

Dijet mass: 2701 GeV

Searching for VV resonances in the boosted dijet final state at 13 TeV with CMS

PhD committee: Ben Kilminster (UZH, **advisor**) Florencia Canelli (UZH) Jesse Thaler (MIT) Andreas Hinzmann (HUU)

Thea Klæboe Årrestad

SLAC Experimental Seminar January 17th 2019

First 13 TeV collisions at LHC!

Thea K. Aarrestad

2015

Searching for VV resonances in the boosted dijet final state

Large Hadron Collider Is Colliding Again for First Time in Two Years

2015

CMS Experiment at the LHC, CERN Data recorded 2015-Jun-03 08:48:32.279552 GMT Run / Event / LS: 246908 / 77874559 / 86

Opinion

Culture Lifestyle More~ orld UK Science Cities Global development Football Tech Business Environment Obituaries

Large Hadron Collider

News

SCIENCE NEW

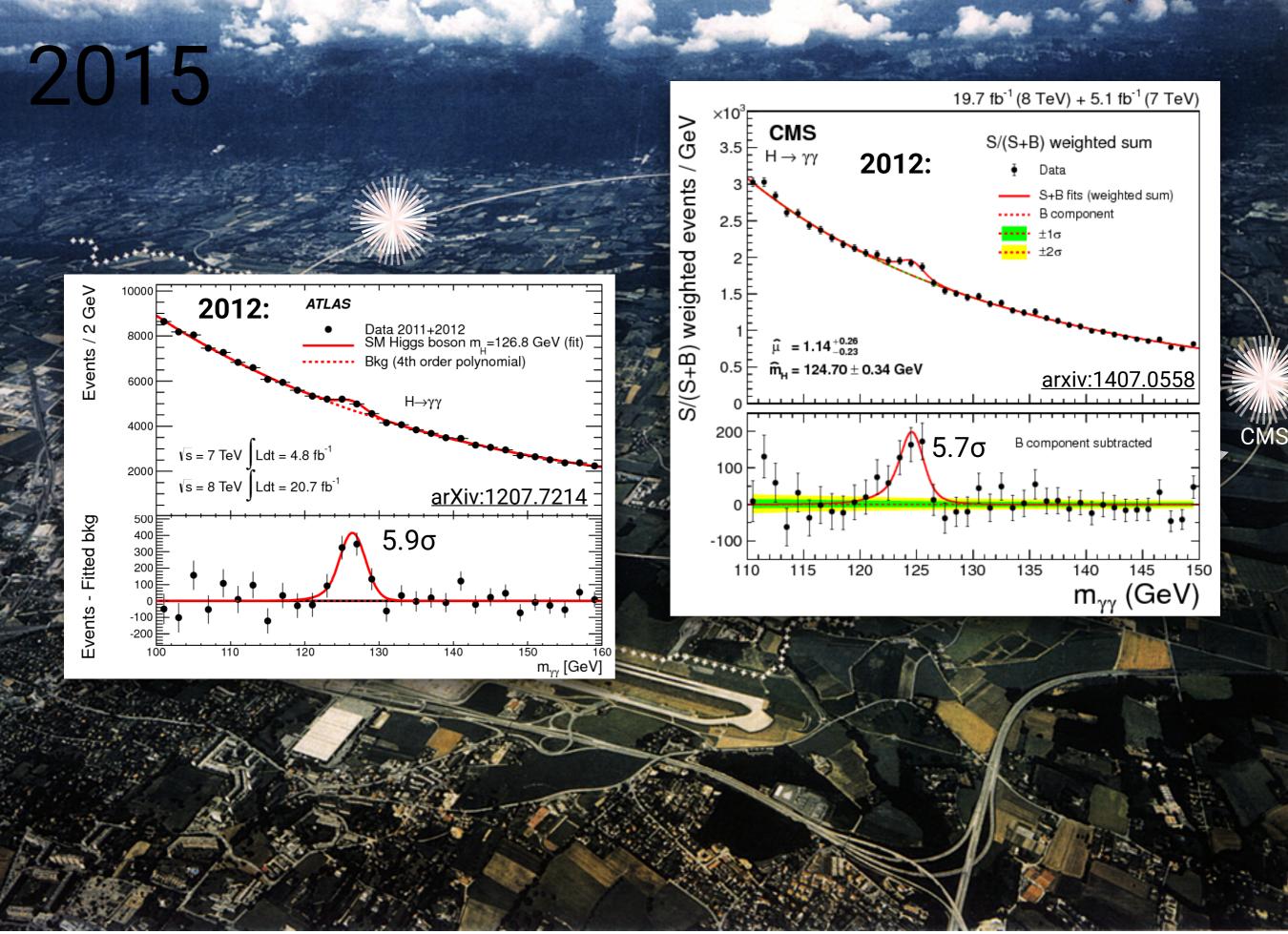
Cern restarts Large Hadron Collider with mission to make scientific history

Sport

Physicists hope particle accelerator will explain dark matter, gravity and antimatter as it completes its test run following an pgrade

Thea K. Aarrestad

Searching for VV resonances in the boosted dijet final state



Thea K. Aarrestad

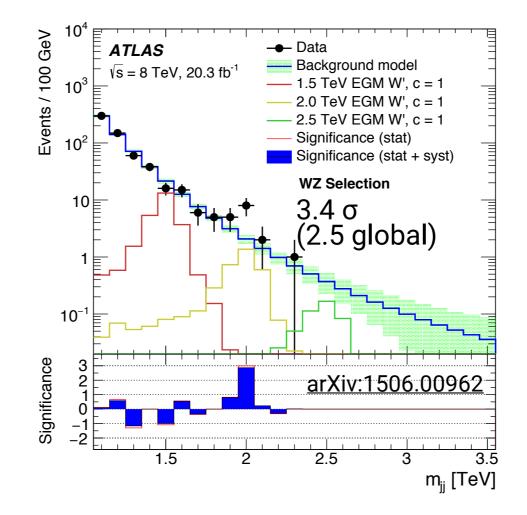
Searching for VV resonances in the boosted dijet final state

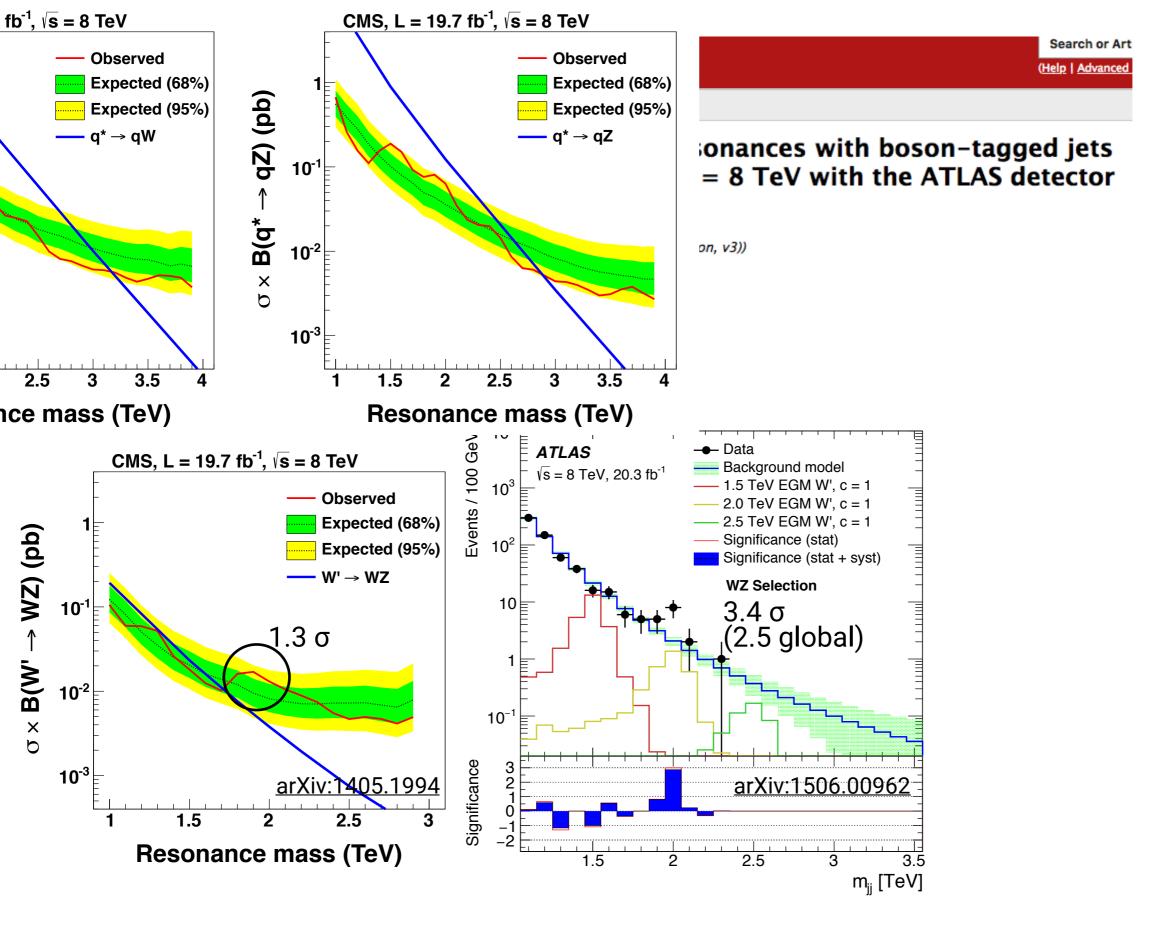
High Energy Physics – Experiment

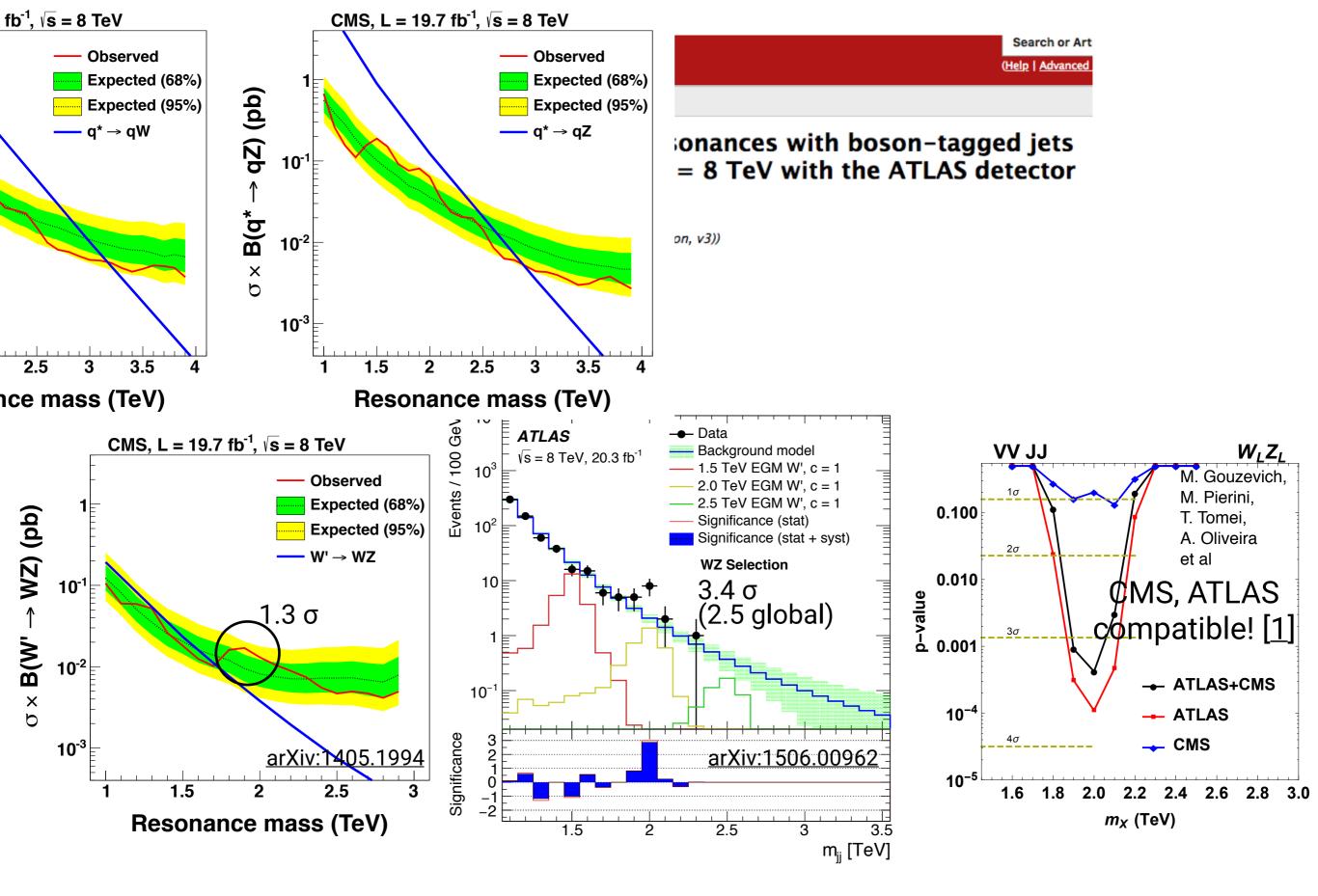
Search for high-mass diboson resonances with boson-tagged jets in proton-proton collisions at \sqrt{s} = 8 TeV with the ATLAS detector

ATLAS Collaboration

(Submitted on 2 Jun 2015 (v1), last revised 22 Jan 2016 (this version, v3))





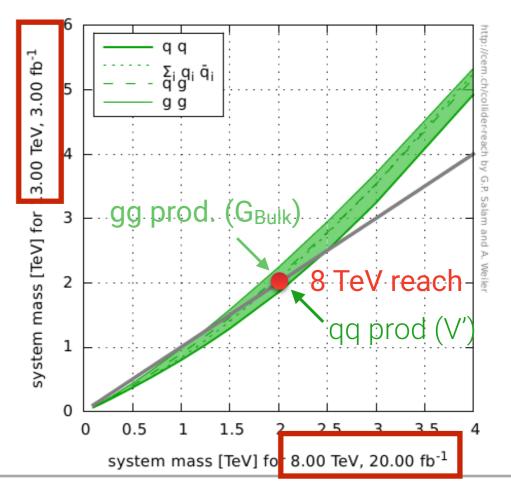


What could it be?

