811.05478

$$\mathcal{L} = \mathcal{L}_{SM} + \partial_{\mu} s \ \partial^{\mu} s - \frac{\mu_s^2}{2} s^2 + \frac{\lambda_s}{4} s^4 + \lambda_{sh} s^2 \left(H^{\dagger} H \right)$$

$$+ \bar{F} (iD) F - m_F \bar{F} F - \sum_f y_s^f \left(s \bar{F} \left(\frac{1 + \gamma^5}{2} \right) f + \text{h.c.} \right)$$

For simplicity:

· Study three cases separately.

i.e. add a single pair of F fermions at a time

 \cdot Only couple F to the first two generations.

The collider pheno of 3rd generation fermions is a bit more tricky

· Set Higgs portal to zero \rightarrow Only relevant coupling: y_s^f .

Non-LLP constraints: earth-bound

Focus on the first two models (heavy lepton, heavy *u*-quark).

Heavy lepton model

· LEP2: $m_{\scriptscriptstyle F} > 104~{\rm GeV}$

Actually slightly weaker, depending on lifetime

No EWPT constraints

arXiv:1404.4398

· Muon lifetime: $\mu \rightarrow ess$

Checked, irrelevant

· LFV processes, in particular $\mu \rightarrow e \gamma$

$$Br(\mu \to e\gamma) \sim \frac{2v^4(y_s^e)^2(y_s^\mu)^2}{3m_F^4(16\pi)^2} \sim 10^{-46}$$

i.e. tiny

Heavy quark model

· Direct collider bounds subleading

Require prompt jets

· Running of α_s : m_F > few hundred GeV

· Rare decays, e.g. $K^+ \rightarrow \pi^+ ss$

NA62 can reach down to $y_s \sim 10^{-5}$

· Meson mixing: similarly to $\mu \rightarrow e \gamma$, tiny

Globally: still lots of room for interesting phenomenology

Parent particle lifetime and cosmology

Assuming that DM is mostly populated by F decays, we can relate the relic abundance with the parent particle lifetime:

$$c\tau \approx 4.5 \text{ m } \xi g_F \left(\frac{0.12}{\Omega_s h^2}\right) \left(\frac{m_s}{100 \text{keV}}\right) \left(\frac{200 \text{GeV}}{m_F}\right)^2 \left(\frac{102}{g_*(m_F/3)}\right)^{3/2} \left[\frac{\int_{m_F/T_R}^{m_F/T_0} dx \ x^3 K_1(x)}{3\pi/2}\right]$$

Freeze-in favours long lifetimes, unless

Dark matter is very light

The reheating temperature is low

Cosmological constraints

Big-Bang Nucleosynthesis

we consider 1cm < ct < 10 4 m \rightarrow T \sim 150 MeV

- → heavy fermions decay well before onset of BBN
- Lyman-α forest

$$m_{\rm DM} \gtrsim 12~{\rm keV} \left(\frac{\sum_i {\rm BR}_i \Delta_i^\eta}{\sum_i {\rm BR}_i}\right)^{1/\eta} \gtrsim 12~{\rm keV} \qquad \qquad \eta = 1.9$$

$$\Delta_i = 1 - m_{X_{\rm SM}^i}^2/m_Y^2$$

Signatures at the LHC

· Several search strategies, depending on the lifetime of the parent particle, i.e. which part of the detector it mostly decays at (if at all).

Collider constraints

HSCP searches

General idea: look for a "heavy muon" or "heavy hadron".

Heavy lepton model

· Some V-L leptons survive through the tracker and leave an ionising track

Different than SM e/µ

- \cdot If they also survive past the muon chambers, one can measure their time-of-flight (TOF) $\,$ Typically larger than for $\mu's$
- · Two analyses: tracker-only, tracker + TOF

Heavy quark model

- · V-L quarks will hadronize and give rise to charged and neutral hadrons ("R-hadrons")
- · Limit depends on number of produced charged hadrons

Hadronisation as in arXiv:1305.0491

- Interactions in the calorimeter may cause R-hadrons to flip charge
 → neutral R-hadrons may appear
- + Take into account finite lifetime effects
- comparison with upper limits obtained by production of staus (leptonic model) or stops (hadronic model) in a gauge mediated SUSY breaking model
- F has smallish life time \rightarrow re-scale the efficiency of particles that surpasses the tracker (L = 3m) / detector (L = 11 m) $\sigma_{eff} = \sigma \times f_{LLP}(L,\tau)$

CMS Coll., Searches for long-lived charged particles in pp collisions at \sqrt{s} =7 and 8 TeV, JHEP 07 (2013) 122, [arXiv:1305.0491] CMS Coll., Search for heavy stable charged particles with 12.9 fb–1 of 2016 data, CMS-PAS-EXO-16-036 (2016).

Disappearing tracks (lepton model)

General idea:

- · The heavy leptons F are produced promptly \rightarrow they leave a track in the tracker.
- · A theorist's view: if F decays before the end of the tracker, we'd observe a "kinked" track.
- · But the outgoing lepton can typically *not* be reconstructed.
 - → Experimentally, the track "disappears"

Non-trivial to assess how often the track *actually* disappears, here assume it always does so \rightarrow limits rather aggressive

· Limits will differ from one experiment to the other: different hardware.

e.g. as of Run 2 ATLAS can reconstruct tracks as short as 12 cm, while CMS ~25 cm

2 Disappearing Tracks (DT)

- **isolated track** reconstructed in the pixel and strip detectors without any hit in the outer tracker (CMS) or a track with only pixel hits (ATLAS)
- ATLAS can reconstruct tracks down to 12 cm (new innermost tracking layer); CMS 25-30 cm
- CMS has better coverage for longer life times $c\tau > 1m$
- AMSB motivated scenario with mass degenerate lightest chargino and neutralino

