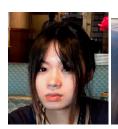


Staffs and Students


Research topics are on Belle/Belle II and ALICE/PHENIX

Staffs: Prof. Hayashii, and Prof. Miyabayashi for Belle/Bellell

: A. Prof. Shimomura (maternity leave by 2019 fall),

A. Prof. Hachiya (joint with RIKEN)

2018 year: Students working for ALICE/PHENIX

Dc. St : 0

M2 (4) : 2 Nishitani(PHENIX-vn), Ishimaru(ALICE-EMC, PHENIX-HF vn)

M1 (5) : 3 Minato(ALICE-FOCAL),

Kamano (ALICE-MFT),

Suzuki (sPHENIX-INTT)

UD4: 7, Isshiki, others

Other students works on Belle/Bellell

Activities at NWU

ALICE FOCAL

- Simulation study on pi0-pi0 correlation with FOCAL
- Beam Test at CERN-PS and SPS (2018 July and August)
 - Construction and preparation of mini-FOCAL at Tsukuba U
 - Data analysis
 - MIP peak by punch through hadrons and Shower profile by e-
- MFT tracking
- HF->e analysis in p+p 14TeV

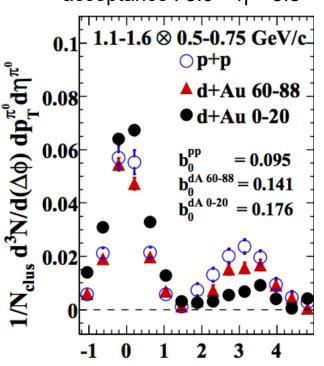
sPHENIX/PHENIX

- Test bench construction of sPHENIX silicon tracker
- Testing the silicon ladders at NWU
- R & D for very long and hi-dense data cable for the silicon tracker
- HF->e analysis in p+p and Au+Au 200GeV

Belle II

EMCal(CsI crystal), the beam BG monitor (secondary particles from beam)

Pi0-pi0 correlation with FOCAL


Tomoko's work

- Why Pi0-pi0 correlation ?
 - Direct photon is golden channel
- The CGC effect at small-x
 - ✓ away side peak is suppressed. [NPA748, 627-640]
 - ✓ away side peak is broadened. [NPA796, 41-60]

Target:

Compare π^0 - π^0 correlations in p-p and p-A at forward rapidity by ALICE- FoCal.

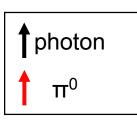
[PRL107, 172301] PHENIX p-p, d-A@ $\sqrt{s_{NN}}$ 200GeV acceptance : 3.0 < η < 3.8

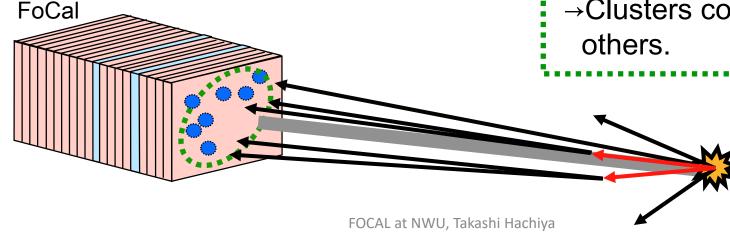
 Develop the analysis method to extract the signals from the BG in p-p simulation with good precision

Simulation: π⁰ from p+p 14 TeV (PYTHIA)

- Simulation Setup
 - ◆ PYTHIA:
 - ♦1M events in \sqrt{s} = 14TeV p+p
 - ◆ GEANT3 + Reconstruction
 - ♦ FOCAL at 7m from IP $(3.3 < \eta < 5.3)$
 - ◆FOCAL-E (W + Si) 20 layers : 18 LGL + 2 HGL

True π⁰

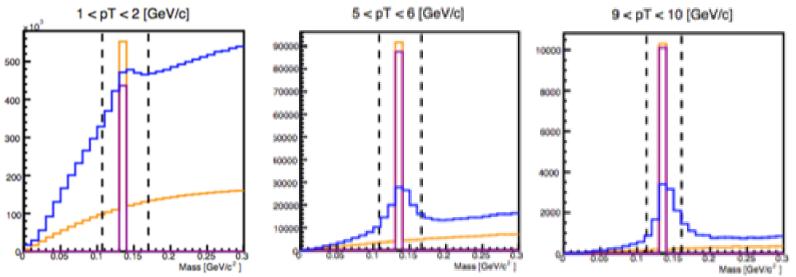

→π⁰ generated in PYTHIA


Pythia π⁰

- → Reconstructed from true photons
- \rightarrow True π^0 + Comb. BG
 - require 2 photons enter FOCAL

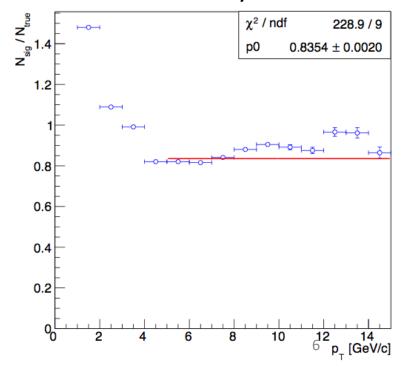
Cluster π⁰

- →Reconstructed from E-clusters
- →Clusters contains photons, electrons, others.