Most popular candidates

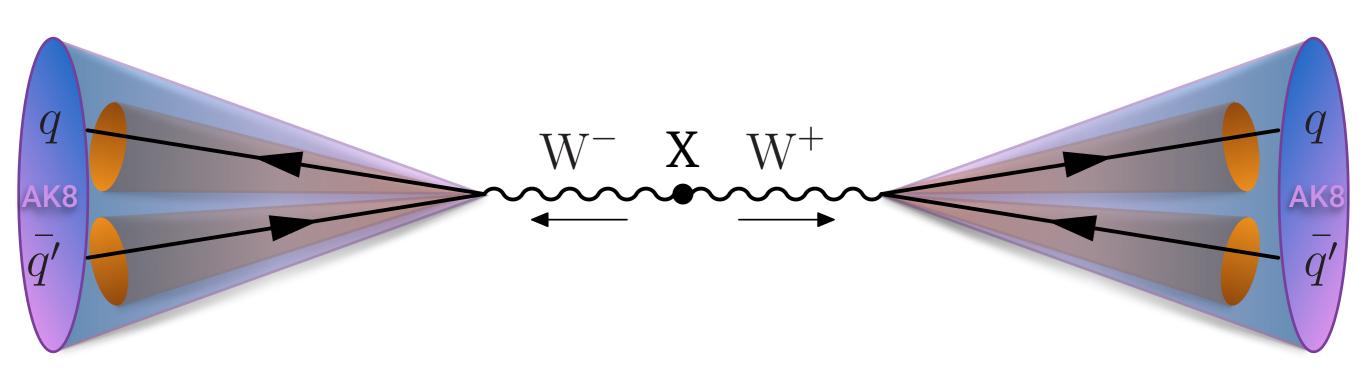
- Bulk Graviton models: Spin 2 Main production: gluon-fusion G_{Bulk}→WW and G_{Bulk}→ZZ
- Composite Higgs models: Spin-1 Main production: qq-annihilation
 Z'→WW and W'→WZ

With only 3 fb⁻¹ of 13 TeV data, same discovery potential as 8 TeV dataset of 20 fb⁻¹



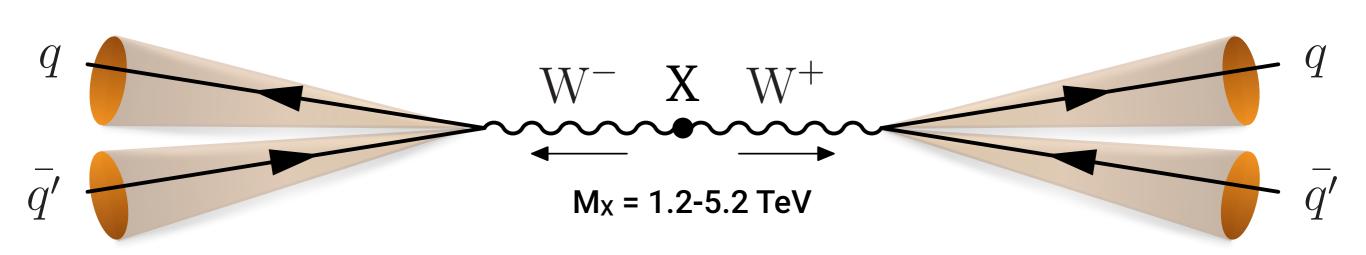
Search I: First search for $X \rightarrow VV \rightarrow q\bar{q}q\bar{q}$ at 13 TeV with CMS

Published in Journal of High Energy Physics (2017), DOI: 10.1007/JHEP03(2017)162

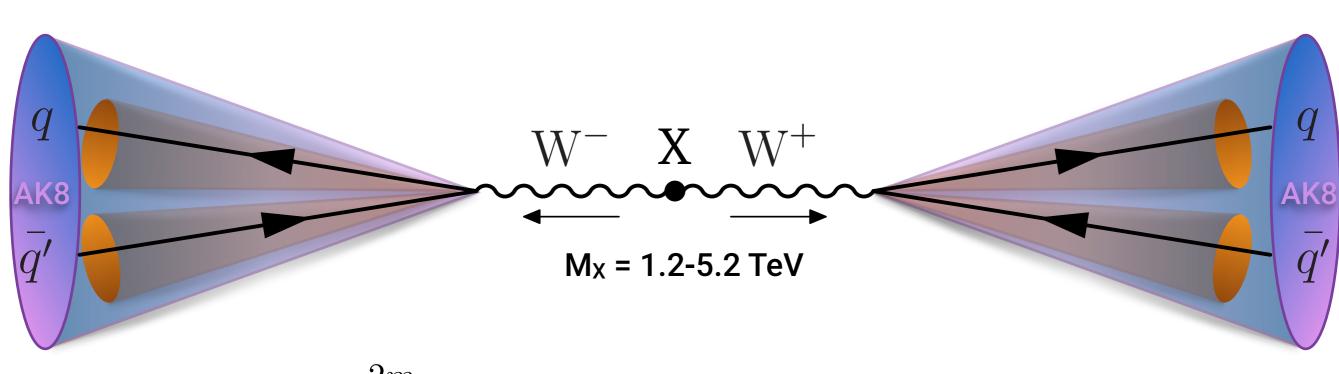


~ The first 'boosted' search with 13 TeV data and the first to use dedicated jet substructure triggers. Published with the full 2015 dataset, 2.7 fb⁻¹

X→VV→qqqq



X→VV→qqqq



 $R \sim \frac{2m_V}{p_{T,V}} \rightarrow$ Fully contained in AK R=0.8 jet for V p_T > 200 GeV

X→VV→qqqq

Reconstruct two hadronic W/Z bosons

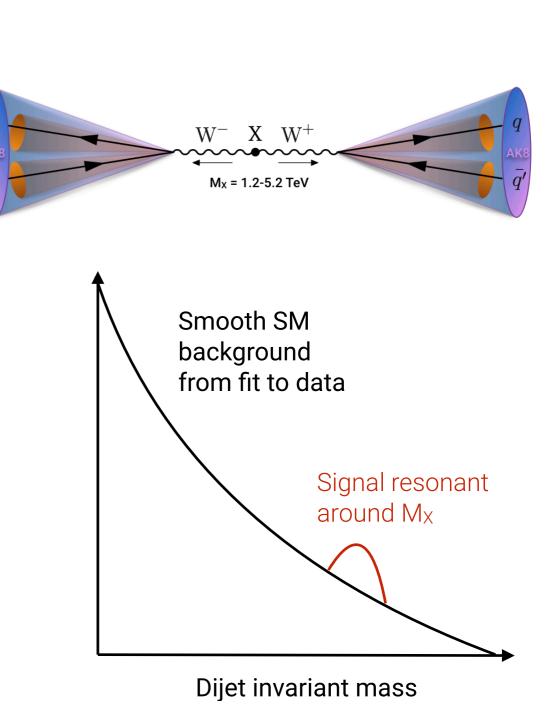
- require two high-p⊤ jets (>200 GeV), tag using dedicated jet substructure methods

Bump hunt in dijet invariant mass spectrum

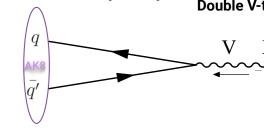
- QCD (dominant) background estimated from fit to data in signal region
- smoothness test of observed data (no MC)

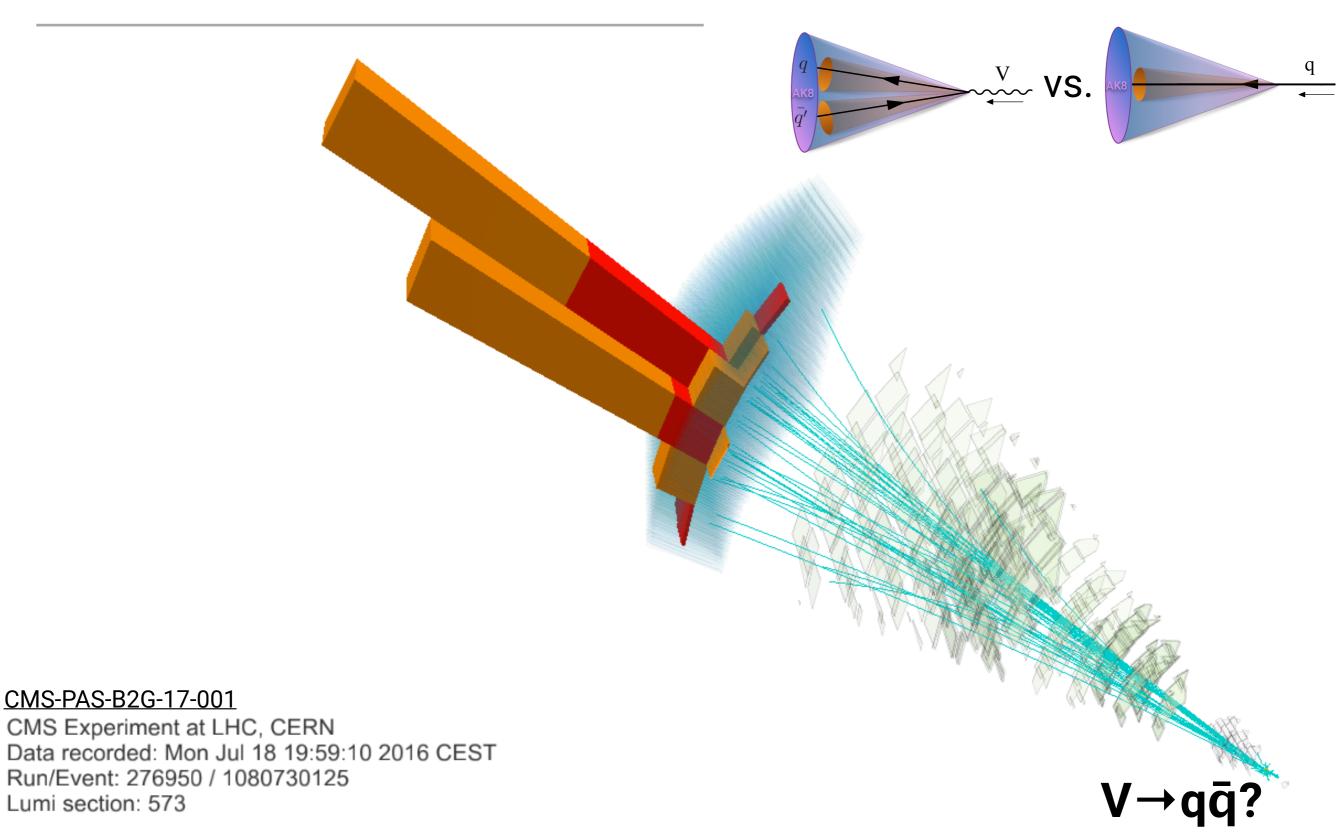
Simple and robust one-background analysis, some caveats:

- 1. Overwhelming QCD multijet background
- 2. Can only model smoothly falling m_{jj} (trigger limited)



