Concepts for

A next generation LHC heavy-ion experiment

Federico Antinori

with Peter Braun-Munzinger and Luciano Musa

EoI document signed by ~400 physicists (Dec 2018) submitted to European Strategy for Particle Physics Preparatory Group arXiv:1902.01211

International Workshop on Forward Physics and Forward Calorimeter Upgrade in ALICE University of Tsukuba , March 7-9, 2019

FA - 筑波大学 - 2019年3月9日

Outline

- Motivations and physics potential
- Detector layout and main components
- Nearly 0-mass vertex detector
- High precision tracking
- Hadron, electron and photon ID

Approved ALICE programme

• Timeline

- LS2:
 - − LHC injector upgrades, Pb-Pb rate \rightarrow 50 kHz (now ~10 kHz)
 - ALICE upgrades
- Run 3 + Run 4:
 - experiments request > 10/nb (ALICE: 10/nb + 3/nb at 0.2 T)
 - in line with projections from machine group

LHC luminosity limitations with nuclear beams

 \rightarrow

max Pb-Pb lumi $\sim a \text{ few } 10^{27} \text{ cm}^{-2} \text{ s}^{-1}$ \rightarrow max interaction rate \sim 50 kHz

main limitations:

- bound-free pair production

 $\sigma_{BFPP} \sim Z^7$!

- collimation
- ⇒ larger lumi with lighter ions
- estimates from Yellow Report (arXiv:1812.06772)

	$^{16}O^{8+}$	$^{40}Ar^{18+}$	$^{40}Ca^{20+}$	78 Kr ³⁶⁺	129 Xe ⁵⁴⁺	$^{208}\text{Pb}^{82+}$
γ	3760.	3390.	3760.	3470.	3150.	2960.
$\sqrt{s_{ m NN}}/ m TeV$	7.	6.3	7.	6.46	5.86	5.52
$\sigma_{ m had}/ m b$	1.41	2.6	2.6	4.06	5.67	7.8
$\sigma_{ m BFPP}$ /b	2.36×10^{-5}	0.00688	0.0144	0.88	15.	280.
$\sigma_{ m EMD}$ /b	0.0738	1.24	1.57	12.2	51.8	220.
$\sigma_{ m tot}/{ m b}$	1.48	3.85	4.18	17.1	72.5	508.
N_b	1.58×10^{10}	$3.39 imes 10^9$	2.77×10^9	9.08×10^8	4.2×10^8	1.9×10^8
$\epsilon_{\rm xn}/\mu{ m m}$	2.	1.8	2.	1.85	1.67	1.58
$f_{\rm IBS}/({\rm m~Hz})$	0.168	0.164	0.184	0.18	0.17	0.167
$W_b/{ m MJ}$	175.	84.3	76.6	45.2	31.4	21.5
$L_{\rm AA0}/{\rm cm}^{-2} s^{-1}$	9.43×10^{31}	4.33×10^{30}	2.9×10^{30}	3.11×10^{29}	6.66×10^{28}	1.36×10^{28}
$L_{ m NN0}/ m cm^{-2}s^{-1}$	2.41×10^{34}	6.93×10^{33}	4.64×10^{33}	1.89×10^{33}	1.11×10^{33}	5.88×10^{32}
$P_{\rm BFPP}/{ m W}$	0.0199	0.601	0.935	11.	60.6	350.
$P_{\rm EMD1}/{\rm W}$	32.	55.6	52.2	78.3	107.	141.
$ au_{ m L0}/ m h$	6.45	11.6	13.1	9.74	4.96	1.57
$T_{\rm opt}/h$	5.68	7.62	8.08	6.98	4.98	2.8
$\langle L_{\rm AA} \rangle \ {\rm cm}^{-2} {\rm s}^{-1}$	4.54×10^{31}	2.45×10^{30}	1.69×10^{30}	1.68×10^{29}	2.95×10^{28}	3.8×10^{27}
$\langle L_{\rm NN} \rangle \ {\rm cm}^{-2} {\rm s}^{-1}$	1.16×10^{34}	3.93×10^{33}	2.71×10^{33}	1.02×10^{33}	4.91×10^{32}	1.64×10^{32}
$\int_{\rm month} L_{\rm AA} {\rm dt/nb}^{-1}$	5.89×10^4	3180.	2190.	218.	38.2	4.92
$\int_{\rm month} L_{\rm NN} {\rm dt/pb}^{-1}$	1.51×10^4	5090.	3510.	1330.	636.	213.
$R_{\rm had}/{ m kHz}$	1.33×10^5	1.12×10^4	7540.	1260.	378.	106.
μ	10.6	0.893	0.598	0.1	0.03	0.00842

A new HI dedicated experiment beyond LS4?

