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Introduction
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Towards understanding of

• Bulk and transport properties

• Structure of vacuum (chiral symmetry restoration)

• Electromagnetic radiation

• Stopping power

• Thermalization/Fluidization mechanism

• New physics

• …

in high-energy nuclear collisions, of dynamics 

is mandatory.



Analysis tool
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http://www.esa.int/spaceinimages/Images

/2013/04/Planck_CMB_black_background

Cosmic Microwave Background
Fluctuations of temperature  (Planck)

Cosmological parameters

• Energy budget

• Hubble constant (life time)

• Curvature (flatness)

• Information about inflation

• …

Observational cosmology

CAMB, CMBFAST,

CosmoMC,…



Analysis tool
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Physics properties of the QGP

• Equation of state

• Shear viscosity

• Bulk viscosity

• Stopping power

• …

Y.Zhou, talk at QM2018

Bottom-up approach in high-energy nuclear collisions

Need 

for high-energy nuclear collisions

?



Standard picture of dynamics 

0

collision axis

ti
m

e

Gluon saturation Dilute parton gas

(Mini-)

jets

Fragmentation

Glasma

QGP

fluid
interaction

Hadron gas

Recombination

Hadronic observables

energy scaleSoft sector Hard sector6



(Ideal?) Dynamical modeling
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Our current situation (model SOFT)

MC Glauber(+BGK)/KLN pQCD
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TH et al. (2013); K. Murase (2015); S.Takeuchi et al. (2015); A.Sakai et al.(2019).
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Our current situation (model SOFT-HARD)

CGC theory PYTHIA (Heavy Ion)

Parton energy 
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Classical Yang-Mills

Ideal
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Y.Tachibana, TH, (2014, 2016); M.Okai et al., (2017); Y.Kanakubo et al., (2018).
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Recent analyses

Integrated dynamical approach to soft physics in heavy-ion collisions
From large to small colliding systems
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Integrated dynamical approach to soft 
physics in heavy-ion collisions (model S)
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MC Glauber(+BGK)/KLN pQCD

Modification of

jet structure

string

fragmentation
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hydro+jet
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Main purpose:

• Description of low 𝑝𝑇 hadrons 

from soup to nuts in large 

colliding systems

• Investigation of hydrodynamic 

fluctuations on observable 

toward understanding of 

and 

transport properties

hadronic

observables

JAM: Y.Nara et al., Phys. Rev. C61

024901 (2000)



Hydrodynamic fluctuations

Dissipative hydro

(2nd Generation)

Fluctuating hydro

(3rd Generation)

QGP fluid simulation in a box
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p
y

State

𝑆 = 𝑆0 + 𝛿𝑆 + 𝛿2𝑆 +⋯
< 0

Fluctuation-Dissipation

relations

Fluctuations around

maximum entropy state

PeraltaRamos, Calzetta (2011), Kapusta, Muller, Stephanov (2011),

Moore, Kovtun, Romatschke (2011), Hirano, Murase (2013),

Young(2014), Akamatsu, Mazeliauskas, Teaney (2017)… 

Courtesy of K.Murase

Dissipations  Fluctuations
12



𝑥

𝑦

Correlations along collision axis

Heavy ion collision as a chromoelectric capacitor

 Approximately boost-invariant formation of color flux tubes 

 Correlation embedded in wide rapidity region

𝜏 = 0+

𝑥

𝑦

𝜂𝑠
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Decorrelation from initial conditions and 
hydrodynamic fluctuations 

“Random walk” of event plane angle
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New opportunity to constrain 

and transport coefficients

Aligned event plane angle
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PbPb 𝑠𝑁𝑁 = 2.76 TeV



From large to small colliding systems 
(model S-H)

15

CGC theory PYTHIA (Heavy Ion)

Parton

energy loss

string

fragmentation

Classical Yang-Mills

Ideal

hydrodynamics
hydro+jet

model

Hadronic transport

Recombination

model

energy scaleSoft sector Hard sector

Main purpose:

from 

small to large colliding 

systems

• Investigation of core-corona 

picture on bulk observables

hadronic

observables

PYTHIA: T. Sjöstrand et al., 
Comput. Phys. Commun. 191, 159 (2015).