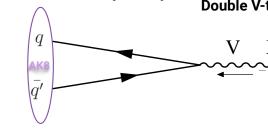
Getting rid of QCD





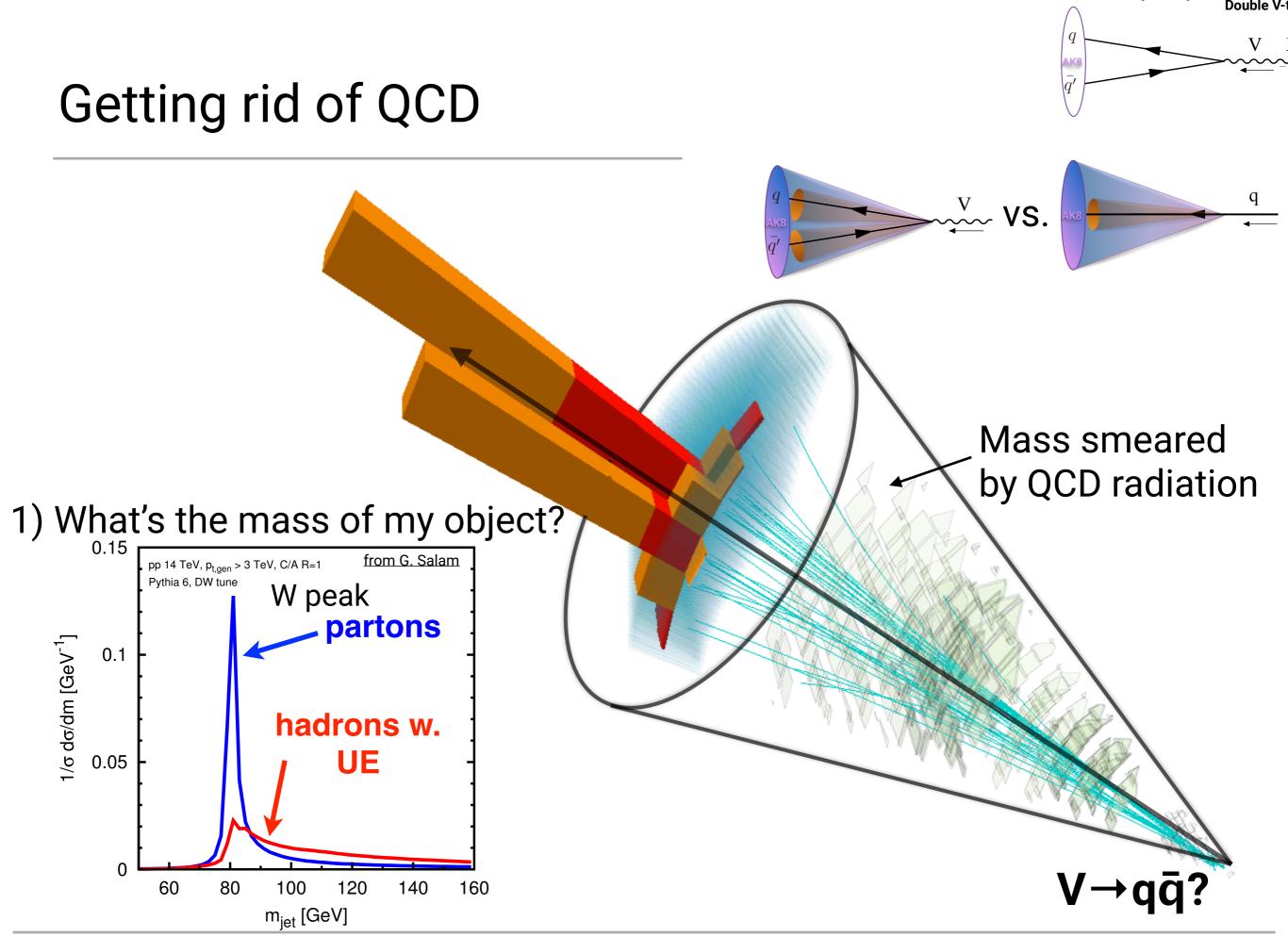
Lumi section: 573

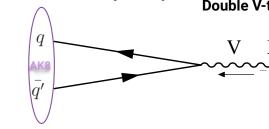
Getting rid of QCD



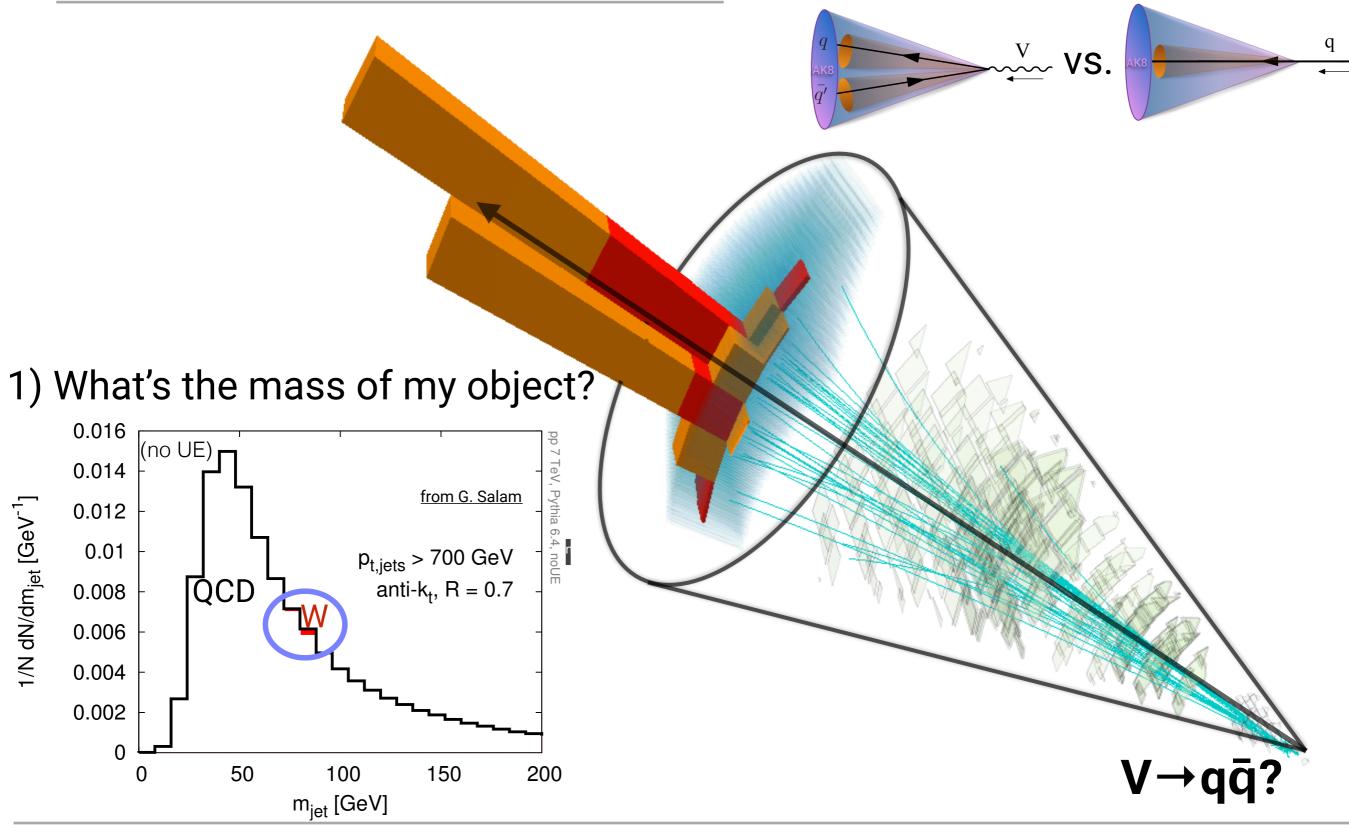


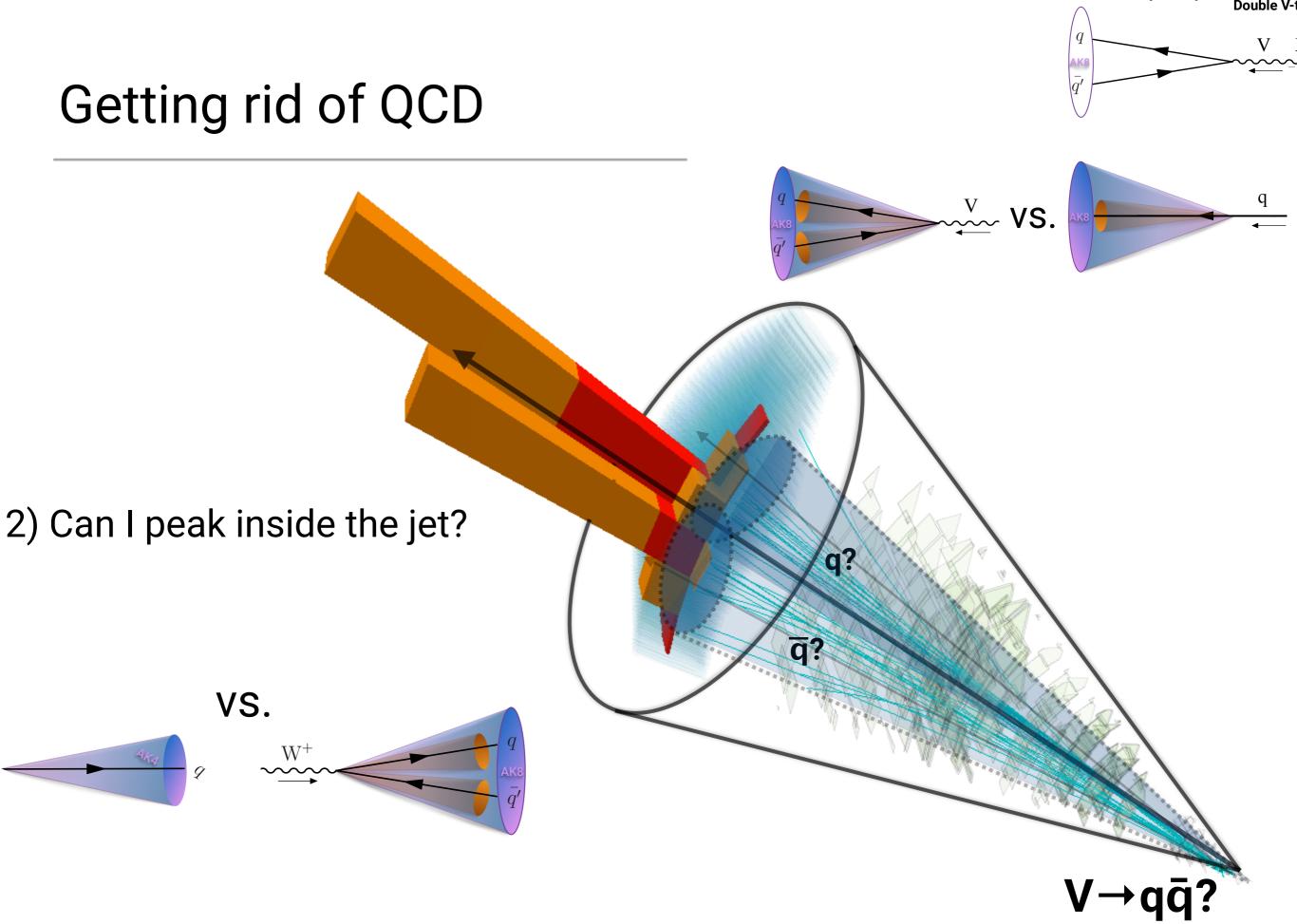
CMS Experiment at LHC, CERN Data recorded: Mon Jul 18 19:59:10 2016 CEST Run/Event: 276950 / 1080730125 Lumi section: 573



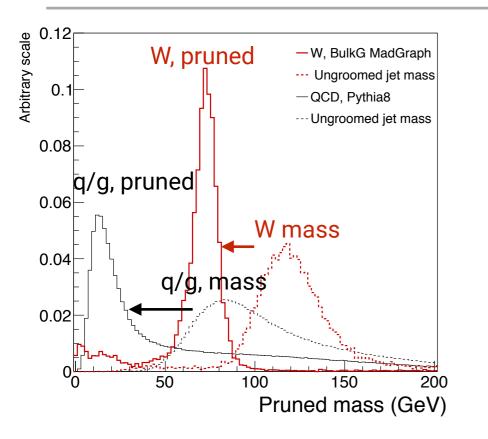


Getting rid of QCD





Jet substructure techniques



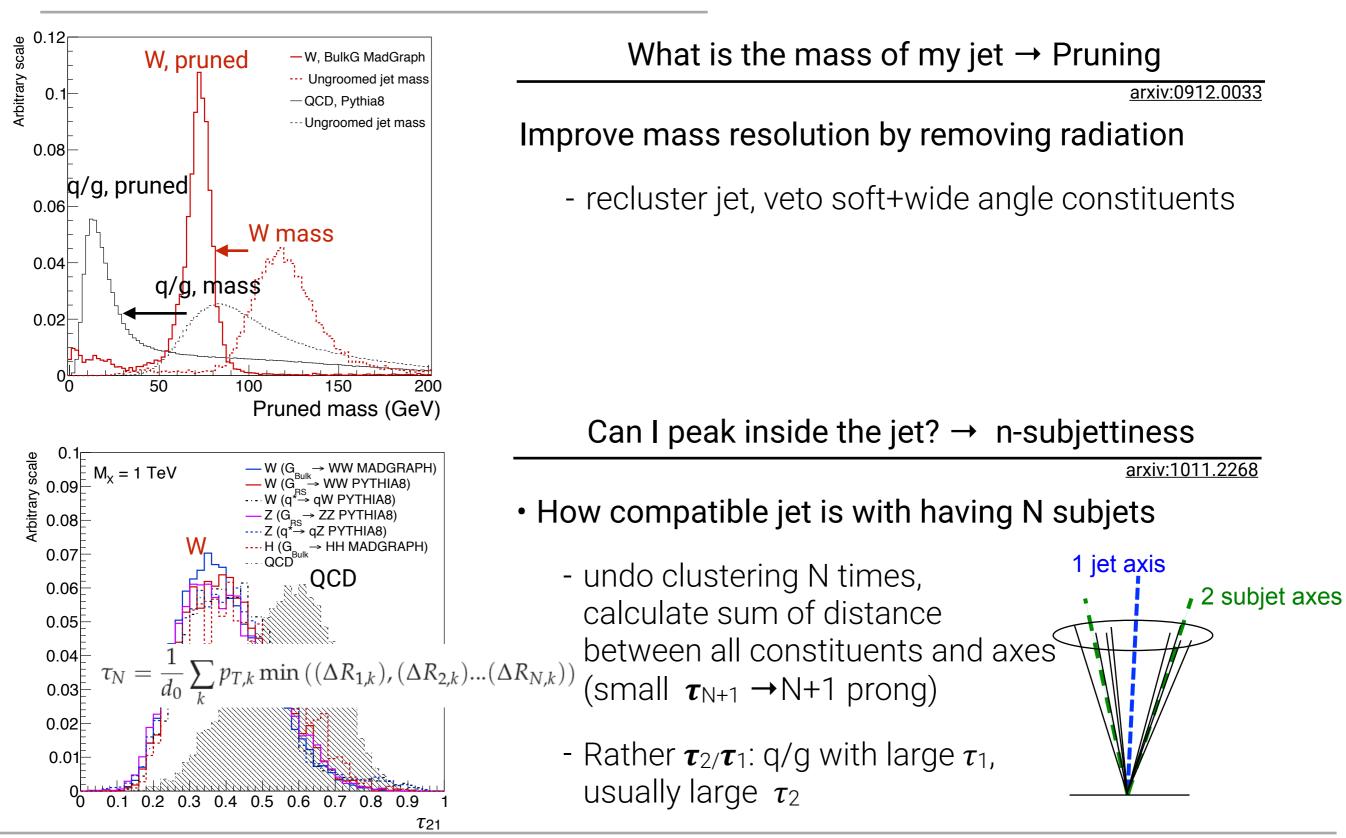
What is the mass of my jet \rightarrow Pruning

arxiv:0912.0033

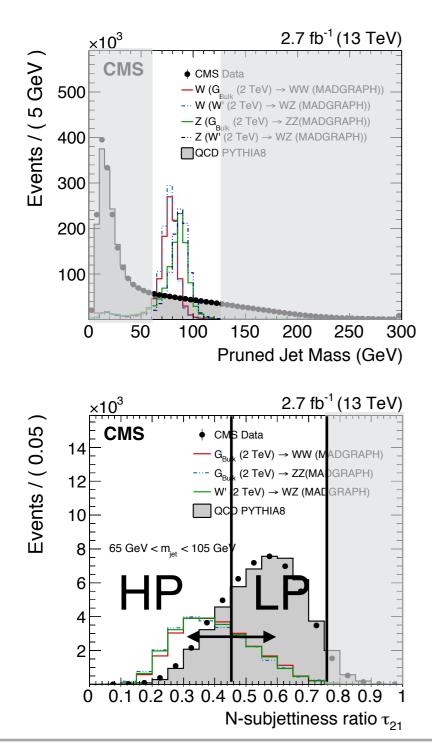
Improve mass resolution by removing radiation

- recluster jet, veto soft+wide angle constituents

Jet substructure techniques



Tagging vector bosons



W/Z-tagging: Pruning + τ_{21}

arxiv:0912.0033

Pruned mass window optimised for best S/B and non-overlap with the Higgs boson

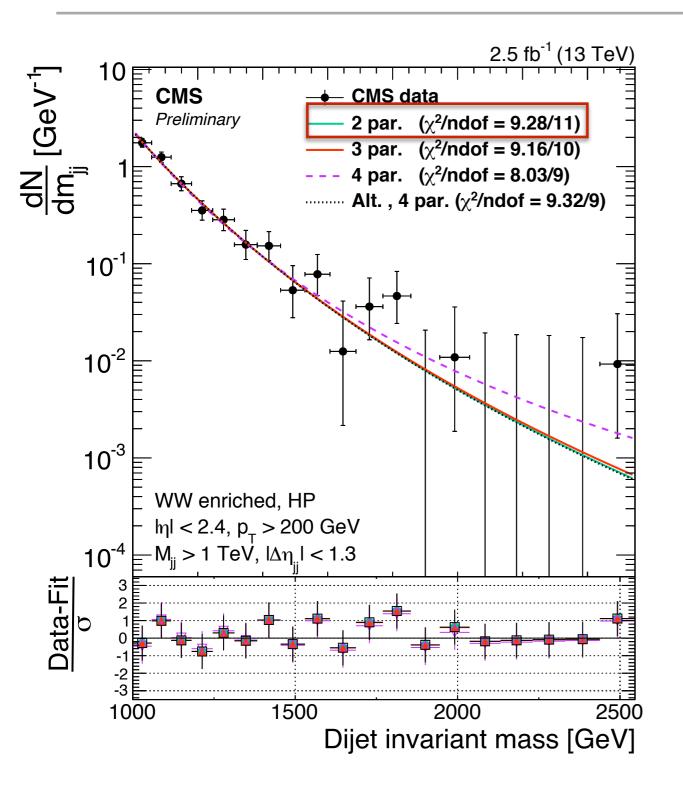
- $65 \text{ GeV} < M_{Pruned} < 105 \text{ GeV}$

W/Z-tagger (pruning+ τ₂₁): ~55% efficiency ~1-2% mistag rate

Two τ_{21} analysis categories:

- High-purity: $\tau_{21} \le 0.45$ (best possible S/B)
- Low-purity: $0.45 < \tau_{21} \le 0.75$ (enhance sensitivity at high M_X where bkg is low)

Background modelling



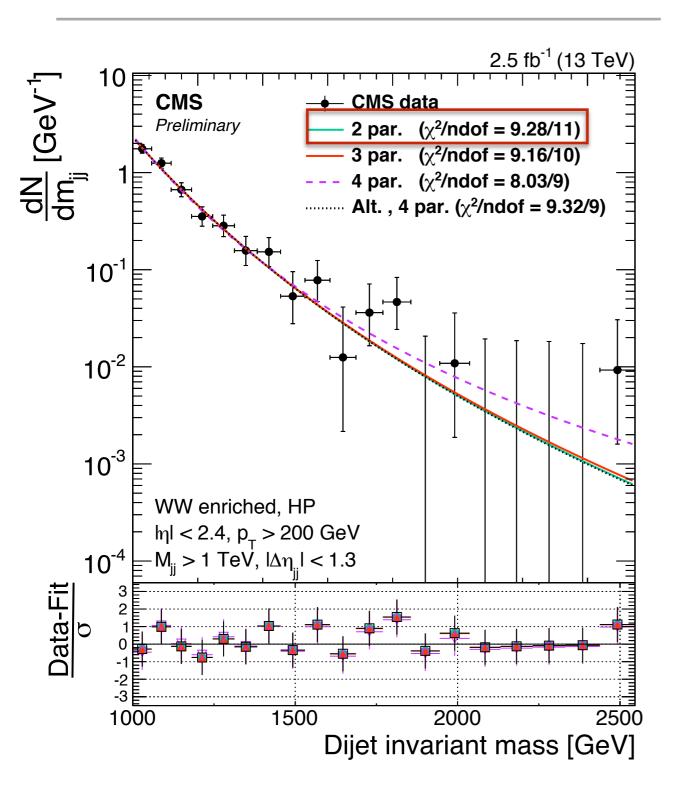
Background assumed to be described by smoothly falling function

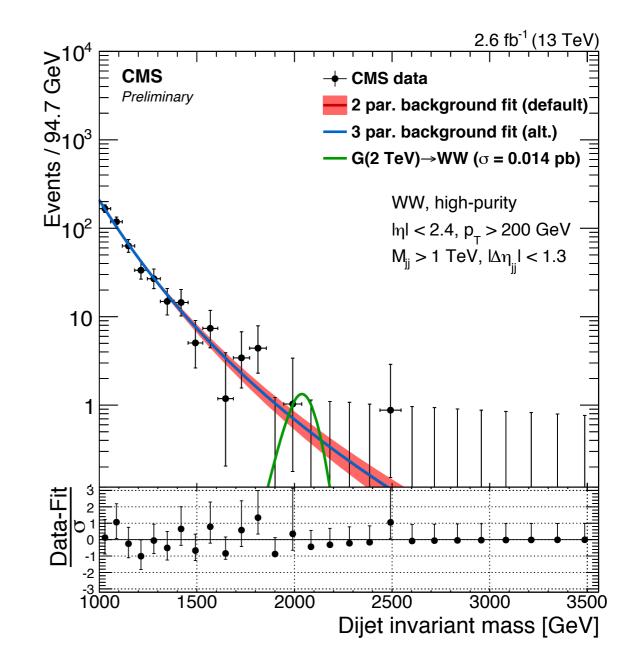
$$\frac{\mathrm{d}\sigma}{\mathrm{d}m} = \frac{P_0(1-m/\sqrt{s})^{P_1}}{(m/\sqrt{s})^{P_2}}$$

Function sufficient to describe background?

- F-test: Increase N parameters until no significant improvement (in data!)