π⁰ reconstruction

True π^0 Pythia π^0 Cluster π^0

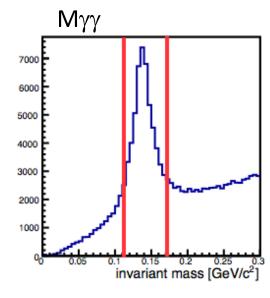


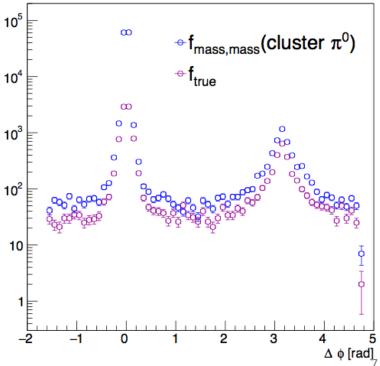
- \square π^0 peak is clearly seen in p_T>1 [GeV/c]
- \square Cluster π^0 at 5<p_T<15 [GeV/c]
 - > S/N>1 with 2σ mass windows
 - > Stable π^0 efficiency (cluster π^0 / true π^0) ~ 0.84

 \rightarrow Use 5 <pT<15 GeV/c for π^0 - π^0 correlation

 $M_{\gamma\gamma} = \sqrt{2E_1E_2(1-\cos\theta)}$ E1, E2: cluster-E

cluster π^0 / true π^0

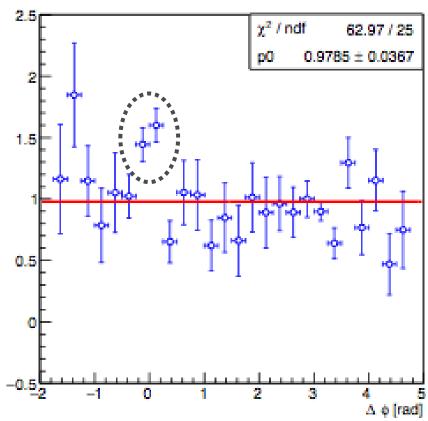



π^0 - π^0 angular correlation

- 1. Choose all reco-π⁰s
 - \geq 2 σ mass windows
 - $> 5 < p_T^{\pi 0} < 15 \text{ GeV/c}$
- 2. Measure $\Delta \phi$ of all π^0 pairs

$$\Delta \phi = \phi_{trig}^{\ \ \pi 0} - \phi_{asso}^{\ \ \pi 0}$$
 Trigger and associate π^0 : $5 < p_T^{\ \pi 0} < 15$

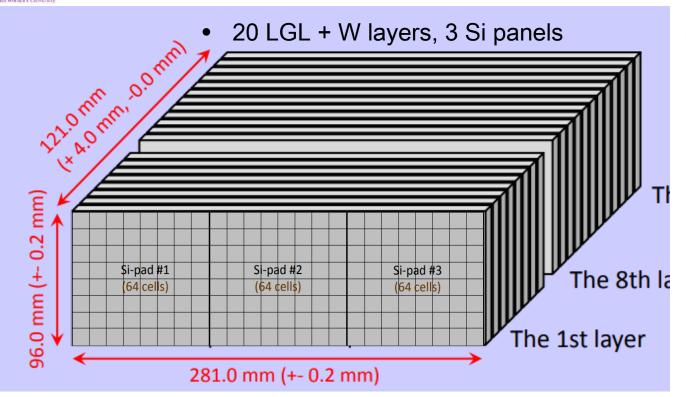
3. Subtract comb. BG

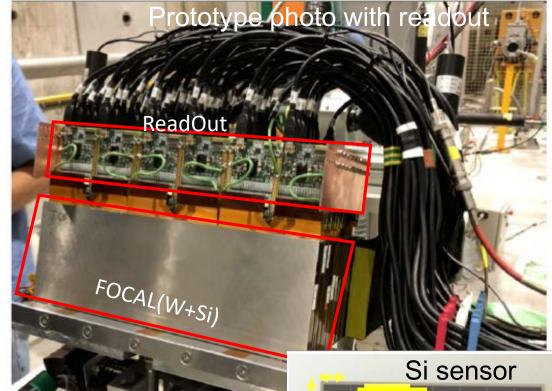


Results

- Cluster $\pi^0(f_{SS})$ is consistent with Pythia π^0
 - Comb. background subtracted
 - Reco. effect increases the near side peak.

