Antiproton production cross sections and the search for dark matter

Primary and secondary cosmic rays in the Galaxy

```
Primaries: produced in the sources (SNR and Pulsars)

H, He, CNO, Fe; e-, e+

Possibly e+, p-, d- from Dark Matter annihilation
```

```
Secondaries: produced by spallation of primary CRs (p, He,C, O, Fe) on the interstellar medium (ISM)

LiBeB, sub-Fe; e+, p-, d-
```

All primary and secondary species propagate in the Galaxy, dominated by diffusion on the magnetic fields and/or by intense energy losses (leptons)

Primaries = present in sources: Nuclei: H, He, CNO, Fe; e-, (e+) in SNR (& pulsars) e⁺, p⁺, d⁺ from Dark Matter annihilation Secondaries = NOT present in sources, thus produced by spallation of primary CRs (p, He, C, O, Fe) on ISM Nuclei: LiBeB, sub-Fe, ...; e⁺, p⁺, d⁺; ... from inelastic scatterings 30 25 Atomic Number (Z) 20 15 10 Primary Nuclei: >75% from source Mixed: 50-75% from source Mixed: 25-50% from source Secondary: <5% from source 5 K—Captúre Secondary Nuclei 0 10 20 30 40 Number of Neutrons (N)

Production cross sections in the galactic cosmic ray modeling

H, He, C, O, Fe,... are present in the supernova remnant surroundings, and directly accelerated into the the interstellar medium (ISM)

All the other nuclei (Li, Be, B, p-, and e+, gamma, ...) are produced by spallation of heavier nuclei with the atoms (H, He) of the ISM

We need all the cross sections σ^{kj} - from Nichel down to proton - for the production of the j-particle from the heavier k-nucleus scattering off the H and He of the ISM

Remarkable for DARK MATTER signals is productions of: antiproton, antideuteron, positron and gamma rays.

Indirect DARK MATTER searches

Dark matter can annihilate in pairs with standard model final states.

Low background expected for cosmic ANTIMATTER, and for NEUTRINOS and GAMMA RAYS coming from dense DM sites

WIMP INDIRECT SIGNALS

Annihilation inside celestial bodies (Sun, Earth): v at neutrino telescopes as up-going muons

Annihilation in the galactic halo:

- > γ-rays (diffuse, monochromatic line), multiwavelength
- antimatter, searched as rare components in cosmic rays (CRs)

$$e^+, \ \overline{p}, \ \overline{D}$$

v and y keep directionality

→ SOURCE DENSITY

Charged particles diffuse in the galactic halo

→ ASTROPHYSICS OF COSMIC RAYS!

DM Sources are also

in the diffusive halo

Antiproton fluxes at the Top-of-Atmosphere

Injection spectra from DM and CRs

Cosmic antiproton data

AMS Coll. PRL 2016

Data are very precise, and over almost 3 o.o.m.

AMS-02 antiprotons are consistent with a

secondary astrophysical origin

M. Boudaud, Y. Genolini, L. Derome, J.Lavalle, D.Maurin, P. Salati, P.D. Serpico 1906.07119

- The secondary bar flux is predicted to be consistent with AMS-02 data
- Transport and cross section uncertainties are comparable
- · A dark matter contribution would come as a tiny effect
- Precise predictions are mandatory

Possible contribution from dark matter

Reinert & Winkler JCAP2018

1000

2000

Antiproton data are so precise that permit to set strong upper bounds on the dark matter annihilation cross section, or to improve the fit w.r.t. to the secondaries alone adding a tine DM contribution

500

 $m_{\rm DM}$ [GeV]

200

100

Antiproton production by inelastic scatterings

FD, Korsmeier, Di Mauro PRD 2017

$$q_{ij}(T_{\bar{p}}) = \int_{T_{\text{th}}}^{\infty} dT_i \ 4\pi \, n_{\text{ISM},j} \, \phi_i(T_i) \, \frac{d\sigma_{ij}}{dT_{\bar{p}}}(T_i, T_{\bar{p}})$$

Source term

i, j = proton, helium(both in the CRs and in the ISM)

Cosmic antiproton data are very precise:

production cross sections should be known with high accuracy
in order not to introduce high theoretical uncertainties

Re-analysis of the cross section parameterization

- Fit of two most recent (analytic) parametrizations for antiproton production in pp collisions
- Fit of pA parametrization by rescaling from pp

27-Mar-19

Experiment	CM-Energy [GeV]	Channel
NA49	17.3	рр
NA61	7.7, 8.8, 12.3, 17.3	рр
Dekkers	6.1, 6.7	рр
LHCb	110	рНе
NA49	17.3	pC

Michael Korsmeier

Param, I

$$\sigma_{\text{inv}}(\sqrt{s}, x_{\text{R}}, p_{\text{T}}) = \sigma_{\text{in}}(1 - x_{\text{R}})^{C_1} \exp(-C_2 x_{\text{R}})$$

$$\times \left[C_3 \left(\sqrt{s} \right)^{C_4} \exp(-C_5 p_{\text{T}}) + C_6 \left(\sqrt{s} \right)^{C_7} \exp\left(-C_8 p_{\text{T}}^2 \right) \right]$$