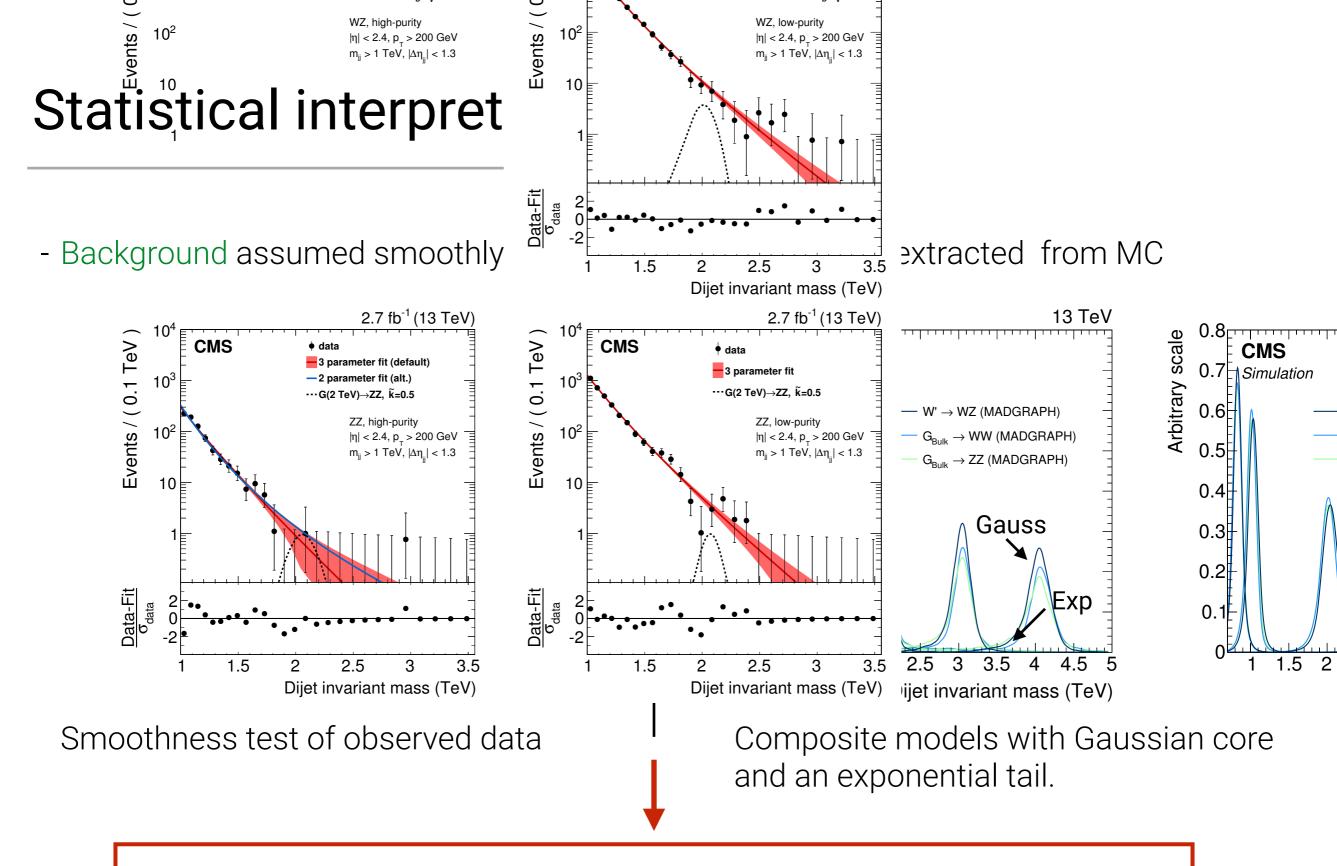
Background modelling





Check that alternate fit functions are within fit uncertainty of nominal fit

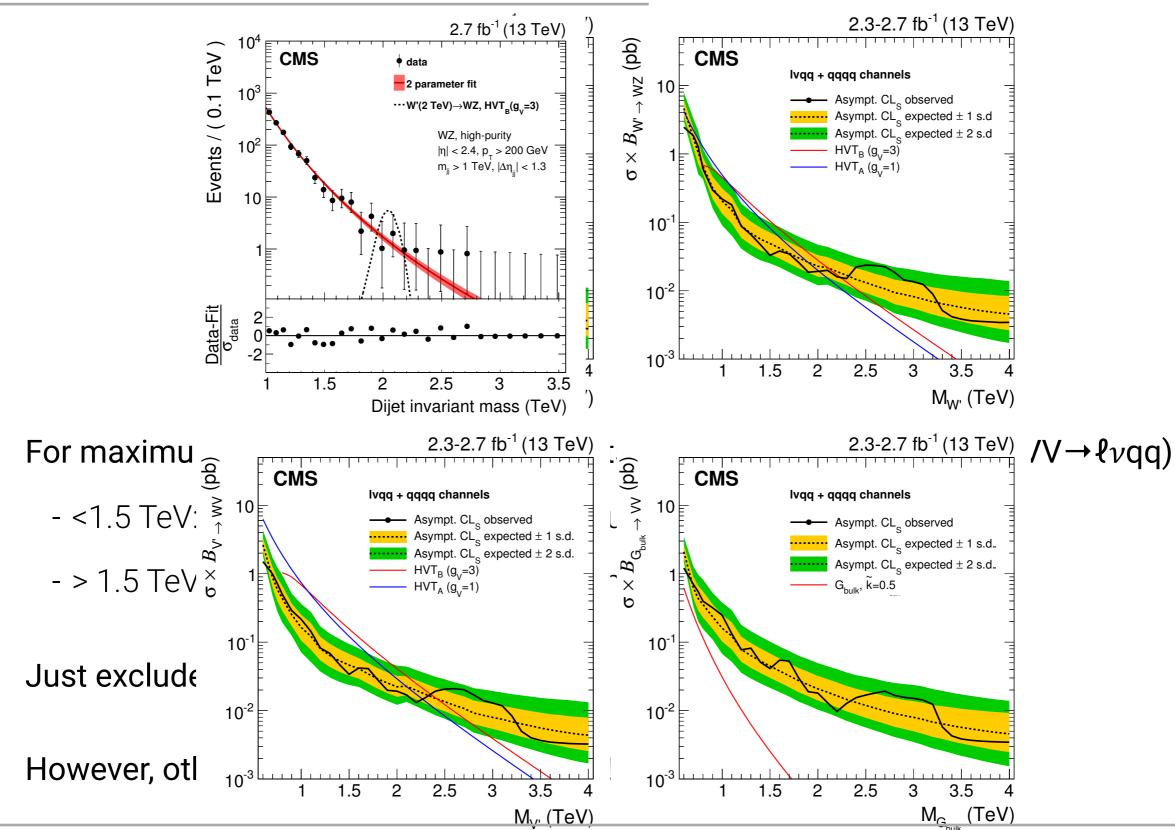
- taken as background PDF uncertainty



Hypothesis test by comparing fits of observed data with "background-only" and "background + signal" function.

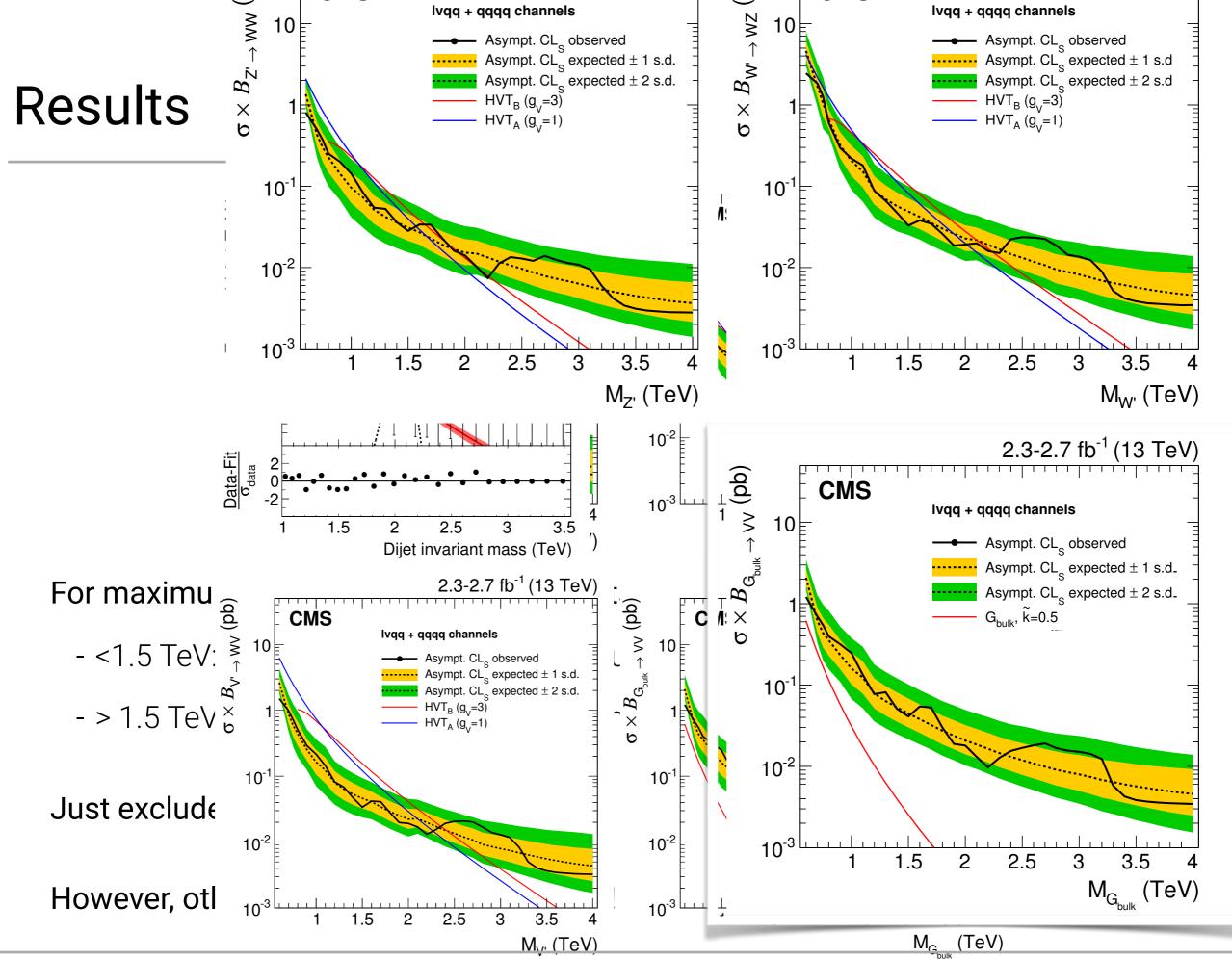
-signal strength and background function parameters left floating

Results



Thea K. Aarrestad

Searching for VV resonances in the boosted dijet final state

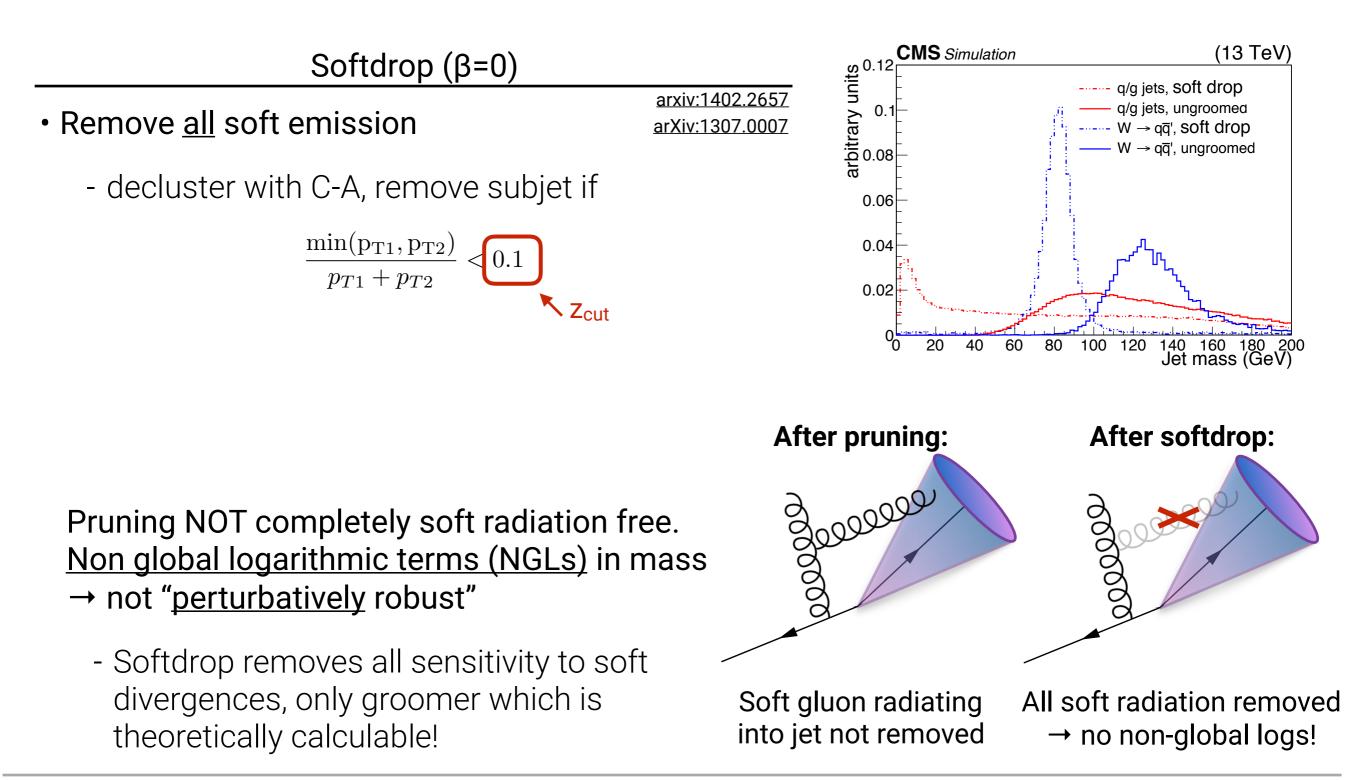


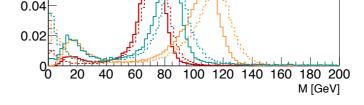
Thea K. Aarrestad

13

Searching for VV resonances in the boosted dijet final state

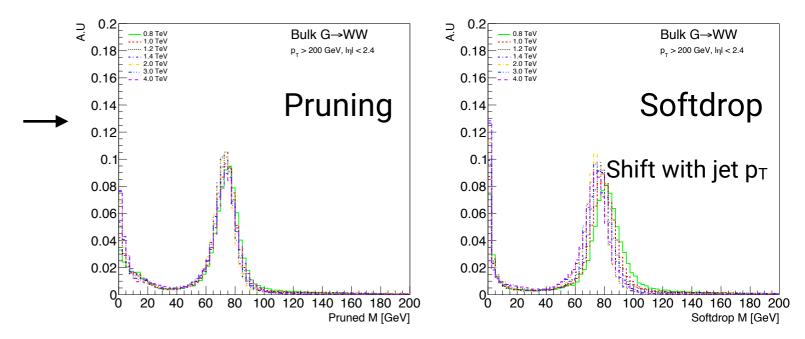
Developments on the theory front:

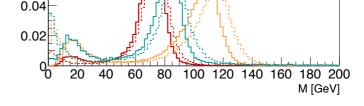




However,

 found softdrop mass for signal jets highly p_T dependent!





However,

- found softdrop mass for signal jets highly p_T dependent!

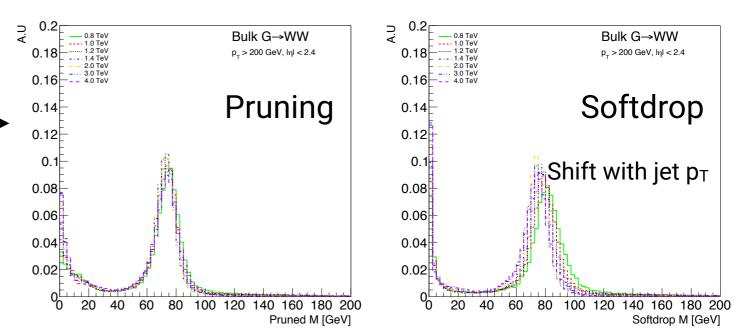
Due to increased sensitive to UE

- softdrop effective radius increases as jet p_⊤decreases

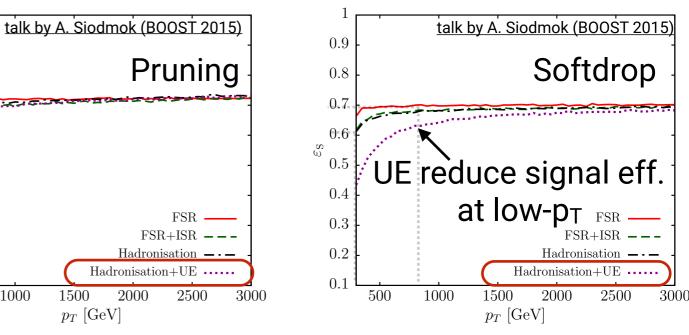
 $\propto m_V/p_T \sqrt{z_{cut}(1-z_{cut})}$

(for pruning, $\propto m_V/p_T$)

- Absorb more radiation at low-pT 0.8



Vector boson tagging efficiency vs. pT (Herwig++)



1000

0.9

0.7

0.6

0.5

0.4

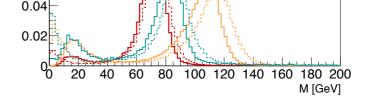
0.3

0.2

0.1

500

 $_{\mathbf{S}}^{\omega}$



However,

- found softdrop mass for signal jets highly p_T dependent!