With the LS2 upgrade, ALICE will reach the maximal rate with a spectrometer based on a TPC

⇒ Maximum interaction rate limited by space-charge (ions) accumulated in drift volume (distortions
 ≈10cm) and track density (inner region signal occupancy ≈ 40%)

Running at higher rates seems excluded with a TPC

Running ALICE beyond RUN4? Completely new detector without TPC

The use of CMOS technologies opens new opportunities

⇒ Vertex detectors, large area tracking detectors and digital calorimeters

• enhanced performance (very high spatial and time resolution)

an "all-MAPS" detector

Such a detector would play a central role in HI physics at the LHC in the 2030's

A new HI dedicated experiment beyond LS4?

Design guidelines

- Increase rate capabilities (factor 20 to 50 wrt to ALICE RUN4): $<L_{NN}> \sim$ up to 10^{34} cm⁻²s⁻¹
- Improve vertexing
 - Ultra-thin wafer-scale sensors with truly cylindrical shape, inside beam pipe
 - spatial resolution ~ 1μm
 - material thickness < 0.05% X₀ /layer
- Improve tracking precision and efficiency
 - About 10 layers with a radial coverage of 1m
 - Spatial resolution of about 5µm up to 1m
 - whole tracker could be less than 6% X₀ in thickness (at mid-rapidity)
- Tracking over a wide momentum range (down to a few tens of MeV/c) and rapidity coverage ($|\eta| \le 4$)

Magnetic fields of < 0.5T would be sufficient but 1T (or higher) is also considered

Physics Potential – some examples

- Heavy-flavor and quarkonia
 - \circ Multiply Heavy Flavoured hadrons. e.g.: $\Xi_{\rm cc},\,\Omega_{\rm cc},\,\Omega_{\rm ccc}$
 - $\circ \chi_{c1,2}$ states
 - \circ Ultimate precision on B mesons at low $p_{\rm T}$
 - X, Y, Z charmonium-like states (e.g. X(3872))
- Low-mass dielectrons
 - Precision measurement of the thermal dilepton continuum, 0 < m < 3GeV
- Real soft photons
 - o down to 50MeV/c
- Real ultra-soft photons
 - > Very low p_T photons: $1MeV/c < p_T^{\gamma} < 100MeV/c$
 - $\circ~$ dedicated small forward spectrometer at 3.5 < $|\eta|$ < 5)

A new experiment based on a "all-silicon" detector

Tracker: ~10 tracking barrel layers (blue, yellow and green) based on CMOS sensors Particle ID:

Vertex Detector (innermost 3 layers)

EoI for new ultra-light Inner Barrel in LS3 (CDS, ALICE-PUBLIC-2018-013)

Recent silicon technologies (ultra-thin wafer-scale sensors) allow

- Eliminate active cooling ⇒ possible for power < 20mW/cm²
- Eliminate electrical substrate \Rightarrow Possible if sensor covers the full stave length
- Sensors arranged with a perfectly cylindrical shape ⇒ sensors thinned to ~30mm can be curved to a radius 10-20mm

Pointing resolution

Pointing resolution (pions): $\approx 10 \ \mu m \ @ 1 \ GeV/c, <50 \ \mu m \ @ 200 \ MeV/c$

It does not depend on B field

Operation at reduced B field for tracking low p_T particles

Compared to ALICE in Run3, same performance at high p_T, some improvement at very low p_T

momentum resolution for 1GeV/c pions: $\approx 0.8\%$ (1 T), $\approx 1.6\%$ (0.5 T), $\approx 4\%$ (0.2 T)

(N+2)(N+3)

for layers equally spaced and neglecting multiple-scattering

Operation at reduced B field for tracking low p_T particles

Efficiency requiring that particles reach the outermost layer at 1m (10 layers)

- ⇒ optimization possible (e.g. using only layers up to 40cm)
- ➡ dramatic improvement for lower dN/dy

Further layout optimization possible!

Electron and hadron ID with TOF

LGAD (Low Gain Avalanche Loode)

- Technology proposed for ATLAS and CMS LS3 upgrades (timing layer)
- Developed for high radiation environment $(10^{14} 10^{15} 1 \text{MeV n}_{eq}/\text{cm}^2)$
- Currently low granularity O(1 mm²)
- Add a thin layer of doping to produce low controlled multiplication
- Several vendors: Hamamatsu, FBK, CNN

Time resolution vs. neutron fluence of LGAD produced by HPK with a thickness of 50µm (50D) and 35µm (35D)

Resolution of 20-30ps demonstrated

Cost (CMS estimate) ~ 50 CHF/cm²

Can such a gain layer be implemented in CMOS?

