## Measurability of pressure in the proton

#### Krešimir Kumerički

University of Zagreb, Croatia

IWHSS19 — XVI International Workshop on Hadron Structure and Spectroscopy 24–26 June 2019, Aveiro, Portugal





Neural nets CLAS results

Neural nets global results

Summary O

## Outline

### **①** Introduction to measurement of pressure distribution

**2** Neural nets CLAS results

**③** Neural nets global results

#### **4** Summary

Neural nets CLAS results

Neural nets global results

Summary O

## Family tree of hadron structure functions



Krešimir Kumerički

IWHSS19

Neural nets CLAS results

Neural nets global results

Summary O

# **Definition of GPDs**

• In QCD GPDs are defined as [Müller '92, et al. '94, Ji, Radyushkin '96]

$$F^{q}(x,\eta,t) = \int \frac{dz^{-}}{2\pi} e^{ixP^{+}z^{-}} \langle P_{2}|\bar{q}(-z)\gamma^{+}q(z)|P_{1}\rangle\Big|_{z^{+}=0,z_{\perp}=0}$$
$$\widetilde{F}^{q}(x,\eta,t) = \int \frac{dz^{-}}{2\pi} e^{ixP^{+}z^{-}} \langle P_{2}|\bar{q}(-z)\gamma^{+}\gamma_{5}q(z)|P_{1}\rangle\Big|_{z^{+}=0,z_{\perp}=0}$$

(and similarly for gluons  $F^g$  and  $\tilde{F}^g$ ).



Neural nets CLAS results

Neural nets global results

Summary O

## Access to GPDs via DVCS

- Deeply virtual Compton scattering (DVCS) "gold plated" process of exclusive physics
- DVCS is measured via leptoproduction of a photon



• Interference with Bethe-Heitler process gives unique access to both real and imaginary part of DVCS amplitude.

Neural nets CLAS results

Neural nets global results

Summary O

# **DVCS** cross section

$$d\sigma \propto |\mathcal{T}|^2 = |\mathcal{T}_{\rm BH}|^2 + |\mathcal{T}_{\rm DVCS}|^2 + \mathcal{I} \; .$$

• where *e. g.* interference term is

$$\mathcal{I} \quad \propto \quad \frac{-e_{\ell}}{\mathcal{P}_1(\phi)\mathcal{P}_2(\phi)} \left\{ c_0^{\mathcal{I}} + \sum_{n=1}^3 \left[ c_n^{\mathcal{I}} \cos(n\phi) + s_n^{\mathcal{I}} \sin(n\phi) \right] \right\},$$

• where  $e. \ g. \ c_1^{\mathcal{I}}$  harmonic for unpolarized target is

$$c_{1, ext{unpol.}}^\mathcal{I} \propto \left[ F_1 \, \mathfrak{Re} \, \mathcal{H} - rac{t}{4M_
ho^2} F_2 \, \mathfrak{Re} \, \mathcal{E} + rac{x_ ext{B}}{2-x_ ext{B}} (F_1+F_2) \, \mathfrak{Re} \, \widetilde{\mathcal{H}} 
ight]$$

• and at leading order everything depends on four complex



Neural nets CLAS results

Neural nets global results

Summary O

## Factorization of DVCS $\longrightarrow$ GPDs



• CFFs are convolution:

$${}^{a}\mathcal{H}(\xi,t,Q^{2}) = \int \mathrm{d}x \ C^{a}(x,\xi,\frac{Q^{2}}{Q_{0}^{2}}) \ H^{a}(x,\xi,t,Q_{0}^{2})$$

$${}^{a=q,G}$$

•  $H^a(x, \eta, t, Q_0^2)$  — Generalized parton distribution (GPD)

