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TPC Upgrade

M One of the most important and challenging upgrade in ALICE

* 4 GEM amplification system replaces traditional wire
amplification system

* vanish “dead-time” due to ion absorption time
* 500 us to zero = event rate 2 kHz to no limit
* 530k channels, 200 ns sampling ADC data come out

pad plane



TPC Upgrade (cont.)

. ‘ data < » data
M LHC will provides above 50 kHz Pb+Pb event rate after
upgrade (20 um average event interval)

B TPC drift time (100 ps)
* large pile-up
* average 5

B Continuous (triggerless)
data taking

B 3.5 TB/s data rate

* large data reduction
is required




ALICE readout system after LS2

B On-detector electronics
+ controlled via GBT, sends data via GBT
 front-end electronics needs only GBT duplex fiber
interface and power & cooling services
B Common Readout Unit (CRU)
- common design for all new detectors incl. FoCal
* max. 48 duplex GBT connections
 placed in a PC server (FLP), communicate with CPUs via
PCl express bus
M trigger and machine clock distribution is also via GBT
« CTP sends trigger and fast control to CRU
* then CRU forwards it to front-end

M detector control is also via GBT

* DCS system will configure & acquire status from front-
end via CRU and GBT
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TPC front-end readout R

B FEC (Front-end Card)
* 5SAMPAs (32 x5 =160 channels)
10 bit ADC, 5 MHz operation (8 Gbps)
* SAMPA DSPs not used for TPC (full raw data readout)
* 1 GBTrx: timing and clock reception through CRU
2 GBTtx: raw data sending out (4 + 4 Gbps) with GBT wide-bus mode

1 GBT-SCA for slow control (SAMPA configuration), GBT configuration,
SAMPA power, power measurements

total FEC: 3276

ESD protection

SAMPA ASIC
GBTx ASIC

GBT readout links: data
and monitoring (unidir.)




CRU: Common Readout Unit
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M ALICE + LHCb joint project, commonly used in all ALICE detectors except for detectors with special setup
« 48 GBT duplex links = 3.2 Gbps x 48 = 154 Gbps (4.48 Gbps x 48 = 215 Gbps w/o FEC)
* most of ALICE detector use up to 24 links (except for TRD: 36)
* large Intel/Altera Arria 10 FPGA > data processing O(10) times faster than CPUs (depends on processing)
* Interface to CPU (in the same chases) via commercial PCl Express 3 x 16 lanes = 128 Gbps
* sustainable data rate ~ 90 Gbps
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CRU internal logic development

B Central CRU team supports all peripheral logic [Grenoble]
M Detector CRU teams develop detector specific USER-Logic [TPC: Frankfurt, Heidelberg, Nagasaki-1AS]
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TPC User Logic

M raw data processing

 channel sorting / pedestal subtraction / common
mode rejection / clustering /data formatting

Core CRU Framework
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B DCS: forwarding DCS control command & data

* Power / SAMPA & GBT configurations /
CRU FPGA setup parameters

‘We have individual clock domain for each GBT link!

BC: Baseline Correcfion, incl. Common-
Mode and Gain Correcion

Z5: Zero Suppression

CF:Cluster Finder

x20 half
FECs

I
f I PQle clock domain
240 y (250 MHz)




Channel sorting
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B Test implementation (Sebastian Klewin, Dec. 2017) done

* 49% ALM (211k/427k)
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Common mode rejection

B TPC GEM produces large common mode noise (cross talk via
capacitive coupling)

M Adaptive filter calculate average value and subtract it from all
ADC values sample-by-sample (every 200 ns)

e
NCOTlt

B However large “true” signal bias the common mode value at
large occupancy event

0] = I] - ICM ) ICM —

Solution 1: reject signaled channels (threshold, rising and falling
edge)

* Always bias the Iy, especially multiplicity dependence

Solution 2: calculate median value with generating histogram in
FPGA at 5 MHz sustained speed
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Common mode rejection (cont.) 11

