Transverse Single Spin Asymmetry of Very Forward π^{0} Production Using RHICf Detector in Polarized Proton－ Proton Collision

理研

中川格
Itaru Nakagawa

Outline

- Introduction
- Transverse Single Spin Asymmetry
- Proton spin decomposition (Proton spin puzzle)
- Status of the proton spin puzzle
- New RHICf experiment @ STAR
- Hypothesis to connect new and existing data and orbital angular momentum
- Physics opportunity for FoCAL at RHIC by testing above hypothesis.

Transverse Single Spin Asymmetry

Pioneering Transverse Single Spin Assymmetry

Naïve Theory Prediction:
Small in high energy
(Kane, Pumplin, Repko, PRL 41, 1689-1692 (1978))

$$
A_{N} \propto \frac{m_{q}}{\sqrt{S}}
$$

Experiment:
(E704, Fermi National Laboratory, 1991)
$p p^{\uparrow} \rightarrow \pi+X$
$\sqrt{s}=20 \mathrm{GeV}$
$A_{N} O\left(10^{-1}\right)$ Measured

$$
A_{N}=\frac{1}{P} \frac{\sigma_{L}^{\pi}-\sigma_{R}^{\pi}}{\sigma_{L}^{\pi}+\sigma_{R}^{\pi}}
$$

Energy Dependence of A_{N}

Non-perturbative

Origin of Left-Right Asymmetry

Factorization

$$
p p \rightarrow h X
$$

Spin dependence X'

Asymmetry ~IS XFS

Intrinsic Transverse Momentum and Orbital Angular Momentum

If a parton has a orbital angular momentum in a nucleon, the probability to find the parton which carries the momentum fraction x is different between left and right sides of nucleon

Quark transverse momentum distributions

Proton Spin Puzzle

Longitudinal Spin Sum Rule $S_{z}=\frac{1}{2} \Delta \Sigma+\underset{\downarrow}{\Delta} G+L_{\downarrow}$ ~25\% ~40\% ??

Orbital Angular Momentum

Next Generation Experiments

Initial state

Final state
 appears within Jet
γ-multiplicity dependence of Forward $(2<\eta<4)$

Assymmetries in Diffractive Origin

π^{0} Forward ($2<\eta<4$)

Production Mechanism of Forward Neutron

Cross Section

Momentum Transfer ~100MeV/c
Well Explained by One-Pion Exchange

Large fraction of proton energy is carried by neutron

${ }^{1+p}$ Forward Neutron A_{N}

Spin non-flip

Asymmetries are well reproduced by the interference between π and a_{1} Reggeon. However, the coupling between p and a_{1} is model dependent assumption

Diffractive π^{0} Asymmetry?

π^{0} Forward ($2<\eta<4$)

TABLE I: Asymmetries measured by the EMCal. The errors are statistical and systematic, respectively. There is an additional scale uncertainty, due to the beam polarization uncertainty, of $\left(\begin{array}{llll}1 & 0_{-0}^{+0} & 24\end{array}\right)$.

π^{0} Offline Analysis

- π^{0} peak with $\sim 10 \mathrm{MeV} / \mathrm{c}^{2}$ width
- 3σ region selected as π^{0} candidates
- $p_{T}<1.0 \mathrm{GeV} / c$
- $0.2<x_{F}<1.0$

Type-I $\begin{gathered}\text { Type-II } \\ \text { (same as single high-E photon) }\end{gathered}$

Data analysis by Minho Kim

π^{0} Asymmetry Preliminary Results

Phys. Rev. D 90, 012006

Large Asymmetry was observed $p_{T}<1 \mathrm{GeV}$

My personal hypothesis
THEORETICAL INTERPRETATION

Proton Spin +1/2

p
|p)
$S+L=J \quad+\frac{1}{2}+0=+\frac{1}{2}$

Proton Spin +1/2

Proton Spin +1/2

Pion cloud model

$$
\begin{array}{cc}
|p\rangle & |N \pi\rangle \\
S+L=J & +\frac{1}{2}+0=+\frac{1}{2}
\end{array}\left(\begin{array}{c}
\left(-\frac{1}{2}+0\right)+(0+1)= \\
\end{array}\right.
$$

Proton Spin +1/2

Proton Spin +1/2

Pion cloud in p-wave $(L=1)$

Orbital Momentum \& Diffractive π^{0}

Can π^{0} and neutron A_{N} be same origin?