Neural nets CLAS results

Neural nets global results

Summary O

## Factorization of DVCS $\longrightarrow$ GPDs



• CFFs are convolution:

$${}^{a}\mathcal{H}(\xi,t,Q^{2}) = \int \mathrm{d}x \ C^{a}(x,\xi,\frac{Q^{2}}{Q_{0}^{2}}) \ H^{a}(x,\xi,t,Q_{0}^{2})$$

$${}_{a=q,G}$$

- $H^a(x, \eta, t, Q_0^2)$  Generalized parton distribution (GPD)
- GPDs nontrivially depend on three variables:  $H^a(x, \eta, t, Q^2)$
- CFFs nontrivially depend on two variables:  $\mathcal{H}^{a}(\xi, t, Q^{2})$

Neural nets CLAS results

Neural nets global results

Summary O

## Three "classical" objectives of GPD studies

- Both meanings are valid:
  - "classical" = well known, venerable
  - "classical" = understandable from non-quantum viewpoint
- Ji's "sum rule"

$$J^{a} = rac{1}{2} \int_{-1}^{1} dx x \Big[ H^{a}(x,\eta,t) + E^{a}(x,\eta,t) \Big]_{t o 0}$$
 [Ji '96]

- Mellin moments of GPD are generally difficult to access [Polyakov '07]
- E is particularly poorly constrained by present data
- 2 3D tomography

$$ho(x,ec{b}_{\perp}) = \int rac{d^2ec{\Delta}_{\perp}}{(2\pi)^2} e^{-iec{b}_{\perp}\cdotec{\Delta}_{\perp}} H(x,0,-ec{\Delta}_{\perp}^2) \qquad ext{[Burkardt '00]}$$

- experiments are mostly sensitive to H(x, x, t)
- "deskewing" to H(x, 0, t) model dependent

Neural nets CLAS results

Neural nets global results

Summary O

## Pressure distribution in the nucleon

 Pressure distribution in the nucleon Nucleon form-factors of energy-momentum tensor

$$\langle p'|T^{a}_{\mu\nu}(0)|p\rangle = \bar{u}' \Big( \frac{A^{a}(t)}{4M} \frac{P_{\mu}P_{\nu}}{4M} + J^{a}(t) \frac{iP_{\{\mu}\sigma_{\nu\}\rho}\Delta^{\rho}}{4M} \\ + d_{1}^{a}(t) \frac{\Delta_{\mu}\Delta_{\nu} - g_{\mu\nu}\Delta^{2}}{5M} + \tilde{c}^{a}(t)Mg_{\mu\nu} \Big) u$$

• Since pressure p is part of  $T^{ii}$ , one derives [Polyakov,Schweitzer '18]

$$p(r) = rac{1}{30\pi^2 M} \int_{-\infty}^{0} dt \, rac{\sin(r\sqrt{-t})}{r} \, t d_1(t)$$

This is in principle valid only for total p = p<sup>q</sup> + p<sup>g</sup>. Some studies show that quark⇔gluon flow may be small [Polyakov,Son '18]. Then one uses this formula for quark subsystem as well.

Neural nets CLAS results

Neural nets global results

Summary

### Pressure related to GPDs and DVCS

• Form-factor  $d_1(t)$  can be measured in DVCS [Polyakov '03], since it is related to GPD D-term  $D(t) = \frac{4}{5}d_1(t)$  [Polyakov, Weiss '99]

$$\int_{-1}^{1} dx \, x \, H^{a}(x,\eta,t) = A^{a}(t) + \eta^{2} \frac{4}{5} d_{1}^{a}(t)$$

• It is also directly related to subtraction constant of CFF dispersion relation [Teryaev '05]

$$\Delta(t) = \mathfrak{Re} \, \mathcal{H}(\xi, t) - \frac{1}{\pi} \mathrm{P.V.} \int_0^1 dx \frac{2x}{\xi^2 - x^2} \, \mathfrak{Im} \, \mathcal{H}(x, t)$$

via expansion

$$\Delta(t) = 4\sum_q Q_q^2 \bigl( d_1^q(t) + d_3^q(t) + \cdots \bigr)$$

• *D*-term should be easier to extract than moments of GPDs.