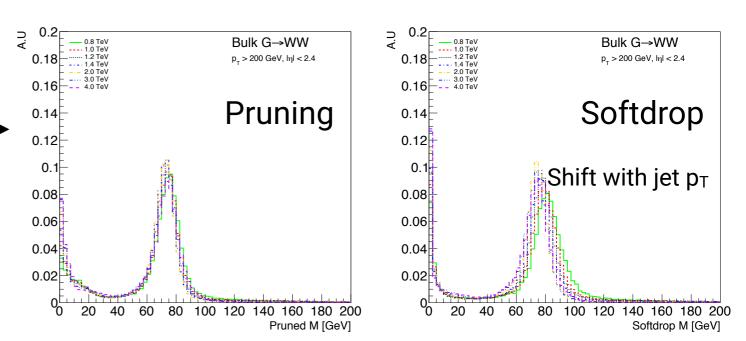
Due to increased sensitive to UE

- softdrop effective radius increases as jet p_⊤decreases

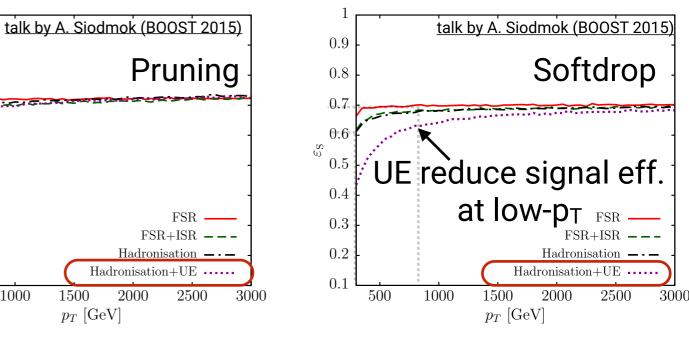
$$\propto m_V/p_T \sqrt{z_{cut}(1-z_{cut})}$$

(for pruning, $\propto m_V/p_T$)

- Absorb more radiation at low-pT 0.8



Vector boson tagging efficiency vs. p_{T (Herwig++)}



1000

1500

 $p_T \, [\text{GeV}]$

0.9

0.7

0.6

0.4

0.3

0.2

0.1

500

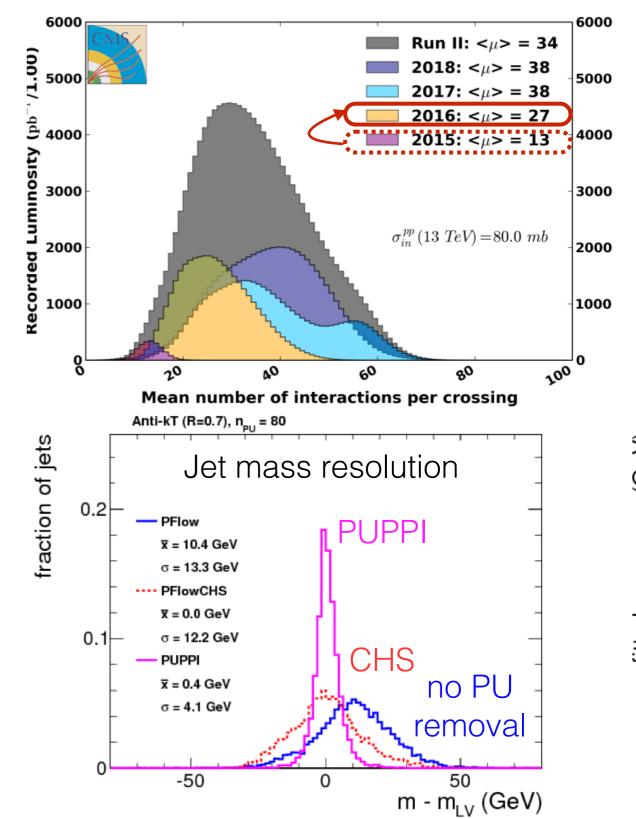
Interlude: PUPPI

Unfortunately, pileup in 2016 expected to be double that of 2015!

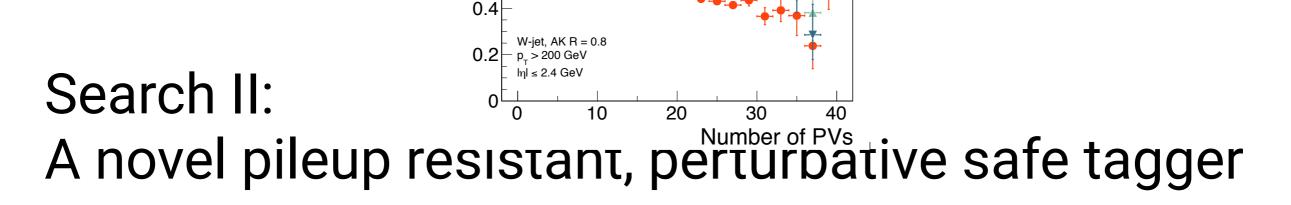
Fortunately, PileUp Per Particle Identification (PUPPI)

- CHS (old): remove charged hadrons not associated with primary vertex
- PUPPI (new): probability for ANY particle (neutral+charged) to be from pileup, reweights each accordingly

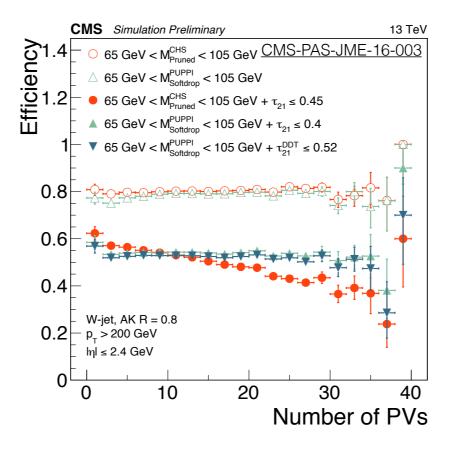
Huge resolution improvement for jet observables in large-cone jets



CMS Average Pileup (pp, \sqrt{s} =13 TeV)



Published in PRD, DOI: 10.1103/PhysRevD.97.072006; CMS-PAS-B2G-16-021; CMS-PAS-JME-16-003



~ First analysis to use the PUPPI+softdrop algorithm; optimizing and commissioning new tagger in the process (now default for W-tagging in CMS). Adding new analysis never before explored at 13 TeV: $q^* \rightarrow qV$. Published with the full 2016 dataset, 35.9 fb⁻¹

Developing a new V-tagger: Softdrop mass corrections

With PUPPI, was softdrop saved?

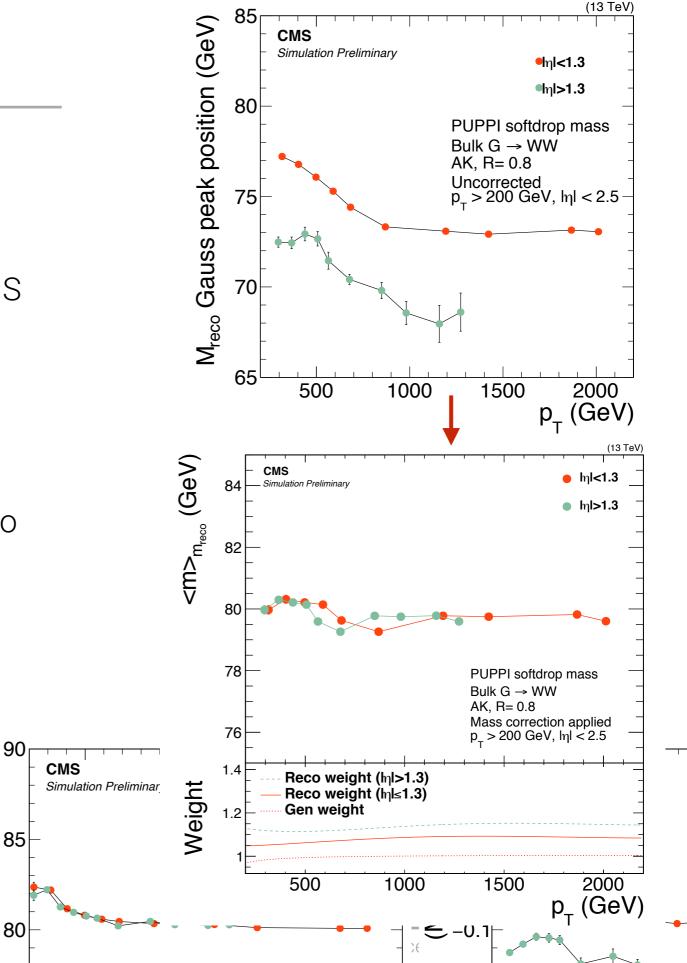
- Better, but still residual pT dependence
- Enhanced when applying standard CMS jet energy corrections

Solution: Compute dedicated PUPPI softdrop jet mass scale corrections

- remove p_T/η -dependence, shift mass to 80 GeV

peak position (GeV)

80

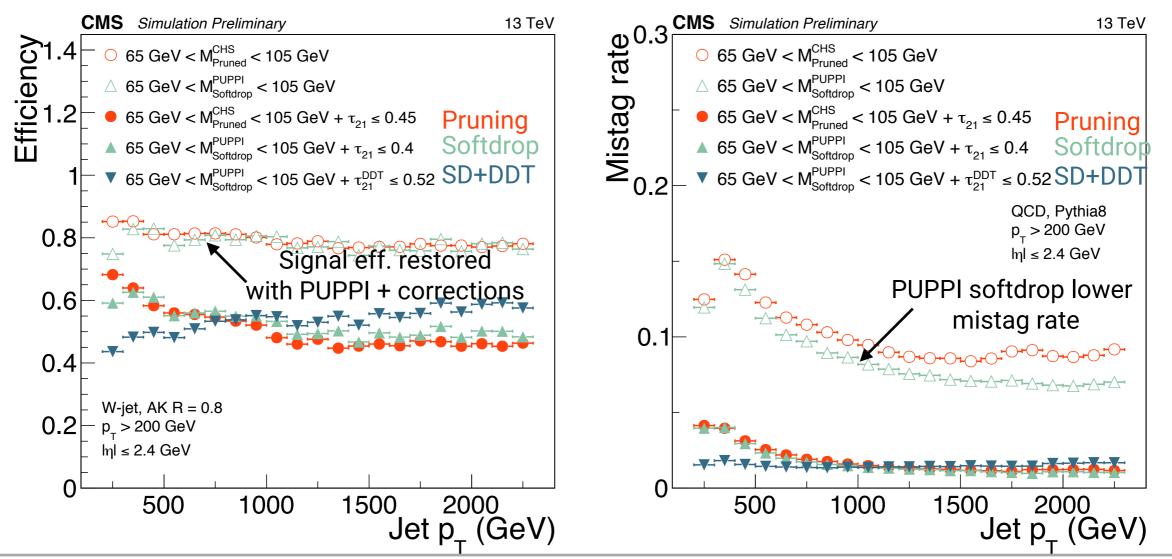


Finally stabile softdrop mass peak

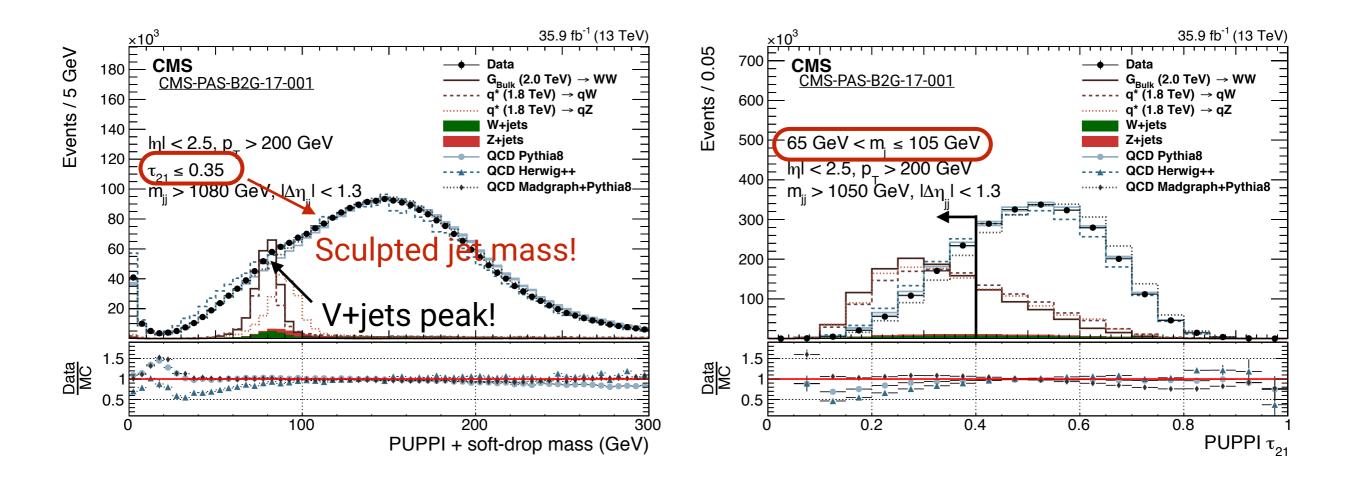
Developing a new V-tagger: Performance

Compare 3 taggers

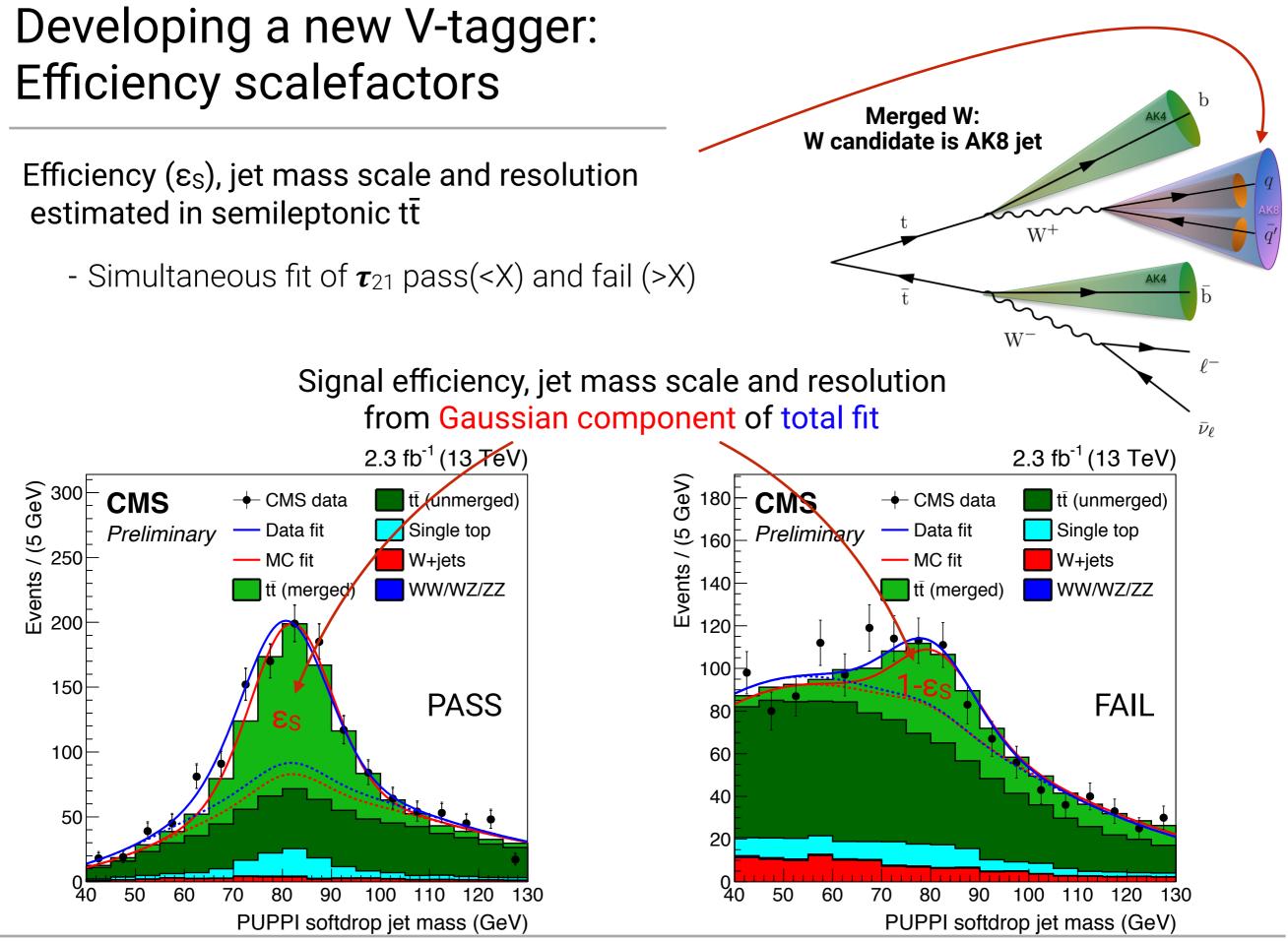
- Pruning + **τ**₂₁
- PUPPI Softdrop + au_{21}
- PUPPI Softdrop + τ_{21}^{DDT} \rightarrow linear transformation of τ_{21} decorrelated from m/p_T