If they come from the same origin, the slope should be same but opposite sign

- Not sure if (pi+, piO) suppose to have same orbital angular momentum.
- Above data are inclusive. Need to guarantee 2-body decay to require $A_{N}^{n}=-A_{N}^{\pi^{+}}$
- Kinematic conditions are not necessarily consistent between 2 measurements.
- Etc.

Intrinsic Orbital Motion via Different Means

Aren't we measuring same orbital angular momentum in different scale?

Quark transverse momentum distributions

Pion cloud (sea quarks) in L=1 orbit

π^{0} Asymmetry Preliminary Results

Phys. Rev. D 90, 012006

New possible opportunity to extract physics by FoCAL?

sPHENIX Running schedule

Year Species Energy [GeV] Wks Rec. L Samp. L Samp. L (all-z)

2023	Year-1	$\mathrm{Au}+\mathrm{Au}$	200	16.0	$7 \mathrm{nb}^{-1}$	$8.7 \mathrm{nb}^{-1}$	$34 \mathrm{nb}^{-1}$
2024	Year-2	$p+p$	200	11.5	-	$48 \mathrm{pb}^{-1}$	$267 \mathrm{pb}^{-1}$
		$p+\mathrm{Au}$	200	11.5	-	$0.33 \mathrm{pb}^{-1}$	$1.46 \mathrm{pb}^{-1}$
2025	Year-3	$\mathrm{Au}+\mathrm{Au}$	200	23.5	$14 \mathrm{nb}^{-1}$	$26 \mathrm{nb}^{-1}$	$88 \mathrm{nb}^{-1}$
	Year-4	$p+p$	200	23.5	-	$149 \mathrm{pb}^{-1}$	$783 \mathrm{pb}^{-1}$
	Year-5	$\mathrm{Au}+\mathrm{Au}$	200	23.5	$14 \mathrm{nb}^{-1}$	$48 \mathrm{nb}^{-1}$	$92 \mathrm{nb}^{-1}$
			Polarized Proton Beam				

Detector Location

psudo rapidity

Radius@8m distance from IP [cm]

- Rapidity of interest is $4<\eta<6$.
- The detector position just in front of DX magnet is optimal ($z \sim 8 \mathrm{~m}$ from IP).
- The radius $4<r<30 \mathrm{~cm}$ is to be covered.

Summary

- Proton's spin sum rule has been examined
- Forward transverse single spin asymmetry has been considered to be sensitive to the orbital angular momentum.
- Forward π has been studied in PQCD framework, but recent data indicate possibility of soft process may be (partially) playing a role.
- Large observed asymmetry in RHICf indicates large asymmetry caused by diffractive mechanism.
- New experiment is necessary to interconnect asymmetries between hard (pQCD) and soft (diffractive) nature.

BACKUP

LHC forward (LHCf) Experiment

LHCf $->$ RHICf

RHICf Collaboration

Solenoidal $^{\prime} \mathbf{T}_{\text {racker }} \mathbf{A}_{\mathrm{t}} \mathbf{R}_{\text {HIC : }}-1<\eta<1,0<\phi<2 \pi$ Magnet : Barrel Electro Magnetic Calorimeter

Sampling calorimeter

- Incident particles develop showers in Tungsten
- Deposited energy is sampled by scintillators interleaved (3\% for EM showers)
- Four strip detector layers record lateral distribution of showers

RHICf Experimental Setup

RHICf	ZDC + SMD
Sampling $\left(\lambda_{I}=1.7\right)$	Total Absorption $\left(\lambda_{I}=5.1\right)$
S $=4 \mathrm{~cm} \times 4 \mathrm{~cm}$ $+2 \mathrm{~cm} \times 2 \mathrm{~cm}$	$S=10 \mathrm{~cm} \times 10 \mathrm{~cm}$
$\Delta E_{n} \sim 35 \%$	$\Delta E_{n} \sim 18 \%$
$\Delta x_{n} \sim 0.1 \mathrm{~cm}$	$\Delta x_{n} \sim 1 \mathrm{~cm}$

Installed new sampling calorimeter RHICf in front of existing neutron calorimeter, ZDC.

RHICf Experiment : June 2017

Total : 110M events
RHICf+STAR
RHICf (shower event)

RHICf (High-energy EM trigger)
RHICf (Type-I π^{0} trigger)

RHICf Layout at STAR

East West

- RHICf was installed in front of existing ZDC
- ZDC is only capable to measure neutron, not π^{0}
- RHICf+ZDC allows us simultaneous measurements of π^{0} and neutron

Orbital Momentum \& Diffractive π^{0}