Krešimir Kumerički

Neural nets CLAS results

Neural nets global results

Summary O

## **Extractions of D-term**



[Polyakov, Schweitzer '18]

- Many model calculations agree that D<sup>Q</sup>(t) < 0 as is required by the stability of nucleon
- QCD on lattice shows a lot of promise [Shanahan, Detmold '18]
- But can we measure it?
- [Burkert, Elouadrhiri, Girod '18 (Nature)] use CLAS DVCS data to extract *D*-term with great precision!

Krešimir Kumerički

Neural nets CLAS results

Neural nets global results

Summary O

## **Extractions of D-term in KM global fits**

• In KM fits [K.K., D. Müller],  $D(t) = D/(1 - t/M_D^2)^2$ , where D and  $M_D$  are fit parameters



- Fit parameter uncertainties of D(t) are ~ 20%, but systematic uncertainty due to model selection is unknown and presumably much larger!
- To study the model uncertainty, we turn to neural nets method.

Krešimir Kumerički

| ntro | to  | pressure | measurement |  |
|------|-----|----------|-------------|--|
| 2000 | 000 | 00000    |             |  |

Neural nets CLAS results

Neural nets global results

Summary O

# Neural nets CLAS fits

Krešimir Kumerički

Neural nets CLAS results

Neural nets global results

Summary O

## Fitting with neural networks



Essentially a least-square fit of a complicated many-parameter function. f(x) = tanh(∑ w<sub>i</sub> tanh(∑ w<sub>j</sub> ··· )) ⇒ no theory bias

Neural nets CLAS results

Neural nets global results

Summary O

# Study A: NN fit to CLAS 2015 data

- We start by fitting just to the CLAS 2015  $d\sigma$  and  $\Delta\sigma$  measurements [Jo et al. '15], and just  ${\cal H}$
- We utilize dispersion relations (one NNet represents *Im H*, another represents *D(t)*)
- Uncertainty is estimated by averaging over ensemble of neural nets:



Krešimir Kumerički

Neural nets CLAS results

Neural nets global results

Summary O

## Propagating uncertainties back to $d\sigma$ and $\Delta\sigma$



• Small propagated error is due to small sensitivity of these observables to CFFs (and D-term).

| Intro to pressure measurement | Neural nets CLAS results  | Neural nets global results | Summary<br>O |
|-------------------------------|---------------------------|----------------------------|--------------|
| Comparison to TR              | Surkert et al Nature '18] |                            |              |

- $\mathfrak{Im} \mathcal{H}$  good agreement
- $\mathfrak{Re} \mathcal{H}$  only qualitative agreement



 Resulting Δ(t) = 0.78 ± 1.5, with almost no dependence on t! So D-term (and pressure) are consistent with zero in this model-independent approach! [K.K., Nature '19]

Neural nets CLAS results

Neural nets global results

Summary O

## More detailed comparison of $\mathfrak{Re} \mathcal{H}$



Neural nets CLAS results

Neural nets global results

Summary O

## More detailed comparison of $\mathfrak{Re} \mathcal{H}$



Neural nets CLAS results

Neural nets global results

Summary O

## Adding more data points

• Adding HERMES  $A_{LU,I}$  data. (Model includes  $\mathcal{H}$  and  $\mathcal{E}$ )



Neural nets CLAS results

Neural nets global results

Summary O

## Adding more data points

• Adding HERMES  $A_{LU,I}$  data. (Model includes  $\mathcal{H}$  and  $\mathcal{E}$ )



- Even this dataset is still consistent with zero D-term.
- We need measurements more sensitive to  $\mathfrak{Re}\,\mathcal{H}$  (BCA, DDVCS, . . . )

Neural nets CLAS results

Neural nets global results

Summary O

## Subtraction constant by PARTONS

• Global neural net fit (including BCA) still results in a D-term consistent with zero



