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Family tree of hadron structure functions
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[Fig. by Markus Diehl] (ξ → η from now on)
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Definition of GPDs

• In QCD GPDs are defined as [Müller ’92, et al. ’94, Ji, Radyushkin ’96]

F q(x , η, t) =

∫
dz−

2π
e ixP

+z−〈P2|q̄(−z)γ+q(z)|P1〉
∣∣∣
z+=0, z⊥=0

F̃ q(x , η, t) =

∫
dz−

2π
e ixP

+z−〈P2|q̄(−z)γ+γ5q(z)|P1〉
∣∣∣
z+=0, z⊥=0

(and similarly for gluons F g and F̃ g ).

Forward limit
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Access to GPDs via DVCS

• Deeply virtual Compton scattering (DVCS) — “gold plated”
process of exclusive physics

• DVCS is measured via leptoproduction of a photon
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• Interference with Bethe-Heitler process gives unique access to
both real and imaginary part of DVCS amplitude.
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DVCS cross section

dσ ∝ |T |2 = |TBH|2 + |TDVCS|2 + I .
• where e. g. interference term is

I ∝ −e`
P1(φ)P2(φ)

{
cI0 +

3∑

n=1

[
cIn cos(nφ) + sIn sin(nφ)

]}
,

• where e. g. cI1 harmonic for unpolarized target is

cI1,unpol. ∝
[
F1 ReH− t

4M2
p

F2 Re E +
xB

2− xB
(F1 + F2)Re H̃

]

• and at leading order everything depends on four complex

Compton form factors (CFFs)

H(ξ, t,Q2), E(ξ, t,Q2), H̃(ξ, t,Q2), Ẽ(ξ, t,Q2)
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Factorization of DVCS −→ GPDs

• [Collins et al. ’98] DVCS

GPD

C
O


 1
Q2


= +

γ∗(−Q2) γ

p p p p

γ∗(−Q2) γ

• CFFs are convolution:

aH(ξ, t,Q2) =

∫
dx C a(x , ξ,

Q2

Q2
0

) Ha(x , ξ, t,Q2
0 )

a=q,G

• Ha(x , η, t,Q2
0 ) — Generalized parton distribution (GPD)

• GPDs nontrivially depend on three variables: Ha(x , η, t,Q2)

• CFFs nontrivially depend on two variables: Ha(ξ, t,Q2)
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Three “classical” objectives of GPD studies

• Both meanings are valid:
• “classical” = well known, venerable
• “classical” = understandable from non-quantum viewpoint

1 Ji’s “sum rule”

Ja =
1

2

∫ 1

−1
dx x

[
Ha(x , η, t) + E a(x , η, t)

]
t→0

[Ji ’96]

• Mellin moments of GPD are generally difficult to access
[Polyakov ’07]

• E is particularly poorly constrained by present data

2 3D tomography

ρ(x , ~b⊥) =

∫
d2~∆⊥
(2π)2

e−i
~b⊥·~∆⊥H(x , 0,−~∆2

⊥) [Burkardt ’00]

• experiments are mostly sensitive to H(x , x , t)
• “deskewing” to H(x , 0, t) — model dependent

Krešimir Kumerički Measurability of pressure in the proton IWHSS19 8 / 26



Intro to pressure measurement Neural nets CLAS results Neural nets global results Summary

Pressure distribution in the nucleon

3 Pressure distribution in the nucleon
Nucleon form-factors of energy-momentum tensor

〈p′|T a
µν(0)|p〉 = ū′

(
Aa(t)

PµPν
4M

+ Ja(t)
iP{µσν}ρ∆ρ

4M

+ da
1 (t)

∆µ∆ν − gµν∆2

5M
+ c̃a(t)Mgµν

)
u

• Since pressure p is part of T ii , one derives [Polyakov,Schweitzer ’18]

p(r) =
1

30π2M

∫ 0

−∞
dt

sin(r
√−t)

r
td1(t)

• This is in principle valid only for total p = pq + pg . Some
studies show that quark↔gluon flow may be small [Polyakov,Son

’18]. Then one uses this formula for quark subsystem as well.
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Pressure related to GPDs and DVCS

• Form-factor d1(t) can be measured in DVCS [Polyakov ’03], since
it is related to GPD D-term D(t) = 4

5d1(t) [Polyakov, Weiss ’99]

∫ 1

−1
dx x Ha(x , η, t) = Aa(t) + η2 4

5
da

1 (t)

• It is also directly related to subtraction constant of CFF
dispersion relation [Teryaev ’05]

∆(t) = ReH(ξ, t)− 1

π
P.V.