(a) $pp \to \tilde{\chi}_1^{\pm} \tilde{\chi}_1^0 j$

13 TeV ATLAS analysis 36.1 fb⁻¹ 13 TeV CMS analysis 138.4 fb⁻¹

disappearing

track

ATLAS Coll., Search for long-lived charginos based on a disappearing-track signature in pp collisions at \sqrt{s} = 13TeV with the ATLAS detector, JHEP06(2018) 022, [arXiv:1712.02118]

CMS Coll., Search for disappearing tracks as a signature of new long-lived particles in proton-proton collisions at √s=13 TeV, arXiv:1804.07321

Recasting of two analyses of ATLAS and CMS

$$\mathcal{N} = \sigma_{\mathrm{pp} \to \mathrm{F}\bar{\mathrm{F}}} \times \varepsilon(m, \tau) \times \mathcal{L}$$

Displaced leptons/vertices

Heavy lepton model

- · For shorter *F* lifetimes, the SM lepton track can be reconstructed
- · Look for displaced opposite-charge $e+\mu$ (one of each/event)
- · Note: in principle possible to reconstruct both $c\tau_F$ and m_F .
 - \rightarrow Assuming s is all of DM, for a given m_s we can infer T_R

Meaning of comment to be explained shortly

Heavy quark model

- · Look for displaced jets + MET
- · Performing the analysis from scratch requires very sophisticated detector simulation
 - → Instead use parametrised efficiencies provided by ATLAS

ATLAS Coll., Search for long-lived, massive particles in events with displaced vertices and missing transverse momentum in \sqrt{s} = 13 TeV pp-collisions with the ATLAS detector, Phys. Rev.D97(2018), no. 5 052012, [arXiv:1710.04901]

Results: lepton model

HSCP: Tracker + TOF analysis more powerful for larger lifetimes, tracker-only for shorter ones.

DT: Order-of-magnitude difference in peak sensitivity between ATLAS/CMS

More accurate estimates require extensive input from EXP collaborations

Results: quark model

HSCP: Tracker-only analysis always more powerful, neutral R-hadrons fail tracker + TOF selection.

DV: Impressive reach as high as $c\tau_F \sim 100 \text{ m}$

Clear complementarity between different LHC searches

Extrapolation to High Luminosity LHC

High Lumi LHC could almost close the parameter space in which baryogenesis models would be in tension in case of a discovery

An interplay with baryo/leptogenesis?

An upshot:

- · In E/W baryogenesis and leptogenesis, the reheating temperature must in general be larger than both the EW phase transition temperature (T_{EW} ~160 GeV) and the sphaleron freeze-out one (T^* ~132 GeV).
- · Assume *s* makes up all of dark matter.

If it doesn't, argument even stronger!

- · Assume we manage to measure $c\tau_F$ and $m_F \rightarrow 2$ free parameters: m_s and T_R .
- · Difficult to access $m_s \to \text{take}$ the lowest value allowed from Lyman- α .

If it's heavier, argument even stronger!

If measurements point to $T_R < T_{EW}$, T^* , we can falsify baryogenesis models that rely on efficient sphaleron transitions

Conclusions

- Although not in full generality, but freeze-in can be tested at colliders
- Simple freeze-in models have predictive and falsifiable signatures
- Leads to a wide array of exotic signatures at the LHC and beyond.
- Such scenarios also have interesting cosmological implications, in particular baryogengesis and BBN

We argue for experimentalists to actively look for such signatures

1 Heavy Stable Charged Particles (HSCP)

CMS Coll., Searches for long-lived charged particles in pp collisions at \sqrt{s} =7 and 8 TeV, JHEP 07 (2013) 122, [arXiv:1305.0491] CMS Coll., Search for heavy stable charged particles with 12.9 fb–1 of 2016 data, CMS-PAS-EXO-16-036 (2016).

2 Disappearing Tracks (DT)

ATLAS Coll., Search for long-lived charginos based on a disappearing-track signature in pp collisions at \sqrt{s} = 13TeV with the ATLAS detector, JHEP06(2018) 022, [arXiv:1712.02118]

CMS Coll., Search for disappearing tracks as a signature of new long-lived particles in proton-proton collisions at \sqrt{s} =13 TeV, arXiv:1804.07321

3 Displaced leptons (DL) / Vertices (DV) + MET

• F can decay into **both muon and electron**

CMS search for non-prompt RPV violating
 SUSY decays into e/μ final state

$$\tilde{t}_1 \to b\ell$$

 search optimized for lifetimes longer than prompt searches, but shorter than longlived BSM signatures

8 TeV CMS analysis 19.7 fb⁻¹ 13 TeV CMS analysis 2.6 fb⁻¹

CMS Coll., Search for Displaced Supersymmetry in events with an electron and a muon with large impact parameters, Phys. Rev. 1240 Lett. 114 (2015), no. 6 061801, [arXiv:1409.4789]

CMS Coll., Search for displaced leptons in the e-mu channel, CMS-PAS-EXO-16-022 (2016).

3 Displaced leptons (DL) / Vertices (DV) + MET

F can decay and hadronize into R-hadrons

 ATLAS search for a simplified Split-SUSY model

$$\tilde{g} \to \overline{q}q\tilde{\chi}_1^0$$

- Pythia 8 hadronization + 50k MC events per given mF-cτ combination
- prompt multi-jet + MET CMS 13 TeV 35.9 fb-1 analysis weaker

13 TeV ATLAS analysis 32.8 fb⁻¹

ATLAS Coll., Search for long-lived, massive particles in events with displaced vertices and missing transverse momentum in \sqrt{s} = 13 TeV pp-collisions with the ATLAS detector, Phys. Rev.D97(2018), no. 5 052012, [arXiv:1710.04901]