

# Alpide SystemC Simulations

FOCAL

Simon Voigt Nesbø Bergen March 9, 2019

## Simulation setup

- > Using SystemC simulation model for Alpide and ITS
  - > Relatively accurate model of readout of Alpide
  - > Inner barrel and outer barrel mode
- > Simulation model also includes pCT and FoCal simulation (as of recently)

# **Event generation**

#### <u>ITS</u>

Simulation model includes an «event generator»

- > Time between events follows exponential distribution, and is randomly generated
- > The actual hits to the chips can be:
  - > Randomly generated (simple «toy model»)
    - > Multiplicity of hits follows discrete distribution for the experiment
    - Not a true event generator, in the sense that it does not generate proper physics events
  - > Taken from a pool of discrete MC events, generated by e.g. AliRoot

## pCT

> Hits (random or from MC files) are continuously inputted to Alpide chips

## Detector geometry

### <u>ITS</u>

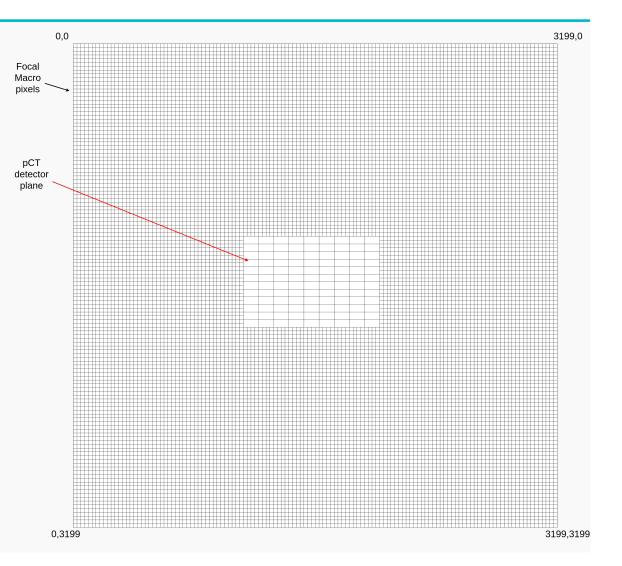
#### > Creates all 7 layers of ITS

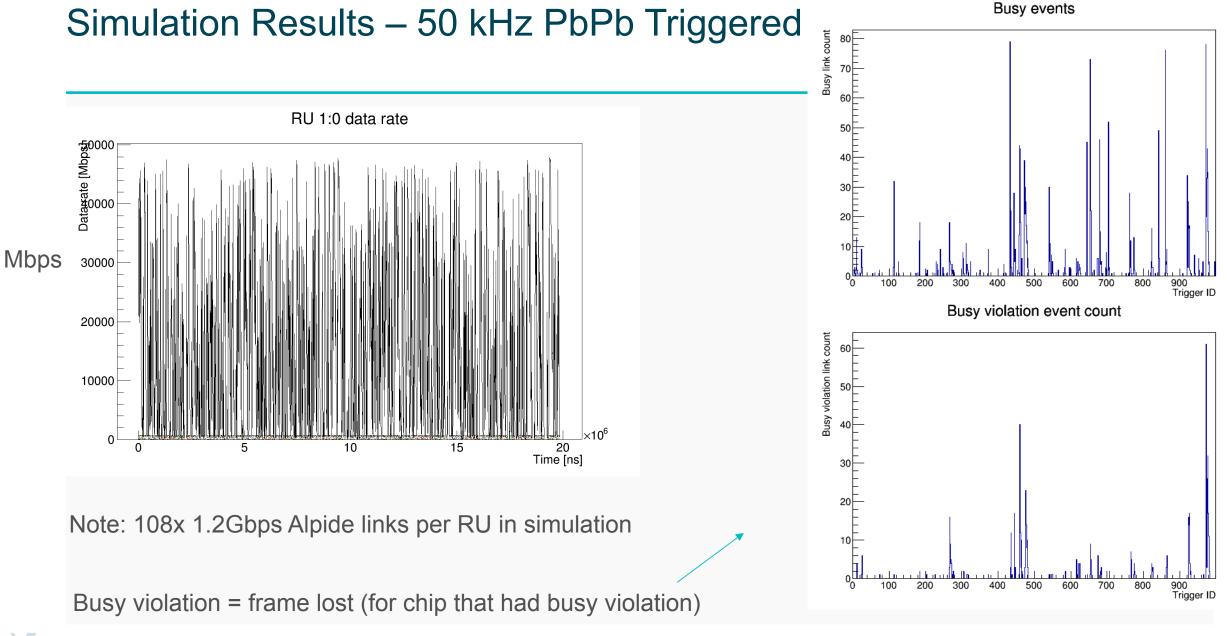
- > Configurable how many layers (and staves per layer) to include in simulation
- > With correct connections and configuration of chips
  - > IB vs. OB mode: shared data link in OB mode, 1200 Mbps in IB, 400 Mbps in OB
- > With correct number of chips connected to an RU