*Heavy ion mode available from ver.8.230



Core-corona picture

Core:

Corona:

Chemically

equilibrated

matter

Unscathed partons

Multiplicity HighLow

Figures: Courtesy of Y.Kanakubo

Bozek (2005,2009), Aichelin, Werner (2009), Becattini, Manninen (2009),

Pierog et al. (2015), Akamatsu et al. (2018), Kanakubo et al. (2018)

QGP fluids

16

Key to describe dynamics 



Dynamical core-corona initialization
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𝐽p→f
𝜇

= −෍

𝑖

𝑑𝑝𝑖
𝜇

𝑑𝑡
𝐺(𝒙 − 𝒙𝑖(𝑡))

𝑑𝑝𝑖
𝜇 𝑡

𝑑𝑡
= −𝑎0

𝜌𝑖 𝑥𝑖 𝑡

𝑝T,𝑖
2

𝑝𝑖
𝜇 𝑡

𝐺 : Gaussian smearing

𝑝𝑖 : Parton four momentum

𝒙𝑖 : Parton position

𝜌𝑖 : Parton density

𝑎0 : Control parameter≈ −
𝑝𝑖
𝜇 𝑡

𝜆𝑖 𝜆𝑖 : Mean free path

Phenomenological parametrization for source term

𝜕𝜇𝑇f
𝜇𝜈

=

Fluidization rate per particle

Automatic separation between
core and corona

soft and hard

Y.Kanakubo et al. (2018)

M.Okai et al. (2017)



Core-corona effects on ratio of cascades 
to pions

Y.Kanakubo et al.(2018)

String fragmentation limit:

hadron production only from

string fragmentation

QGP limit:

hadron production only from fluids 

(Chemically equilibrated matter)

𝑑𝑁ch
𝑑𝜂

< 100

QGP formation 

dominance 

~
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𝑑𝑁ch
𝑑𝜂

> 100
~
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Size and collision energy dependence
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Τ𝑑𝑁ch 𝑑𝜂

XeXe (closed) vs. 

pp, pPb and PbPb (open)

PbPb@2.76TeV (thin) 

vs. AuAu@0.2TeV (thick)

Τ
𝑁
𝑖
𝑁
𝜋

in dynamical core-

corona model

Τ
𝑁
𝑖
𝑁
𝜋

Y.Kanakubo et al. (in preparation)



Combination of model S and S-H
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Toward “Standard Model” from small to 
large colliding systems
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Summary and outlook
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• Development of standard model for high-

energy nuclear collisions from small to large 

colliding systems

• Current status

• Rapidity decorrelation as a tool to investigate 

initial conditions in rapidity direction

• Universal description of dynamics brought by 

dynamical core-corona initialization

• Check list for future dynamical model in backups



Backups
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Expectation to LHC-ALICE experiment
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Fill the blank 

(forward/backword)

region?!



Check lists towards future dynamical 
model
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• Initial conditions

• Hydrodynamics

• Hadronization and hadronic transport

Caveat: 

All topics are IMHO.

Some topics include long-standing problem(s)



Initial conditions
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 Event-by-event basis

 Full 3D (No boost invariance)

 Colliding energetic hadron/nuclei as “unified” parton distribution

• Color glass condensate (small 𝑥)

• Collinear PDF (𝑄2 ≫ 𝑄𝑠
2 𝑥 )

 Non-equilibrium evolution to hydrodynamic regime

 Definition of hydrodynamization rate?