Developing a new V-tagger: Performance in data



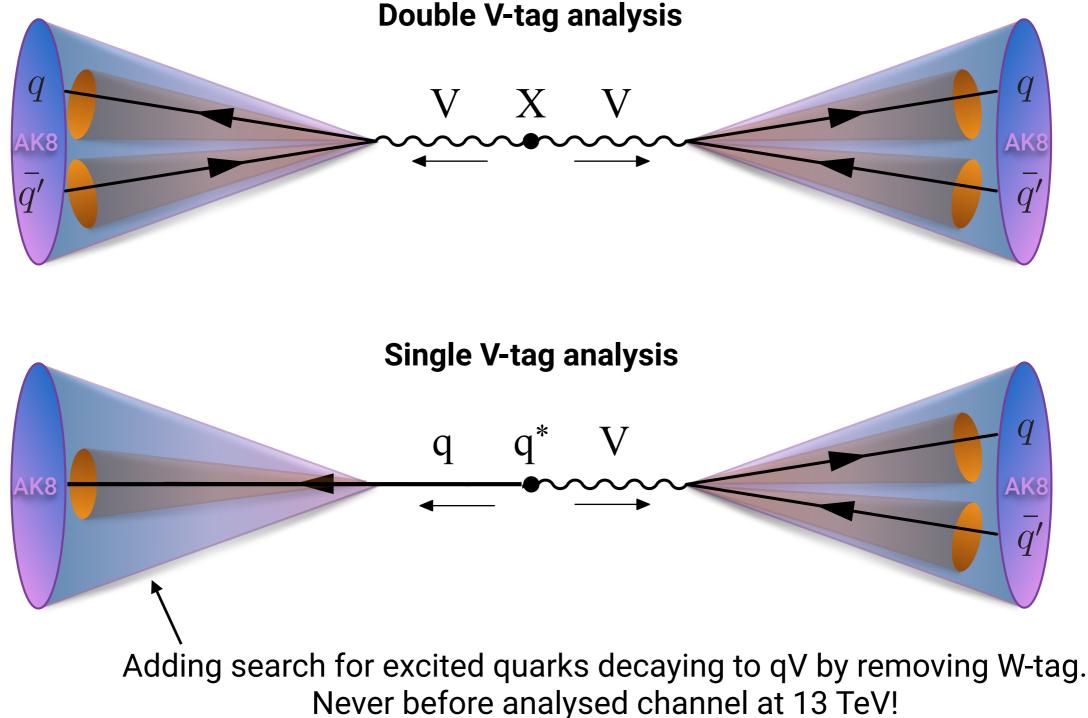
- Substructure variables strong dependence on shower generator
- Need to ensure we know real signal eff. in data from region well described by MC!



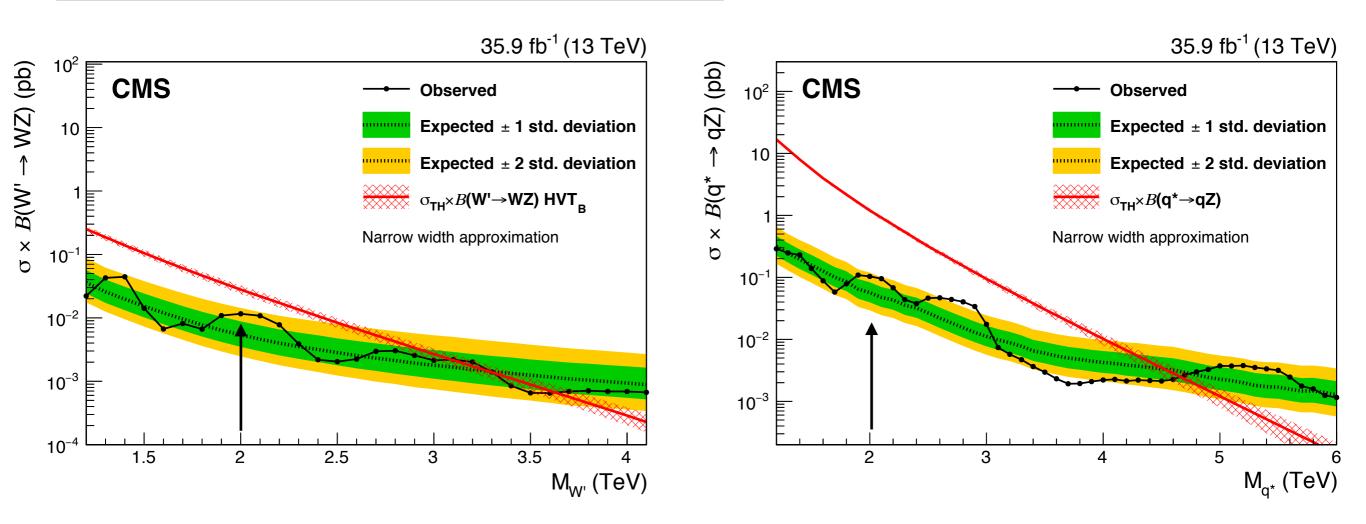
21

we note the fact that for Fig. 6 we have chosen $f_{\text{cut}} = 0.1$ and consider $R_{\text{trim}} = 0.1$. Then the zeroth order result for trimming is simply $1 - 2f_{\text{cut}}$ as for mMDT and pruning, within the p_T Areasysisticategy dent from Figs. 6 and 7 that while the FSR results for mMDT

⁷It is of course possible to use mMDT with a z_{cut} constraint defined as for pruning instead of y_{cut} , as was studied in Ref. [31]. This choice would further enhance the similarity we observe for signal jets and is the defa



Results



Excluding vanilla signal models (BulkG, V', q*), but still see (statistically insignificant) enhancements around 2-3 TeV in qV and VV.

What now?

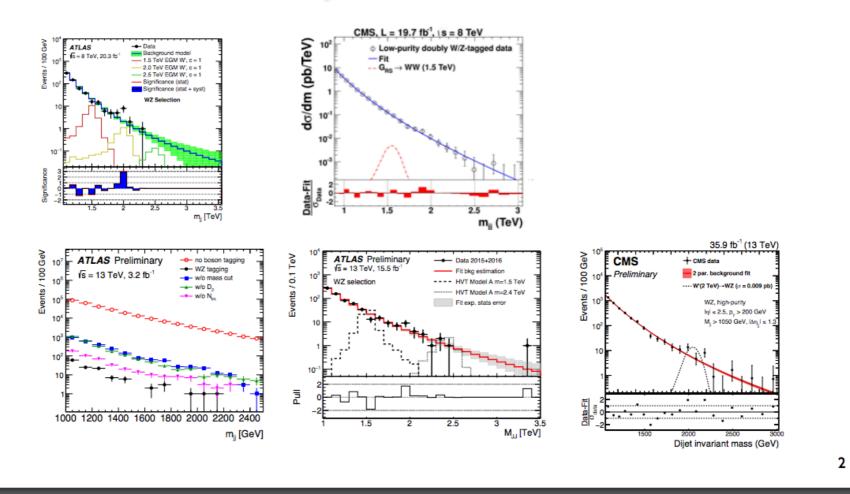
Interlude: Stealth bosons

Slide from J.A Aguilar-Saavedra: <u>"Stealth bosons and where to find them"</u> (BOOST 2018)

Motivation for all this stuff

Several little bumps near 2 TeV in hadronic diboson resonance searches

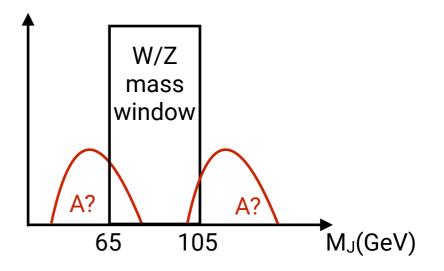
Obviously not diboson — think of something else, more elusive

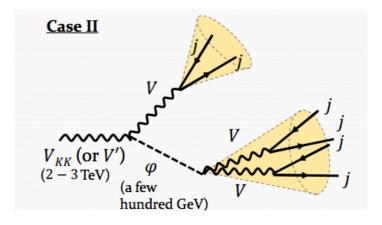


Interlude: Stealth bosons

What if tiny excesses were not due to diboson resonances, but something else

- catching tail of other non-SM boson?
- not necessarily 2-, but N-pronged?

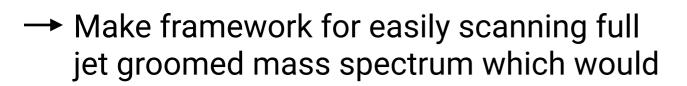




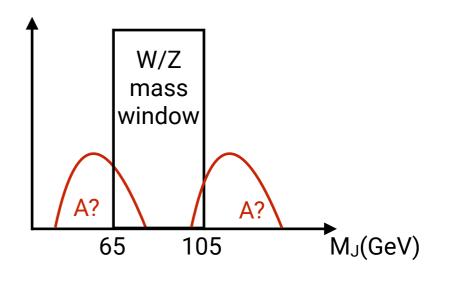
Interlude: Stealth bosons

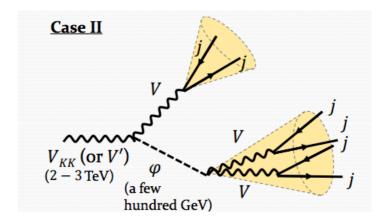
What if tiny excesses were not due to diboson resonances, but something else

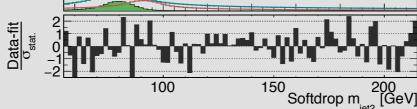
- catching tail of other non-SM boson?
- not necessarily 2-, but N-pronged?



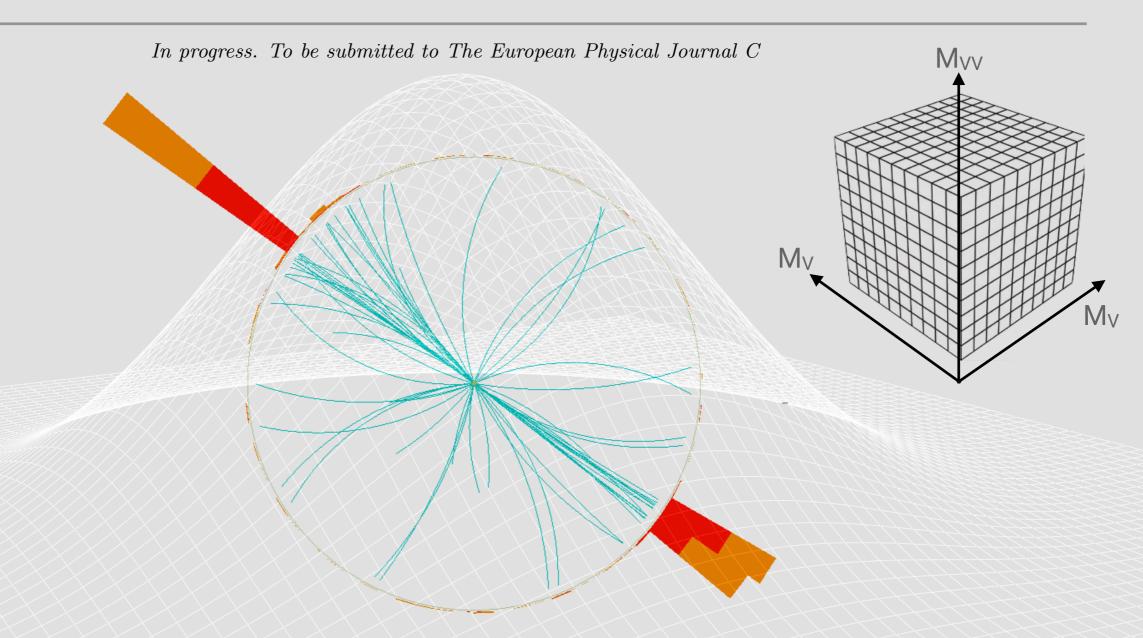
- yields gain in sensitivity for VV analysis
- allow to search for VV/VH/HH and non-SM bosons anywhere in softdrop mass spectrum





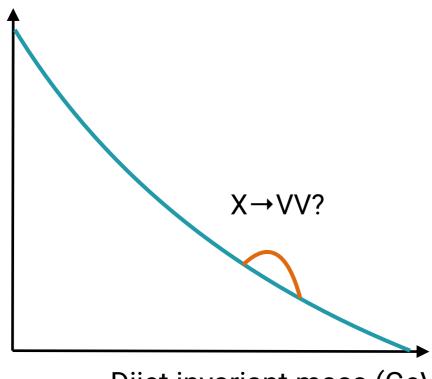


Search III: ¹⁰¹⁵⁰Softdrop m_{je2}²⁰⁰ A novel framework for multi-dimensional searches



~ Paper introducing a novel three-dimensional search method allowing for simultaneously searching for W/Z/H peaks, and eventually non-SM bosons, in the softdrop jet mass spectrum. To be published with full 2016+2017 dataset, ~80 fb⁻¹

Three-dimensional VV

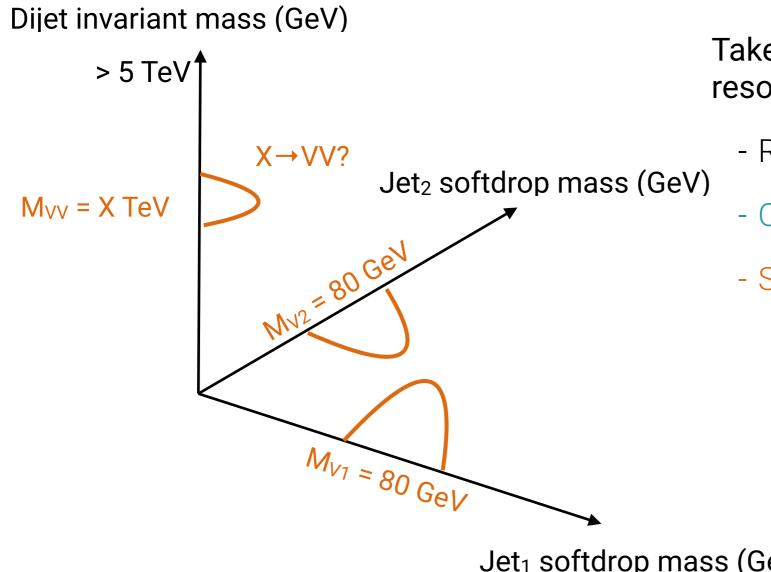


Dijet invariant mass (GeV)

Until now: two AK8 jets with groomed mass between 65-105 GeV and τ_{21} < X

- Region of interest is dijet invariant mass
- QCD background estimated from smooth fit to data signal region using "dijet fit"
- Signal parametrised with double CB