Comparator

Subtract

Wait until the 10
In
verage has been +
20 calculated Thre- 11
Multiplex | 10 shold Detect the rising |_
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| | only when neither Find the P
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[peak rejection by Y. Takeuchi]
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[median by Y. Matsuyamal]

M Two solutions are under evaluation for different aspects
* precision and bias (physics) ... median is better
* logic usage ... median uses more logic (under shaping)



Clustering

B small modules continuousy scan to find local maxima

run on pad direction and time direction
8x8 in pad - time plane
overlapping to avoid edge effect

if it finds peak, forward 5x5 pad - time area data
to cluster formatter

calculate cluster parameters
format data and inject into readout FIFO

further discussion later

0 7 8 15 16 23 24 31
O00000000| [60000000| |00000000| (ocooooo
00000000 oooooooal [ 6oooocoon| (coooooaoo
00000000 Oecoocoal [ ooocoocooo| (cooooooo
00000000| |[o00o00oocoa| |oooooooo| (oooooooo
00000000| |[o0000o0o00| |booooooo| ([oooocooo)
0O000@000| (00000000 |D0O00O\’O000| |00000C00| time N+2
00000000| |[00000000| |IOO00B’O0O00| |[oo00oocooa| time N+1
00000000 00000000 | 00000000) |IO0000000) time N
00000000 00000000 00000000 OCOoocooocoo
00000000 00000000 00000000 00000000
00000800 00000000 00000000 0000000
00000000 00000000 00000000 ocoocaoecaoao
) 00000000 00000000 00000000 oOooboodoao
time N+2 @0000000| 00000000 @e0000000| 00000000
time N+1 O0000000| OO00O0OC0O® 00000000 00000000
time N 00000000 0oooco0000) bO000000o0ol ooooooaoo
4 11 12 19 20 27 28 35

Sebastian Klewin, https://indico.cern.ch/event/653116/



Other filters

B Pedestal subtraction filter

« TPC decided to do NOT subtract pedestal on SAMPA but do that on CRU

* subtracting pedestal =2 chop negative values (unless we introduce sign flag = data increase)
* with common mode, this problem will be significant

- pedestal value can be represented finer (fixed point number with half and quad LSB bits)

B Gain correction signal with common mode noise
* not done, optimistically

pedestal
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FoCal PAD readout case

M assuming 64 (or 727?) PAD channels per tower .
M tower cross section 2x2 cm?, 16 (or 18) layers

B readout (example) by a (modified-)SAMPA
* larger channel density is ideal
* two CSA (low & high gain)
—>128 or 144 ADC, 10 MHz, 12 bits

data rate: 144 x 10M x 12 = 17.3 Gbps/tower if we continuously read out

... a factor 2-3 higher area density than TPC
* total for 1 m?: 2500 towers, 43 Tbps (x12 of TPC)
— 13500 GBT (3.2 Gbps) links, 560 CRUs (unrealistic)

timing information?
—>additional circuit or higher sampling + fit?
—>higher sampling multiplies the data rate
GBT ..o <clock, trigger
........... GBT§ > triggercontrib-
.............. &clock, trigger :
............. —>trigger contrib.
GBT
—raw data DCS
<control

—>monitoring

14



Data processing & selection on FEC .

M it is obvious that we need data selection and processing on FEC (factor 10)
* 17.3 Gbps/tower to (preferably) 0.8 Gbps/tower
e four towers fit in one GBT link (3.2 Gbps)
e total 625 links, 25 GBT/CRU = 25 CRUs ...