$R=f_{SS}$ (cluster π^0) / f_{true}


- R is mostly consistent with 1 within errors
 - BG might be underestimated at near side.
 - BG subtraction method is studied in detail (not shown)


Analysis method works nicely

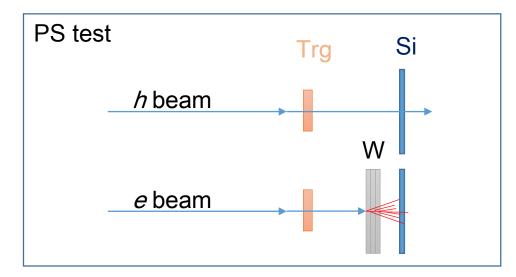
Next step is to implement/measure the broadening effect in the simulation

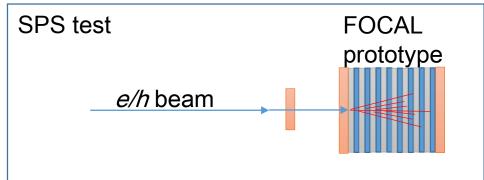
FOCAL prototype and beam test

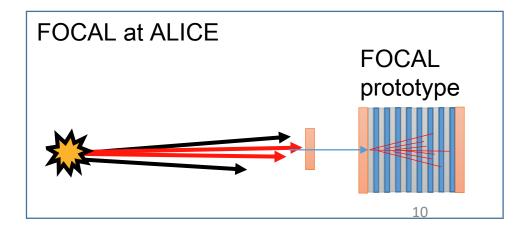
11.2mm

93mm

93mm

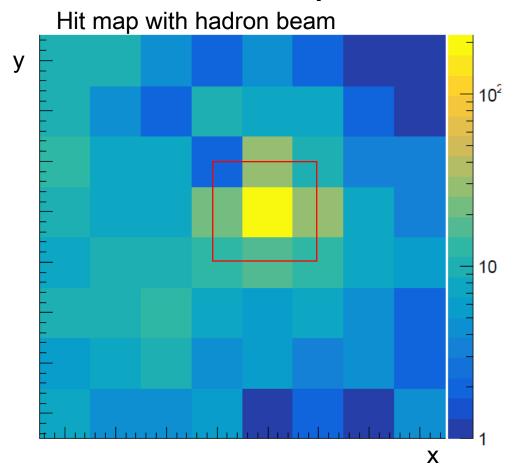

11.2mm

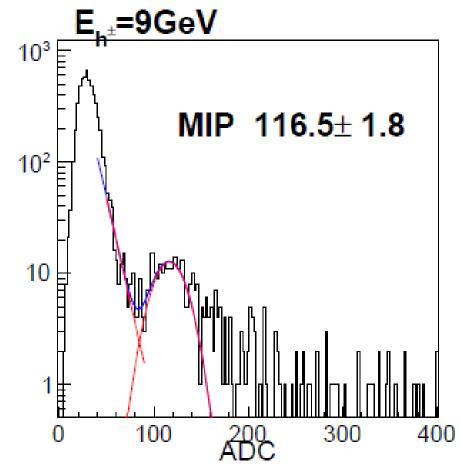

Time Line Jul	Aug	Sep	Oct
Setup to PS	To SPS	To Al	ICE
PS	h/e beam		
SPS	h/e beam		
ALICE 2019/3/8		FOCAL at NWL	P+p with FOCAL prototype J, Takashi Hadniya