Three-dimensional VV

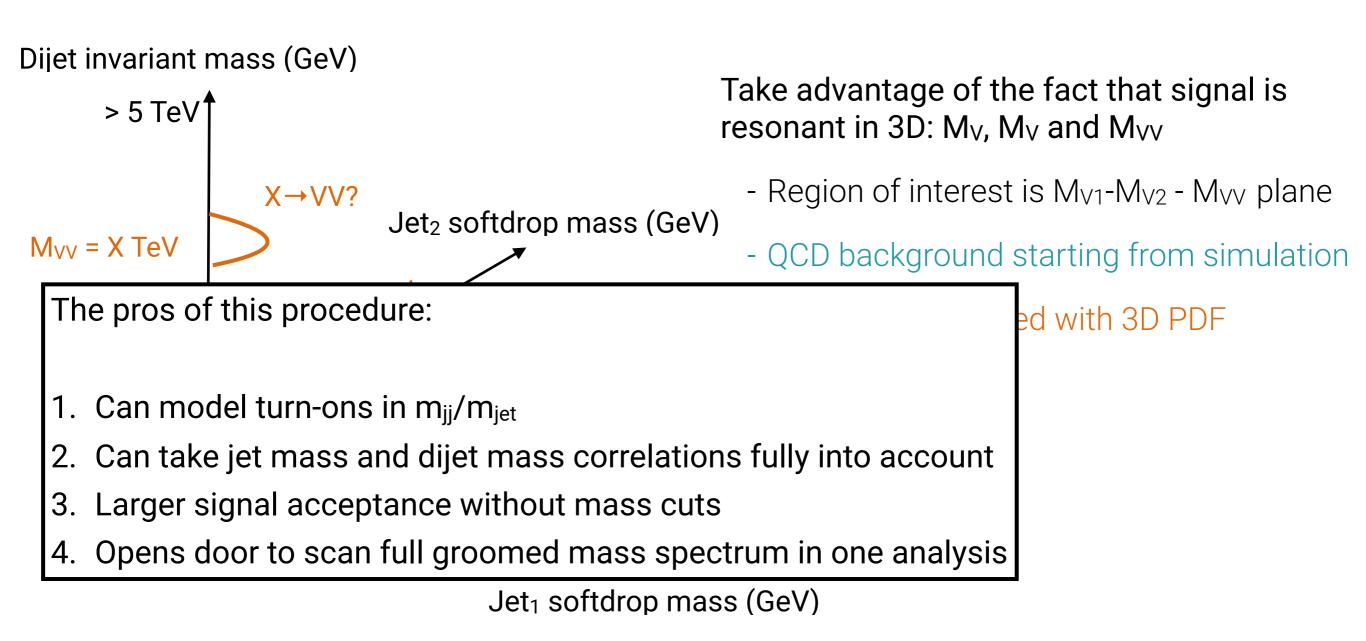


Take advantage of the fact that signal is resonant in 3D: M_V , M_V and M_{VV}

- Region of interest is M_{V1} - M_{V2} M_{VV} plane
- QCD background starting from simulation
- Signal parametrised with 3D PDF

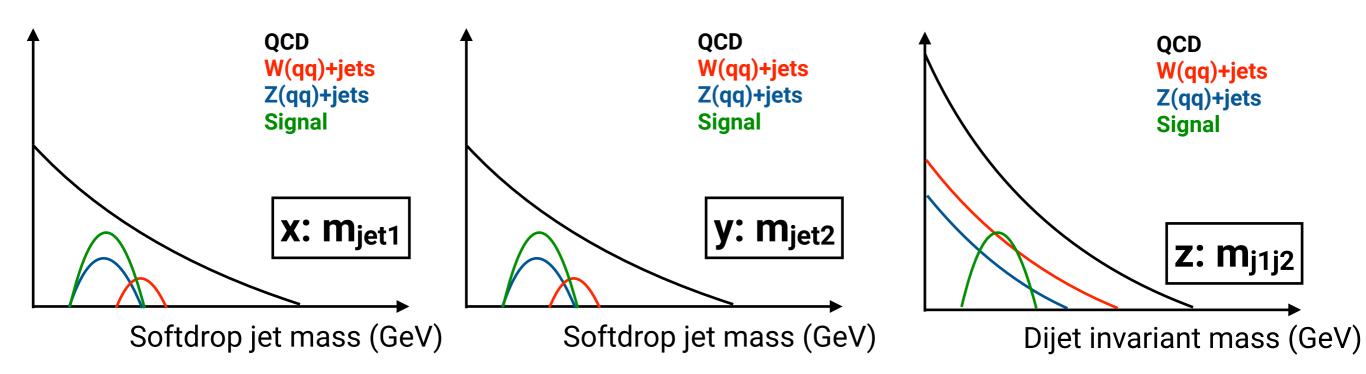
Jet₁ softdrop mass (GeV)

Three-dimensional VV



Building PDFs

4 steps to full model:

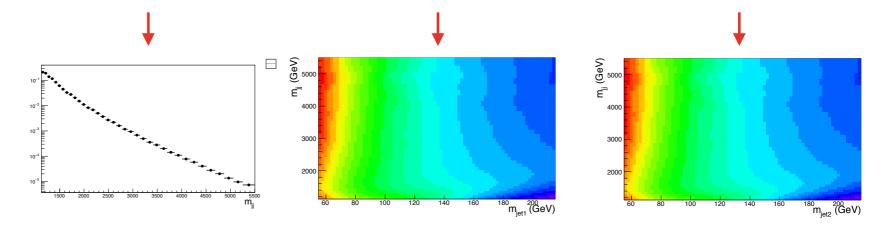


- 1. Signal 3D PDF
 - Resonant in x, y and z
- 2. Background, non-resonant
 - Non-resonant in x, y and z
 - Dominant background

- 3. Background, resonant
 - W/Z+jets, resonant in x+y
- 4. <u>Alternate PDFs</u>
 5 additional shape uncertainties

To account for correlations m_{jet}/m_{jj}, non-resonant background modelled conditionally

 $-P_{non-res}(m_{jj}, m_{jet1}, m_{jet2}) = P_{jj}(m_{jj} \mid \theta_1) \times P_j(m_{jet1} \mid m_{jj}, \theta_2) \times P_j(m_{jet2} \mid m_{jj}, \theta_2)$

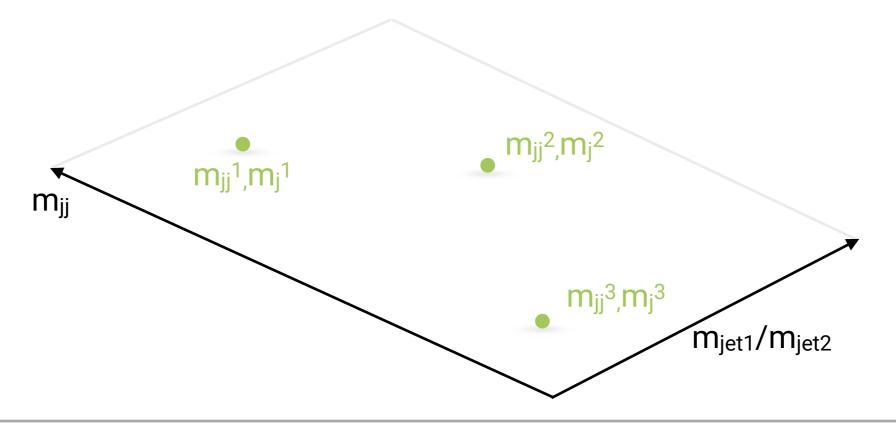


To account for correlations m_{jet}/m_{jj}, non-resonant background modelled conditionally

 $-P_{non-res}(m_{jj}, m_{jet1}, m_{jet2}) = P_{jj}(m_{jj} | \theta_1) \times P_j(m_{jet1} | m_{jj}, \theta_2) \times P_j(m_{jet2} | m_{jj}, \theta_2)$

250k bins, need to ensure smooth and full shape \rightarrow kernel approach

- rather than filling 1D/2D histogram with m_{jet}, m_{jet}/m_{jj} (sparse), let each event contribute 1D/2D gaussian kernel defined through generator level quantities

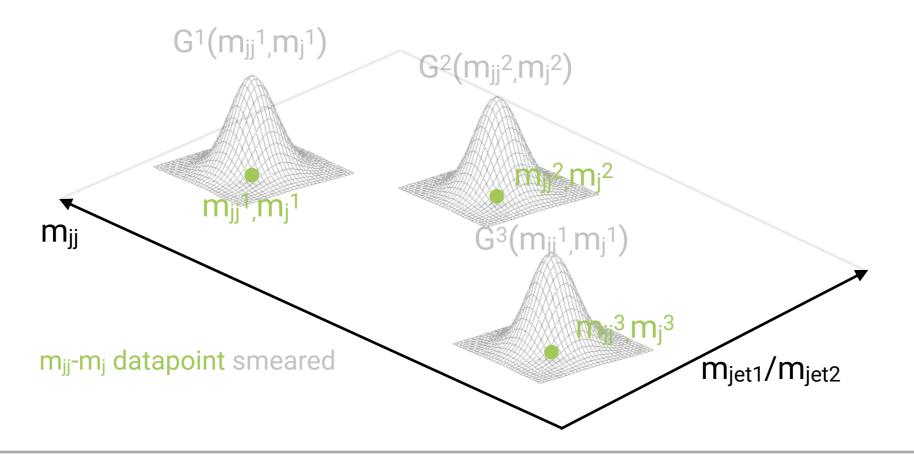


To account for correlations m_{jet}/m_{jj}, non-resonant background modelled conditionally

 $-P_{non-res}(m_{jj}, m_{jet1}, m_{jet2}) = P_{jj}(m_{jj} | \theta_1) \times P_j(m_{jet1} | m_{jj}, \theta_2) \times P_j(m_{jet2} | m_{jj}, \theta_2)$

250k bins, need to ensure smooth and full shape \rightarrow kernel approach

- rather than filling 1D/2D histogram with m_{jet}, m_{jet}/m_{jj} (sparse), let each event contribute 1D/2D gaussian kernel defined through generator level quantities

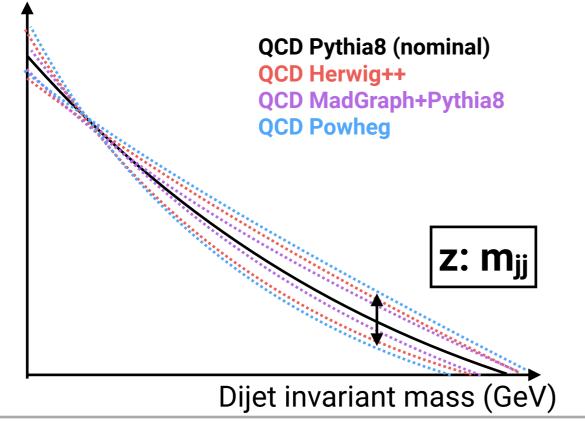


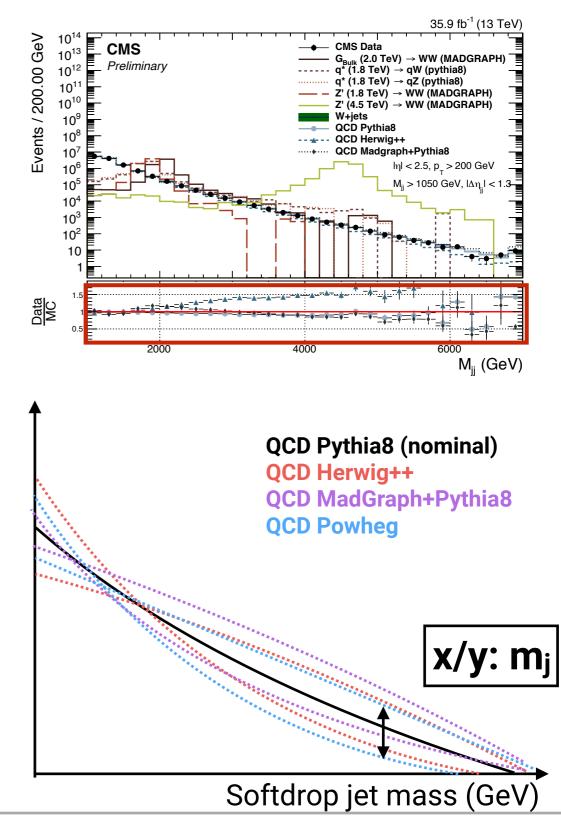
Is Nature Herwig++, MadGraph or Pythia? LO(Pythia) or NLO (Powheg)?

- predictions disagree, let's allow it to be all!

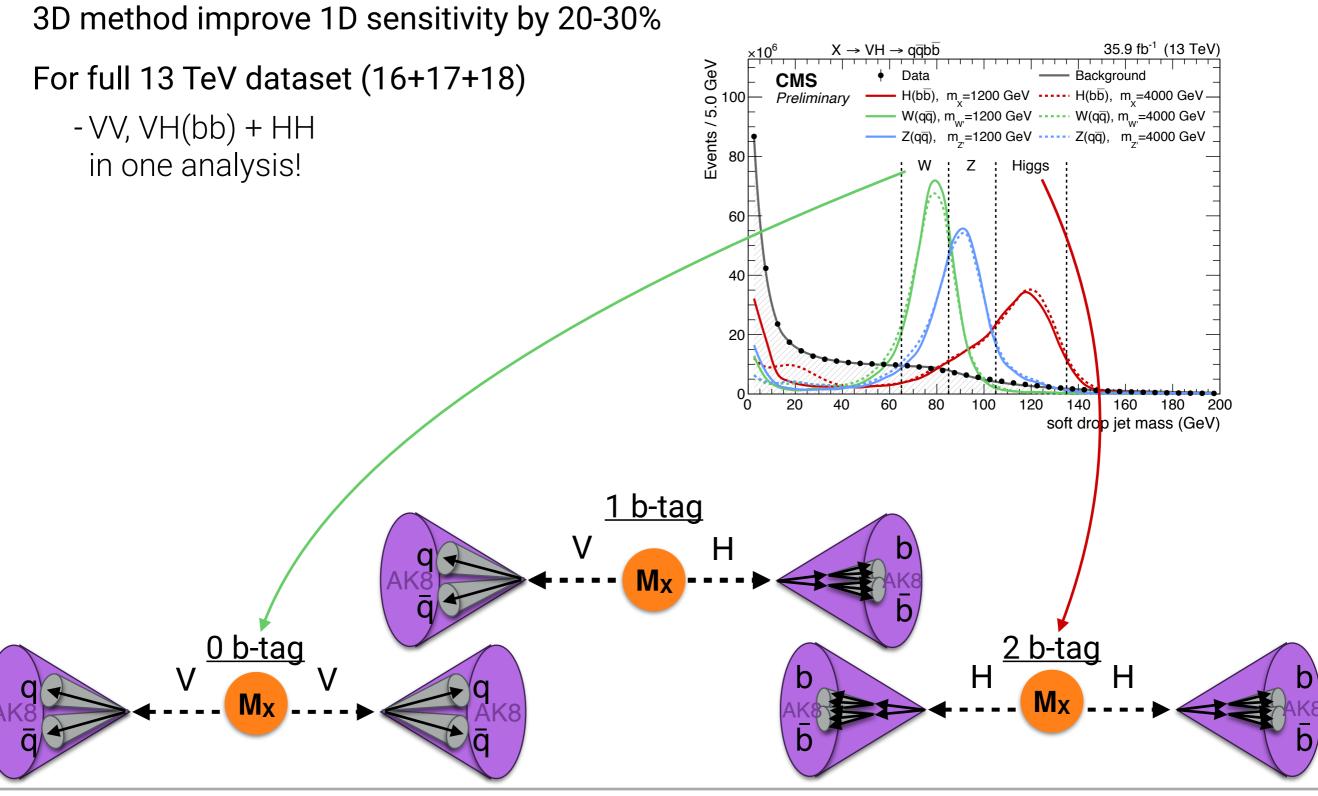
Add alternate shapes based on different QCD MC, simultaneously affecting m_{j1} , m_{j2} , m_{jj}

- PDF can take any shape to match data!





Plan forward



And tribosons?

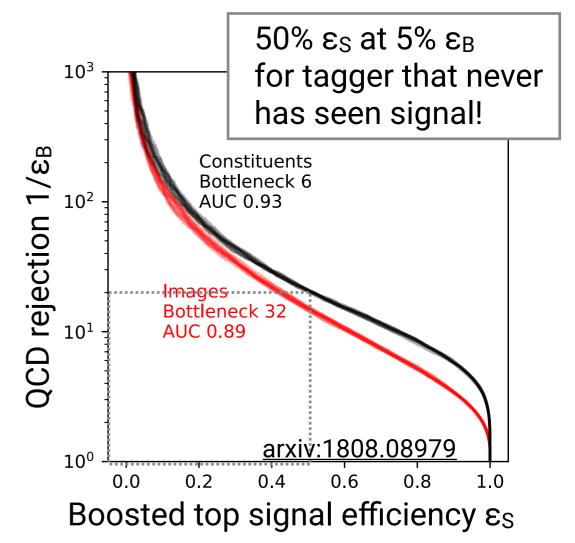
Do we still need to "scan" τ_N for N-prong signals?

No! Switch from τ_{21} to generic anti-QCD tagger

- Deep Neural Networks trained to learn how "QCD-like" event is [1] [2]
- identify signal without having seen it, ideal for model independent searches

Combined with 3D fit, one background model for <u>any</u> signal peaking in softdrop+dijet mass

- truly scanning the full m_{j1} - m_{j2} - $m_{j1,j2}$ plane!