M possible methods assuming pp LO rate at 1 MHz

. triggering (read all with L0) " 144 ADCs, 1 samle, 12 bits > 17t
: ps/tower

[ J i . .
Zero suppression » factor 3 missing

* needs simulation, surely efficient for pp « timing information adds more
* high/low auto selection ... x1/2 + & * multisample = 4 to 8 times more
* Huffman encoding (lossless; SAMPA has)? * L1,L2 not pr.eferred as_it creatgslileadtime' )
* TPC decided to don’t use (may lose data at high mult.) ) ;grziecz;cussed with CTP, if “interleaving
? no need to see other tower’s data on single FEC? - most probably answer is no, because it

mixes “two” triggering scheme (new&old)

trigger from CTP
— to/from CRU (raw data, DCS)




CRU processing in FoCal

M Possibly needed processing in FoCal CRU
* mapping/sorting
+ pedestal subtraction
* gain, linearity correction
* cross talk filtering A
 anything else before clustering?
* (pre-)clustering
* finding local maxima
 pack associated tower information
 encoding / formatting \

10 towers

M Data compression factor to be estimated by
simulation

* input to CRU: 115 Gbps
 output to CPU (PCl Express): 128 Gbps
* not possible to use full bandwidth
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1m
10 towers . < 50 towers, 100 pads 5
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(never mind)
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* below 20-30 Gbps is moderate (40 Gbps Ethernet) = factor 5-6 compression is moderate



Clustering?

M For clustering, we need to eliminate non-fiducial area due to CRU boundary by sharing data
between CRUs 1m
 can be done via GBT (slow) __ 10towers - 20 towers, 100 pads /
- - N\
* or use SERDES of Arrial0 at higher \ @
speed (up to 12.5 Gbps) \ e s N g
/ 1 )
- 8 Gbps x 4 + 0.8 Gbps x 4 ! ! 3
= 8 LVDS or optical cords among CRUs ., i | %j} S
3] I e
« counter direction is also used for g i : / o
other direction sharing S : : v
i 1GBT (2x2 towers) |
* new development I i
vip M L1 T LT
i
M This discussion will be completely re-adjusted for
the final detector arrangement 1 CRU (direct) 25 GBT (10x10 towers)
* requirement for data exchange between CRU 1 CRU (including shared) 25 GBT + 44 towers (11 GBT equiv.)
may stay (this is assuming shower radius not more than 2 cm)

if we need one more tower, then necessary GBT to one CRU becomes 49
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Clustering on CRU FPGA (TPC case)

18
dt;
M Calculate pre-value for cluster on CRU FPGA for 5x5 pad-time plane r;;“
 corresponds to x-y plane (without time direction) in FoCal o
+ “division” is done on CPU [see S. Klewin’s PhD thesis coming soon] o
A\
global coordinate expression local coordinate expression N
* Qror = 2. G; i =.1 '"2.5' X eit.her pad * Qror = X 4; > 1 o0 i1 2 op;
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FPGA friendly alculation (only adder and bit shifts)

2,—1,0,4+1,42 ... only bit shift operation

CPU friendly calculation

* Grot = %4

* .ap = 2 Qi6pi

* Ay = 2.qi0t; .

. lit _ 2 ql(g 12 250 bit = packed in 160 bit word .
Op =24 piz + avoid sending empty data

* 6t = Z Qi5ti .

O-t=

Up =D+ ﬁp/QtOt
te =t + [t/ qeot

2 a . 2
Op = Gp/CItot - (.up/qwt)

2 0t/ Qtor — (.at/qwt)z
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M If we do processing with FPGA on detector
- present SAMPA may work?
« automatic gain selection on FPGA?
* radiation tolerance?

B where to put?
* mechanical constraints
- signal integrity constraints

M triggered readout or trigger-less continuous readout?
- if with trigger, we need direct trigger feeding from CTP to FEC
* is present ALICE LO trigger contributors enough for FoCal physics [both pp and PbPb]?

M do we provide triggers to other detectors [both pp and PbPb]
- if yes, then maybe a fast formation of trigger signal on or vicinity of detector has to be developed
* CRU is too late for LO
* communication among FECs needed