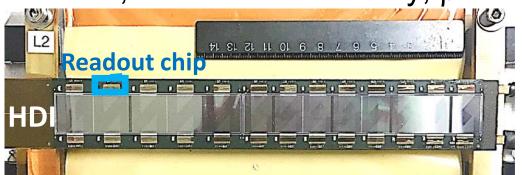
Beam Test at PS, SPS, ALICE

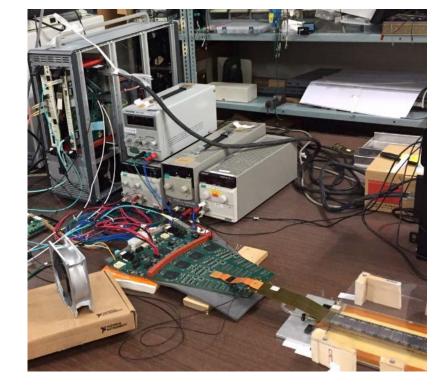
- PS (July)
 - e beam with 1, 2, 3, 4, 5 GeV, and h beam with 8 GeV
 - Cherenkov trigger was available for e/h separation
 - Single Si sensor response (Yoko)
 - Noise level, channel mapping with hadron beam
 - MIP signal with hadron
 - Shower signal with electron and 1/2/3 W plate (X₀~1)
- SPS (Aug)
 - e/h mixed beam with 100, 110, 120, 150, (250 h only)
 - FOCAL prototype installed (20 layers) (Saori)
 - Shower development
 - Energy resolution by e+ beam
- ALICE (Sep-Oct)
 - First measurement with p+p 14 TeV (Norbert)
 - Multiple particles and pi0

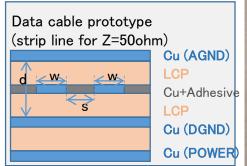


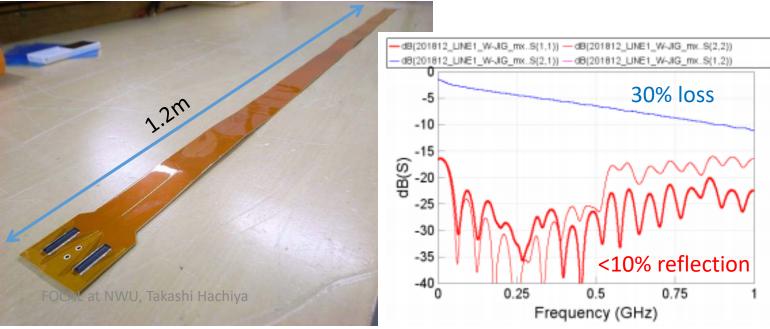


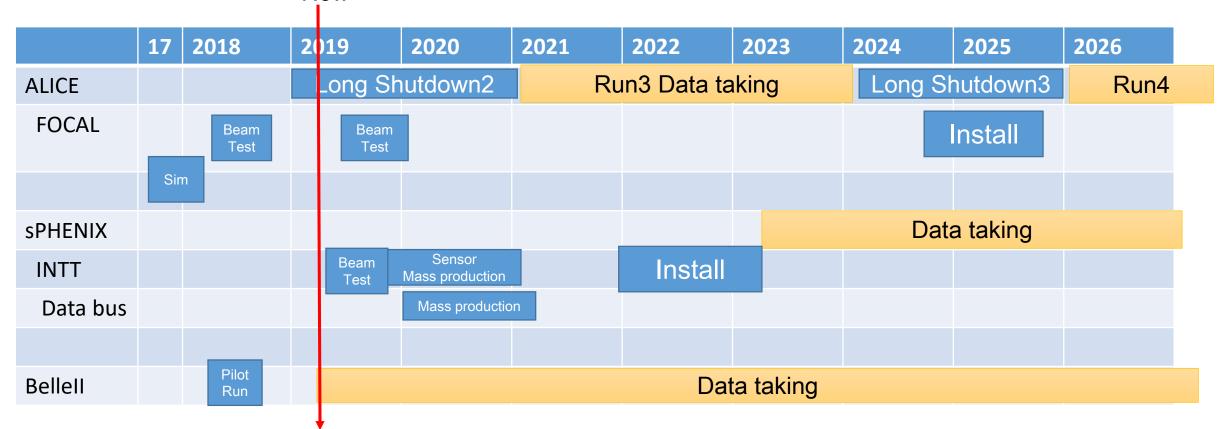
PS results (Yoko's work)




- A clear MIP peak with hadron beam at single channel after subtracting pedestal and common mode noise
- Yoko explains her analysis in more detail


sPHENIX activity


- Sensor testing at NWU
 - Si sensor for sPHENIX tracker
 - Noise, MIP with cosmic ray, β source


- Long data cable
 - 120cm FPC (LCP film)
 - 200Mbps
 - 62 LVDS pairs with 200Mbps

Timeline

- It would be good to organize analysis efforts/software/macros
- What we do / prepare for run3 ?
- We are happy to work on both analysis and hardware R&D

2019/3/8

Summary

- NWU group works FOCAL
 - Belle/BelleII and PHENIX/sPHENIX as well
- Analysis method of pi0 pi0 correlation developed
 - Comb. BG subtraction works with 98 ± 4%
- FOCAL Beam test at PS and SPS
 - Clear MIP peak with pedestal and noise subtraction
 - Analysis efforts/software/macros needs to be organized
- Si test bench for sPHENIX-INTT at NWU
 - Testing Si sensors
 - Very long data cable is in progress