 Energy-momentum conservation as a whole

 Separation between soft and hard



Hydrodynamics
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 Full 3D (no boost invariance)

 Event-by-event basis

 (Hydrodynamic) Fluctuations and dissipations

 Dynamical initialization with core-corona separation

 Interface with jet physics

 Critical dynamics (𝑛𝐵 , 𝜎)
 Equation of state

• 𝑁𝑓 = 2 + 1 or 2 + 1 + 1 from lattice QCD

• Finite 𝜇𝑖 (𝑖 = 𝐵, 𝑆, 𝐼3) (Caveat: Sign problem)

• Critical point and first order phase transition (optional)



Hadronization and hadronic transport
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 Development of a transport theory/model between 

hydrodynamics and Boltzmann eq.

 Interface with hydrodynamics

 Beyond Cooper-Frye prescription

• Negative contribution 

 Simultaneous simulation with hydro

 Energy-momentum conservation on event-by-event basis

 Hadronization between soft and hard



𝑡

𝑧

Model S-H
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1. Initial parton generation

 PYTHIA ver. 8.230
T. Sjöstrand et al., 

Comput. Phys. Commun. 191, 159 (2015).

3. Hadronization
Core: Particlization through Cooper-Frye 

formula (𝑇sw = 170 MeV) + correction

factors for resonance decays

Corona: Lund string fragmentation (PYTHIA)

Y. Kanakubo et al., PTEP 2018, 121D01

2. Dynamical initialization

+ fluid evolution
Y. Tachibana, TH, Phys. Rev. C 90, no. 2, 021902 (2014).

M.Okai et al., Phys. Rev. C 95, 054914 (2017). 

+Core-corona picture



Dynamical initialization in hydro models
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0 Formation time

of partons

hydro 

initial time

Vacuum

“Fluidization” through source terms 

 Energy-momentum conservation as a whole

𝜏

Partons

Fluids

M.Okai, K.Kawaguchi, Y.Tachibana, TH (2017)

Conventional

hydro 

simulations

𝜕𝜇𝑇f
𝜇𝜈

= 𝐽p→f
𝜈



Energy density and transverse flow 
fluctuations without core-corona picture
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Pb+Pb 𝑠𝑁𝑁 = 2.76 TeV, 𝑏 = 10.08 fm

energy density

distribution

transverse flow

velocity distribution

Initial parton phase space 

distribution from event to event

Dynamical initialization obeying 

momentum conservation

Initial random transverse

flow velocity

Anisotropy interpreted from initial 

random (geometry+flow)

M.Okai (2018)



Fluidization rate
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𝑅 =
𝑑𝐸core/𝑑𝜂𝑠
𝑑𝐸tot/𝑑𝜂𝑠

Core energy at midrapidity

Total energy at midrapidity

 Partons forced to be fluidized at 

the first time step

Monotonic increase + saturation

 Core part dominance in high 

multiplicity events
Τ𝑑𝑁ch 𝑑𝜂

𝑅



Lambdas ( 𝑆 = 1)
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Τ𝑑𝑁ch 𝑑𝜂

Τ
𝑁
Λ
𝑁
𝜋

Λ

Similar trends to Cascade ( 𝑆 = 2)

• Rapid increase with multiplicity

• Saturation above Τ𝑑𝑁ch 𝑑𝜂 ~100
• Scale solely with multiplicity 

regardless of system size



Phi mesons ( 𝑆 = 0)
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Τ𝑑𝑁ch 𝑑𝜂

Τ
𝑁
Λ
𝑁
𝜋

𝜙

Similar trends to Lambda and Cascade

 Enhancement of ratio with multiplicity 

even for 𝑆 = 0

Canonical suppression scenario

 Suppression of strange hadron yields 

due to absence of bath of 

strangeness in small systems

 Phi mesons are NOT suppressed

(*Same conclusion as in, e.g., Becattini and Manninen (2009))

See, e.g., Vislavicius and Kalweit, arXiv:1610.03001 



Protons
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Τ
𝑁
𝑝
𝑁
𝜋

Τ𝑑𝑁ch 𝑑𝜂

𝑝 Opposite trends to exp. data

• Moderate enhancement in 

dynamical core-corona model

 similar ratios both in hydro and 

string fragmentation

• p-pbar annihilation at high 

multiplicity could resolve the 

discrepancy

 Need hadronic afterburner