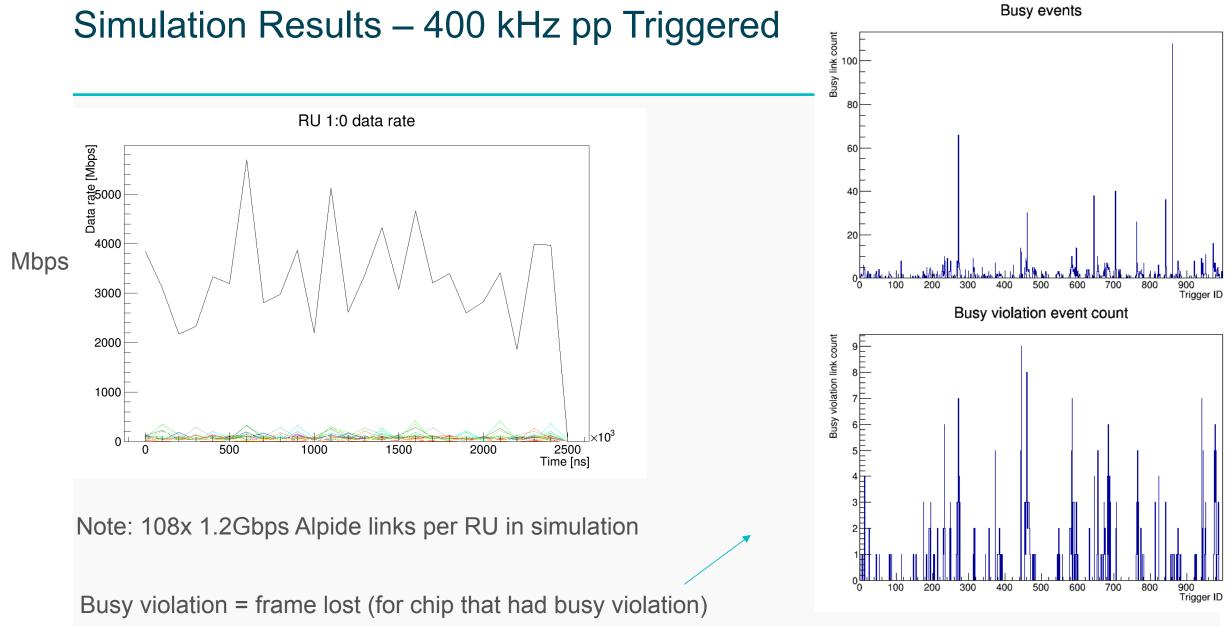
## <u>pCT</u>

- > Builds detector based on IB staves
- > Up to 41 layers (configurable)
- > Up to 12 staves per layer (configurable)
- > 1 RU per detector layer

## **Focal simulation**


- > Implemented by combining ITS event generation, with pCT detector configuration
  - > Only 1 pCT detector plane, and 2 layers allowed (currently)
- > Input data:
  - > Monte carlo files simulated/generated by Marco van Leeuwen
  - > Focal plane: 1.6m x 1.6m, centered around beam pipe
  - > Plane divided into 3200 x 3200 «macro pixels»
    - > Each macro pixel is 0.5mm x 0.5mm
  - > 2 detector planes:
    - > S1 (layer 0 in SystemC simulation)
    - > S3 (layer 1 in SystemC simulation)


## **Focal simulation**


- > Input data cont'd:
  - > For each event in the monte carlo file, the following is specified (for each layer):
    - > nPixS1/nPixS3:
      - > Number of macro pixels that had hits in the event
    - > rowS1[nPixS1], colS1[nPixS1], rowS3[nPixS3], colS3[nPixS3]:
      - > A list of macro pixels that were hit (row and column)
    - > ampS1[nPixS1], ampS3[nPixS3]:
      - > A list with number of Alpide pixel hits, per macro pixel that was hit
- > The specified number of pixel hits (ampS1/S3) is generated for each macro pixel hit (row/col)
  - > Row/columns which are not within the bounds of the pCT/Focal detector plane are ignored
  - Hits are randomly generated within the macro pixel (0.5mm x 0.5mm), following a flat/ uniform distribution
  - > No clustering is performed (but simple 2D gaussian clustering could easily be added)

## **Focal simulation**

- By analyzing the .root files it appeared that the highest occupancy of hits was at the center of the 1.6m x 1.6m Focal plane
- Therefore, the pCT detector plane (12 IB staves, ie. 12x9 chips) used to simulate, was centered on the Focal plane, where the occupancy is highest







#### V

9

# Simulation Results – Triggered mode

| Data rate             | 50 kHz PbPb                  | 400 kHz pp                  |
|-----------------------|------------------------------|-----------------------------|
| Layer 0 (S1)          | 29.8 Gbps                    | 664.5 Mbps                  |
| Layer 1 (S3)          | 29.5 Gbps                    | 689.8 Mbps                  |
|                       |                              |                             |
|                       | 50 kHz PbPb                  | 400 kHz pp                  |
|                       | 50 kHz PbPb                  | 400 kHz pp                  |
| Readout<br>efficiency | <b>50 kHz PbPb</b><br>98.78% | <b>400 kHz pp</b><br>99.68% |

- Simulated 1000 events, both cases
- Events used in sequence from event ROOT files, and «reused» to achieve 1000 events
- Triggered mode
  100 ns strobe
- Constant 6 us pixel shaping time (time over threshold)