⇒ Single Photon Avalanche Diodes (SPADs)

Electron and hadron ID with TOF

TOF PID – few barrel layers instrumented with LGAD or high-granularity SPAD sensors

SPAD Sensors (Single Photon Avalanche Diode) [≝] arrays of avalanche photodiodes reverse-biased above their breakdown voltage

SPAD detectors of recent generation feature a time jitter of tens of picoseconds

Number of layers will depend on time resolution and spatial fill factor achieved in the single layer

Ideal track length and p measurement

3 system time resolutions: 10ps, 20ps , 30ps. For σ_{TOF} = 20ps

- e/π (4 σ) separation \lesssim 650 MeV/c
- π /K (3 σ) separation \lesssim 2.6 GeV/c
- K/p (3 σ) separation \lesssim 4.2 GeV/c

Electron ID with Pixel Shower Detector

- Shower Detector (3 X₀) based on high-granularity digital calorimetry (CMOS pixel sensors)
- great potential to identify electrons down to few hundred MeV by detailed imaging of the initial shower (particle counting, geometry)

Work in progress – A first look

Concepts for a next generation LHC heavy-ion experiment

- a detector conceived for studies of pp, pA and AA collisions at luminosities a factor of 20 to 50 times higher than possible with the upgraded ALICE detector
- three truly cylindrical layers based on curved wafer-scale ultra-thin CMOS Active Pixel sensors
 (⇒ x/X₀ ≈ 0.05% per layer)
- unprecedented low material budget for the inner layers of 0.05% X₀, with the innermost layers possibly positioned inside the beam pipe
- superior tracking and vertexing capabilities over a wide momentum range down to a few tens of MeV/c
- particle ID via time-of-flight determination with about 20ps resolution. Electron and photon ID identification will be performed in a separate pixel shower detector.
- enables rich physics program: from measurements with electromagnetic probes at ultra-low transverse momenta to precision physics in the charm and beauty sector.

ありがとうございました!

ITS2 – Material Thickness

ALICE LS2 Upgrade

Strategy driven by these main physics topics

- Heavy flavour dynamics and hadronization at low $p_T \Rightarrow$ heavy-quark interactions in QCD medium
- Charmonium down to zero $p_T \Rightarrow$ quarkonium melting and regeneration in QGP
- Thermal dileptons, photons, vector mesons \Rightarrow QGP radiation and chiral symmetry restoration at μ_B = 0
- High-precision measurement of light and hyper-nuclei ⇒ production mechanism in QGP and degree of collectivity

No Dedicated Trigger Possible !!

Main requirements

- O Un-triggered data sample
 - Increase readout rate, reduce data size (online data reduction)
- \odot Improve tracking accuracy and efficiency at low $p_{\rm T}$
 - Closer to IP, increase granularity, reduce material thickness
- O Preserve particle id capabilities
 - Consolidate and "speed-up" PID detectors

(RUN3+RUN4): 13/nb ⇔ x100 MB statistics

ALICE Upgrades in LS2 (2019-2020) – Layout and key systems

New Inner Tracking System (ITS)

Novel MAPS technology

- CMOS Active Pixel Sensors
- \rightarrow improved resolution, less material, faster readout

New Muon Forward Tracker (MFT)

- CMOS Active Pixel Sensors
- \rightarrow vertex tracker at forward rapidity

New TPC Readout Planes

Largest GEM application

- 4-GEM detectors, new electronics
- \rightarrow continuous readout

New trigger detectors (FIT, AD)

• Centrality, event plane

Upgrades readout for TOF, TRD, MUON, ZDC, Calor.

Integrated Online-Offline system (O²)

 Record minimum-bias Pb-Pb data at > 50kHz (currently ~ 1 kHz)

ITS Upgrade in LS2 (ITS2)

 $\begin{array}{ll} \mbox{6 layers (39mm < r < 440mm)} & \mbox{7 layers (22mm < r < 400mm)} \\ \mbox{-}1 \le \eta \le 1 & \mbox{-}1.5 \le \eta \le 1.5 \end{array}$

Based on novel MAPS (ALPIDE)

- 10 m² active silicon area (12.5 G-pixels)
- Spatial resolution ~5μm
- Power density < 40mW / cm²
- Max particle rate ~ 100MHz /cm² (pile-up)
- Fake hit rate: < 1Hz/cm²
- X/X₀ (first three layers): 0.35%

Motivations and goals

- Improved vertex and tracking precision
 ⇒ closer to IP, smaller pixels, less material
- Faster readout

➡ further improvements exploiting technological innovations

TPC Continuous Readout with GEMs (Gas Electron Multiplier)

Gate-less TPC for continuous readout

Current MWPC: readout rate limited by ion backflow

⇒ GEM provides ion backflow suppression to < 1%

⇒ 524 000 pads readout continuosly (10bit x 5MSPS) via 6552 links ⇒ 3.4 TByte/sec

Operate TPC at 50 kHz ⇒ no gating grid Need to minimize IBF ⇒ Replace MWPC with 4-GEMs

100 m² single-mask foils GEM production

Read Out Chamber

ALICE Run3 – Event Display

Pb-Pb Collisions @ 50kHz

Electron ID with Pixel Shower Detector

Electron and photon ID using Pixel Shower Detector $e/\pi \sim 10^{-2}$

density vs radial distance from the impact axis for the particles crossing each Si layer

Work in progress – very preliminary!

⇒ great potential to further reduce pion contamination by detailed shower imaging (geometry)