• [Moutarde, Sznajder, Wagner '19], see talk by Pawel Sznajder

| Intro to pressure measurement | Neural nets CLAS results | Neural nets global results | Summary |
|-------------------------------|--------------------------|----------------------------|---------|
| 000000000                     | 0000000                  | •0000                      | 0       |

# Neural nets global fits

Neural nets CLAS results

Neural nets global results

Summary O

## Study B: NN fit to world fixed target data

• Representative subset of world DVCS fixed target data:

| npt | 5 3 | c obs | collab   | harm. | ref.                 |
|-----|-----|-------|----------|-------|----------------------|
| 6   | x   | ALUI  | HERMES   | -1.0  | arXiv:1203.6287      |
| 12  | x   | AUTDV | CS HERME | S 0   | arXiv:0802.2499      |
| 12  | x   | AUTI  | HERMES   | 1.0   | arXiv:0802.2499      |
| 6   | x   | BCA   | HERMES   | 0.0   | arXiv:1203.6287      |
| 6   | x   | BCA   | HERMES   | 1.0   | arXiv:1203.6287      |
| 12  | x   | BSDw  | CLAS     | -1    | arXiv:1504.02009     |
| 15  | x   | BSDw  | HALLA    | -1    | arXiv:1504.05453     |
| 12  | x   | BSSw  | CLAS     | 0.0   | arXiv:1504.02009     |
| 12  | x   | BSSw  | CLAS     | 1.0   | arXiv:1504.02009     |
| 10  | х   | BSSw  | HALLA    | 0.0   | arXiv:1504.05453     |
| 10  | x   | BSSw  | HALLA    | 1.0   | arXiv:1504.05453     |
| 6   | x   | BTSA  | HERMES   | 0.0   | arXiv:1004.0177v1    |
| 3   | х   | TSA   | CLAS     | -1    | arXiv:hep-ex/0605012 |
| 6   | х   | TSA   | HERMES   | -1.0  | arXiv:1004.0177v1    |
|     |     |       |          |       |                      |

TOTAL = 128

• We now use completely unconstrained neural nets representing Im H, Re H, Im E, Re E, ... (do not assume dispersion relations)

Krešimir Kumerički

| Intro to pressure measurement | Neural nets CLAS results | Neural nets global results<br>○○●○○ | Summary<br>O |
|-------------------------------|--------------------------|-------------------------------------|--------------|
| Results $(1/2)$               |                          |                                     |              |

Only Jm H, Jm H̃ and Re ε consistently extracted as different from zero, and, with somewhat smaller significance, Re H and Jm ε:



| Intro to pressure measurement | Neural nets CLAS results | Neural nets global results | Summary |
|-------------------------------|--------------------------|----------------------------|---------|
| 000000000                     | 0000000                  | 00000                      | 0       |

# Results (2/2)



 See next talk by Pawel Sznajder for a more extensive global neural net analysis

Krešimir Kumerički

Neural nets CLAS results

Neural nets global results

Summary O

## **Bias-variance tradeoff: toy example**



Neural nets CLAS results

Neural nets global results

Summary O

## **Bias-variance tradeoff: toy example**



Neural nets CLAS results

Neural nets global results

Summary O

## **Bias-variance tradeoff: toy example**



| Intro     | to | pressure | measurement |  |
|-----------|----|----------|-------------|--|
| 000000000 |    |          |             |  |

Neural nets CLAS results

Neural nets global results



- Neural network method has a unique capability of extraction of Compton form factors (and, later, GPDs) with reliable uncertainties
- More experimental and phenomenological work is needed to determine pressure distribution in a nucleon in a reliable and model-independent way.

| Intro     | to | pressure | measurement |  |
|-----------|----|----------|-------------|--|
| 000000000 |    |          |             |  |

Neural nets CLAS results

Neural nets global results



- Neural network method has a unique capability of extraction of Compton form factors (and, later, GPDs) with reliable uncertainties
- More experimental and phenomenological work is needed to determine pressure distribution in a nucleon in a reliable and model-independent way.

#### The End