Param. II

$$\sigma_{\text{inv}}(\sqrt{s}, x_{\text{R}}, p_{\text{T}}) = \sigma_{\text{in}} R C_1 (1 - x_{\text{R}})^{C_2}$$

$$\times \left[1 + \frac{X}{\text{GeV}} (m_T - m_p) \right]^{\frac{-1}{C_3 X}}$$

$$R = \begin{cases} 1 & \sqrt{s} \ge 10 \,\text{GeV} \\ \left[1 + C_5 \left(10 - \frac{\sqrt{s}}{\text{GeV}}\right)^5\right] & \text{elsewhere} \\ \times \exp\left[C_6 \left(10 - \frac{\sqrt{s}}{\text{GeV}}\right)^2 \\ \times (x_R - x_{R,\text{min}})^2\right] \end{cases}$$

$$\sigma_{\text{inv}}^{pA}(\sqrt{s}, x_f, p_{\text{T}}) = f^{pA}(A, x_f, \mathcal{D}) \ \sigma_{\text{inv}}^{pp}(\sqrt{s}, x_{\text{R}}, p_{\text{T}})$$

$$\sigma_{\rm inv}^{\rm Galaxy} = \sigma_{\rm inv} (2 + \Delta_{\rm IS} + 2\Delta_{\Lambda})$$

New fixed-target data for the antiproton XS

FD, Korsmeier, Di Mauro PRD 2018

pp —> pbar+X
NA61 (Aduszkiewicz Eur. Phys. J. C77 (2017))
$$\sqrt{s} = 7.7, 8.8, 12.3 \text{ and } 17.3 \text{ GeV}$$

$$T_p = 31, 40, 80, 158 \text{ GeV}$$

Fraction of the pp source term covered by the kinematical parameters space

Fraction of the p-nucelus source term covered by the kinematical parameters space

pp—> pbar+X production cross sections

FD, Korsmeier, Di Mauro PRD 2018

$$q_{ij}(T_{\bar{p}}) = \int_{T_{th}}^{\infty} dT_i \ 4\pi \, n_{\text{ISM},j} \, \phi_i(T_i) \frac{d\sigma_{ij}}{dT_{\bar{p}}}(T_i, T_{\bar{p}})$$

Good agreement for T > 10 GeV

High-energy data analysis

Korsmeier, FD, Di Mauro, PRD 2018

- 1. Fit to NA61 pp -> pbar + X data
- 2. Calibration of pA XS on NA49 pC -> pbar + X data
- 3. Inclusion of LHC pHe -> pbar + X data

Parametrization I

LHCb data agree better with one of the two pp parameterizations. They select the high energy behavior of the Lorentz invariant cross section

The antiproton source spectrum

Korsmeier, FD, Di Mauro, 1802.03030, PRD i2018

Param II is preferred by the fits.

The effect of LHCb data is to select a h.e. trend of the pbar source term.

A harder trend is preferred.

Uncertainties still range about 10-15%, and increase at low energies.

Effects on the total pbar production

Korsmeier, FD, Di Mauro, 1802.03030, PRD 2018

The antiproton source term - is affected by uncertainties of +- 10% from cross sections.

Higher uncertainties at very low energies

For next generation experiments

AM502 accuracy is reached if pp \rightarrow pbar cross section is measured with 3% accuracy inside the regions, 30% outside.

Conclusions

- The AMS data induce a remarkable progress in understanding our Galaxy. Its data reach unprecedented precision (few %).
- The production cross sections for secondary nuclei are often the main source of theoretical uncertainty
- High energy physics is addressing new data at the service of high precision cosmic ray data
- Improvements in calculations of the nuclear cross sections will certainly remain data driven in the near future

LHCb pHe -> p-X cross section data

G Graziani for LHCb, Moriond 2017

First data ever has been collected by LHCb in fixed target mode

Result for **prompt** production (excluding weak decays of hyperons)

The total inelastic cross section is also measured to be

$$\sigma_{inel}^{\text{LHCb}} = (140 \pm 10) \text{ mb}$$

The EPOS LHC prediction

[T. Pierog at al, Phys. Rev. C92 (2015), 034906] is 118 mb, ratio is 1.19 ± 0.08 .

Run at 4 TeV p beam energy is under analysis by the collaboration

General idea for matching the accuracy

 Determine the contribution to the antiproton source spectrum from the whole parameter space

$$\{\sqrt{s}, x_{\mathrm{R}}, p_{\mathrm{T}}\}$$
 $\{T, T_{\bar{p}}, \cos(\theta)\}$

- Assign the maximal uncertainty that the cross section should have in order to address the following requirements:
- 1. The total uncertainty shall match the AMS-02 accuracy
- 2. The parameter space with larger contribution to the source spectrum, should have the smaller uncertainties in the cross section measurements

$$\frac{d\sigma}{dT_{\bar{p}}}(T, T_{\bar{p}}) = 2\pi p_{\bar{p}} \int_{-1}^{1} d\cos(\theta) \, \sigma_{\text{inv}}$$

$$= 2\pi p_{\bar{p}} \int_{-\infty}^{\infty} d\eta \, \frac{1}{\cosh^{2}(\eta)} \, \sigma_{\text{inv}}$$

$$\eta = -\ln\left(\tan\left(\frac{\theta}{2}\right)\right)$$

Predictions for future extensions of experiments