∫ 1

0
dx

2x

ξ2 − x2
ImH(x , t)

via expansion

∆(t) = 4
∑

q

Q2
q

(
dq

1 (t) + dq
3 (t) + · · ·

)

• D-term should be easier to extract than moments of GPDs.
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Extractions of D-term
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[Polyakov, Schweitzer ’18]

• Many model calculations agree that DQ(t) < 0 as is required
by the stability of nucleon
• QCD on lattice shows a lot of promise [Shanahan, Detmold ’18]

• But can we measure it?
• [Burkert, Elouadrhiri, Girod ’18 (Nature)] use CLAS DVCS data to

extract D-term with great precision!
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Extractions of D-term in KM global fits

• In KM fits [K.K., D. Müller], D(t) = D/(1− t/M2
D)2, where D

and MD are fit parameters

• Fit parameter uncertainties of D(t) are ∼ 20%, but
systematic uncertainty due to model selection is unknown and
presumably much larger!
• To study the model uncertainty, we turn to neural nets

method.
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Neural nets CLAS fits
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Fitting with neural networks

• Essentially a least-square fit of a complicated many-parameter
function. f (x) = tanh(

∑
wi tanh(

∑
wj · · · )) ⇒ no theory

bias
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Study A: NN fit to CLAS 2015 data

• We start by fitting just to the CLAS 2015 dσ and ∆σ
measurements [Jo et al. ’15], and just H
• We utilize dispersion relations (one NNet represents ImH,

another represents D(t))

• Uncertainty is estimated by averaging over ensemble of neural
nets:
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Propagating uncertainties back to dσ and ∆σ
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• Small propagated error is due to small sensitivity of these
observables to CFFs (and D-term).
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Comparison to [Burkert et al., Nature ’18]

• ImH — good agreement

• ReH — only qualitative agreement
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• Resulting ∆(t) = 0.78± 1.5, with almost no dependence on
t! So D-term (and pressure) are consistent with zero in this
model-independent approach! [K.K., Nature ’19]
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More detailed comparison of ReH
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More detailed comparison of ReH
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Adding more data points

• Adding HERMES ALU,I data. (Model includes H and E)
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• Even this dataset is still consistent with zero D-term.

• We need measurements more sensitive to ReH (BCA,
DDVCS, . . . )
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Subtraction constant by PARTONS

• Global neural net fit (including BCA) still results in a D-term
consistent with zero

• [Moutarde, Sznajder, Wagner ’19], see talk by Pawel Sznajder
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Neural nets global fits
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Study B: NN fit to world fixed target data

• Representative subset of world DVCS fixed target data:

npt x obs collab harm. ref.

------------------------------------------

6 x ALUI HERMES -1.0 arXiv:1203.6287

12 x AUTDVCS HERMES 0 arXiv:0802.2499

12 x AUTI HERMES 1.0 arXiv:0802.2499

6 x BCA HERMES 0.0 arXiv:1203.6287

6 x BCA HERMES 1.0 arXiv:1203.6287

12 x BSDw CLAS -1 arXiv:1504.02009

15 x BSDw HALLA -1 arXiv:1504.05453

12 x BSSw CLAS 0.0 arXiv:1504.02009

12 x BSSw CLAS 1.0 arXiv:1504.02009

10 x BSSw HALLA 0.0 arXiv:1504.05453

10 x BSSw HALLA 1.0 arXiv:1504.05453

6 x BTSA HERMES 0.0 arXiv:1004.0177v1

3 x TSA CLAS -1 arXiv:hep-ex/0605012

6 x TSA HERMES -1.0 arXiv:1004.0177v1

------------------------------------------

TOTAL = 128

• We now use completely unconstrained neural nets
representing ImH, ReH, Im E , Re E , . . . (do not assume
dispersion relations)
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Results (1/2)

• Only ImH, Im H̃ and Re E consistently extracted as different
from zero, and, with somewhat smaller significance, ReH and
Im E :
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Results (2/2)

• Other CFFs come out consistent with zero. Only bounds on
their size are obtained. E. g. for Im Ẽ :
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• See next talk by Pawel Sznajder for a more extensive global
neural net analysis
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Bias-variance tradeoff: toy example

• “Unknown” f (x) = sin(πx) “measured” at two points.

H0 - rigid (biased) H1 - flexible [Abu-Mostafa et al. ’12]

h(x) = a h(x) = ax + b

error = bias + variance

• In DVCS situation is
the opposite! We need
to decrease bias.

• Neural networks are
proven to be unbiased

Krešimir Kumerički Measurability of pressure in the proton IWHSS19 25 / 26



Intro to pressure measurement Neural nets CLAS results Neural nets global results Summary

Bias-variance tradeoff: toy example

• “Unknown” f (x) = sin(πx) “measured” at two points.

H0 - rigid (biased) H1 - flexible [Abu-Mostafa et al. ’12]

h(x) = a h(x) = ax + b

error = bias + variance

• In DVCS situation is
the opposite! We need
to decrease bias.

• Neural networks are
proven to be unbiased
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Krešimir Kumerički Measurability of pressure in the proton IWHSS19 25 / 26



Intro to pressure measurement Neural nets CLAS results Neural nets global results Summary

Summary

• Neural network method has a unique capability of extraction
of Compton form factors (and, later, GPDs) with reliable
uncertainties

• More experimental and phenomenological work is needed to
determine pressure distribution in a nucleon in a reliable and
model-independent way.

The End
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