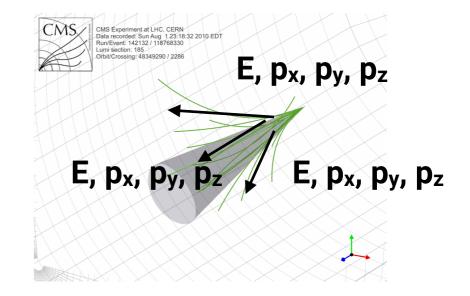


LoLa: DNN for W-tagging

Physics based deep neural network (first introduced for <u>top tagging</u>)

 look at jet constituent 4-vectors only and teach network Minkowski space and jet clustering $\begin{array}{c} q \\ \hline q \\ \hline q' \\ \hline q' \\ \hline See more here \\ \hline here \\ \hline \end{array}$

Input: 4-vectors of N = 20 highest p⊤ jet constituents of AK8 jets



LoLa: DNN for W-tagging

See more <u>here</u>

4 layer deep neural network, 2 custom layers:

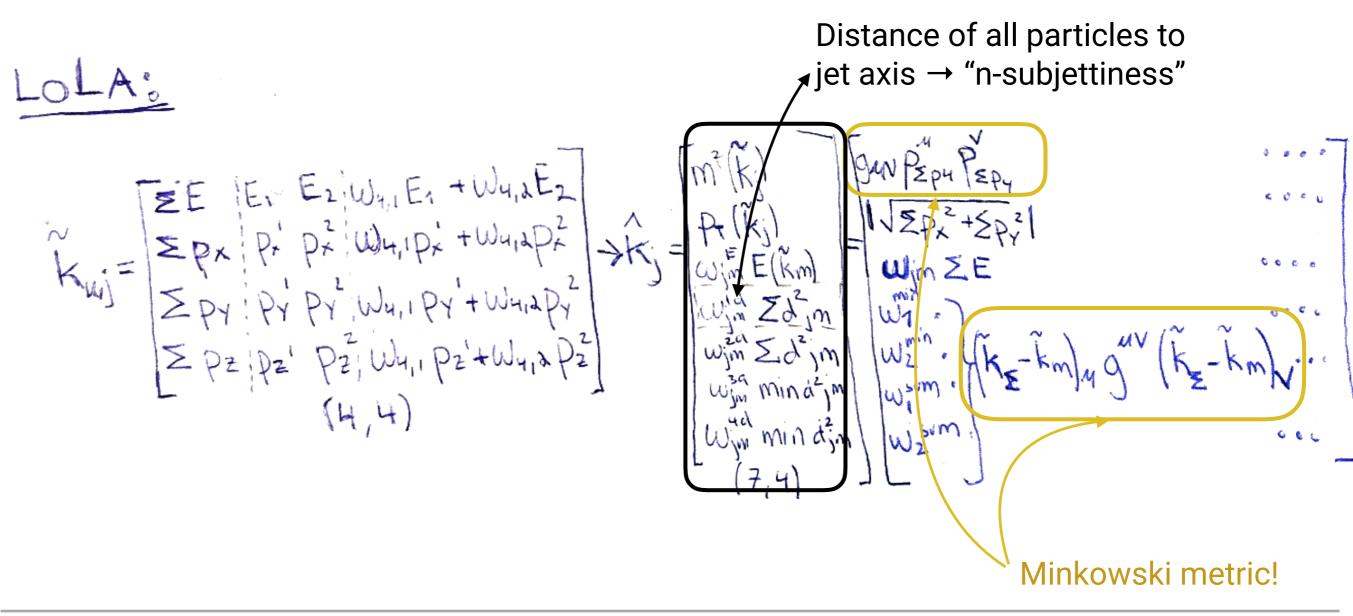
- Combination Layer (CoLa)
- Lorentz Layer (LoLa) MAID 4 4, Cis E2 E2 62 WH, IP2 M=4 4,2) ΣE Pч linear combinations 4,2) ΣPK of momenta <u>Combination layer(CoLa):</u> Z PY Sum of all momenta Σpz Each original momentum Linear combination of particles • with trainable weights

LoLa: DNN for W-tagging

See more <u>here</u>

4 layer deep neural network, 2 custom layers:

- Combination Layer (CoLa)
- Lorentz Layer (LoLa)



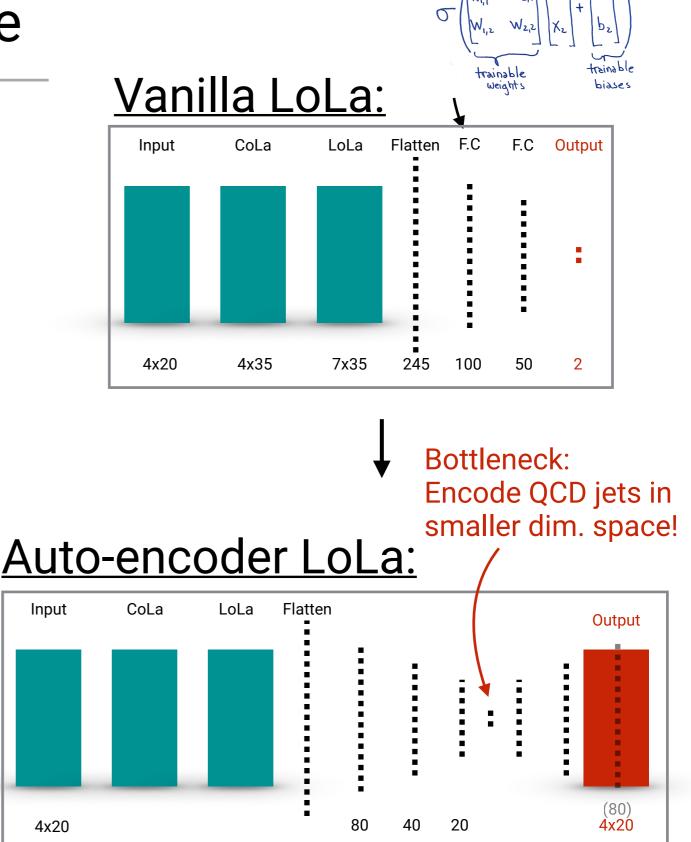
Encoding jet substructure

LoLa output is Prob(QCD) and Prob(W), trained with QCD and W signal

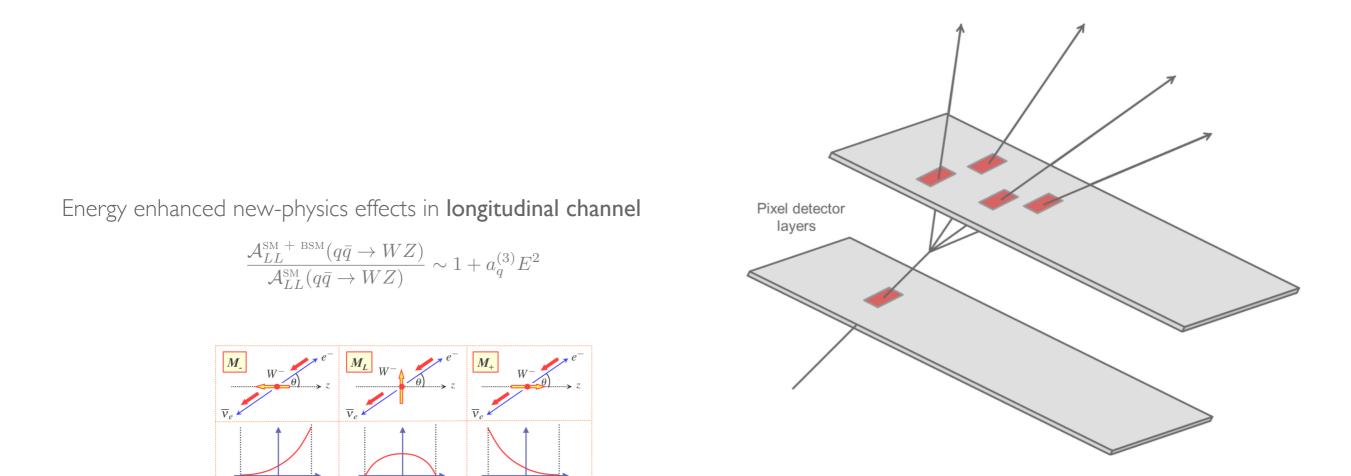
Instead, train DNN to reconstruct QCD jet constituent 4-vectors by itself

- compress LoLa output to smaller dimensional space, "encode QCD", then make DNN blow up to 4-vectors again
- Novel anti-QCD tagger based on LoLa demonstrated <u>here</u>: Auto-encoding jet substructure!

Hope to see auto-encoder LoLa for boosted generic searches in near future!



Outlook and ideas: Ultra-high boosts and precision measurements



~As we push limits on BSM to higher and higher resonance masses, need to think of new methods and analyses: How do we deal with b-tagging at extreme p_T, and how can we access BSM signals with increasingly small cross sections and/or high masses?

 $\frac{1}{4}(1+\cos\theta)^2$

 $\frac{1}{2}\sin^2\theta$

 $\frac{1}{4}(1-\cos\theta)^2$

b-tagging with hits

High-p_T b-quarks can traverse pixel L1 before decaying (in CMS, $p_{T,B}$ >330 GeV)

- tracking fails, drop in b-tagging efficiency

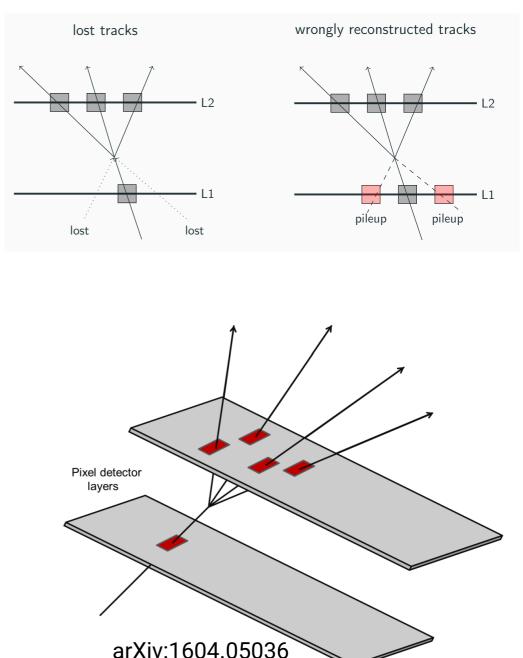
To ensure high b-tag efficiency at HL-LHC

- tag high-p_T B hadrons based on increase in hit multiplicity in pixel layers using DNN

~60% gain in efficiency (112% > 1.2 TeV) (with <u>M. Sommerhalder, Bachelor Student</u>)

Simple! Could be used on hardware at trigger level (eg DNN of FPGAs)?

Efficiency loss for track reco due to missing inner hits!



WZ production

WW scattering: W_T vs. W_L

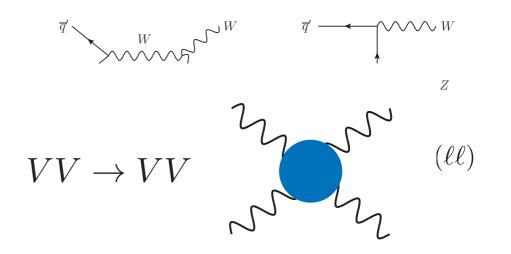
What if we cant directly produce resonances and/or σ_{BSM} small, cannot directly detect?

 \rightarrow Precision measurements! BSM interference in $2 \rightarrow 2$ VV scattering!

At E>>m_V, New Physics mainly couples to longitudinally polarised W_L

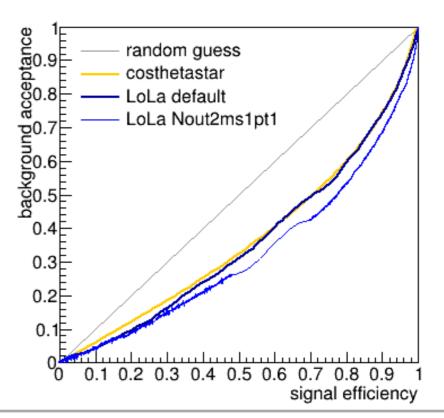
- 90% of SM is W_T, irreducible background!
- important to discriminate W_T and W_L at HL LHC (see <u>G.Panicos talk</u>, <u>Riva et. Al</u>)

Train LoLa to discriminate between W_T and W_L jets (w. <u>J. Boer, CERN Summer Student</u>)



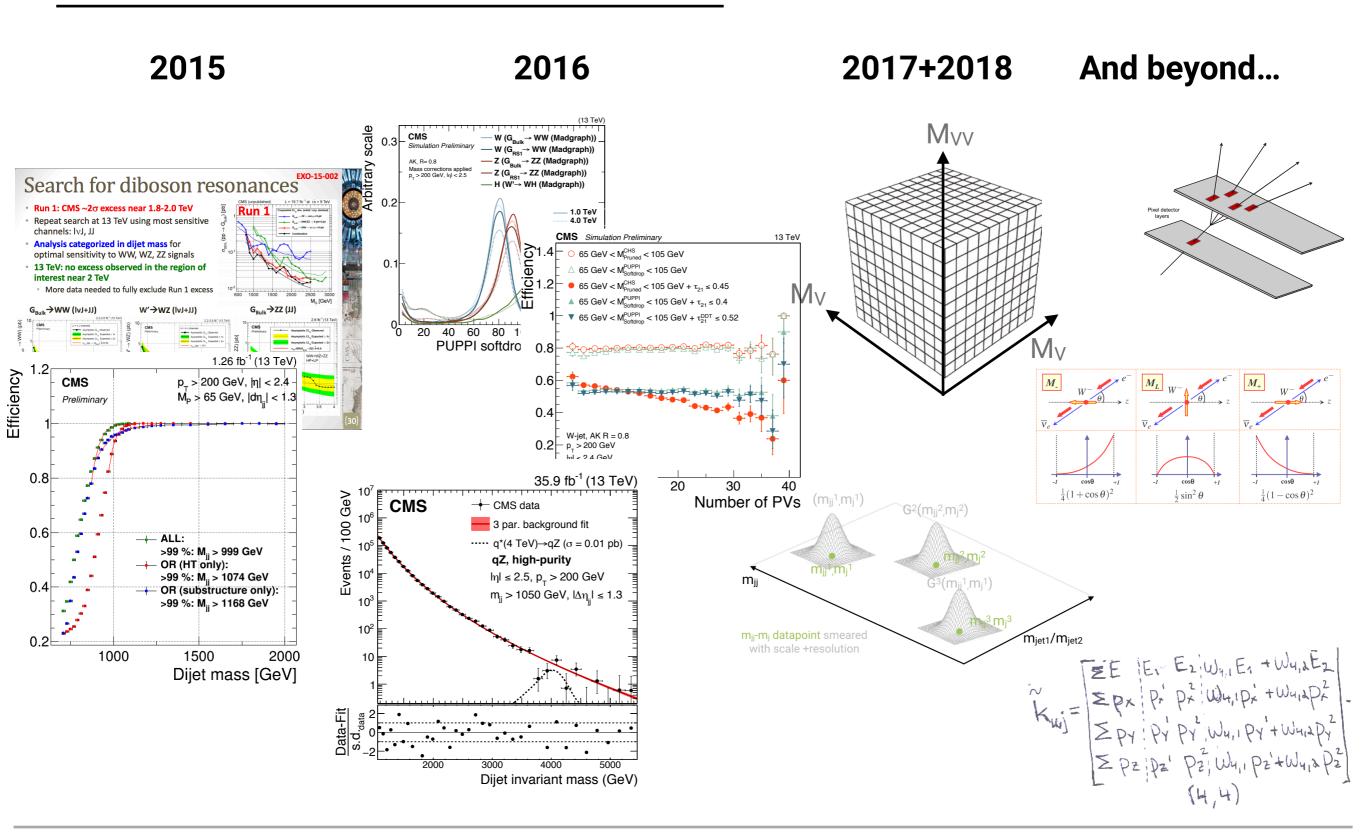
Energy enhanced new-physics effects in **longitudinal channel**

$$\frac{\mathcal{A}_{LL}^{\rm SM\,+\,BSM}(q\bar{q}\rightarrow WZ)}{\mathcal{A}_{LL}^{\rm SM}(q\bar{q}\rightarrow WZ)}\sim 1+a_q^{(3)}E^2$$



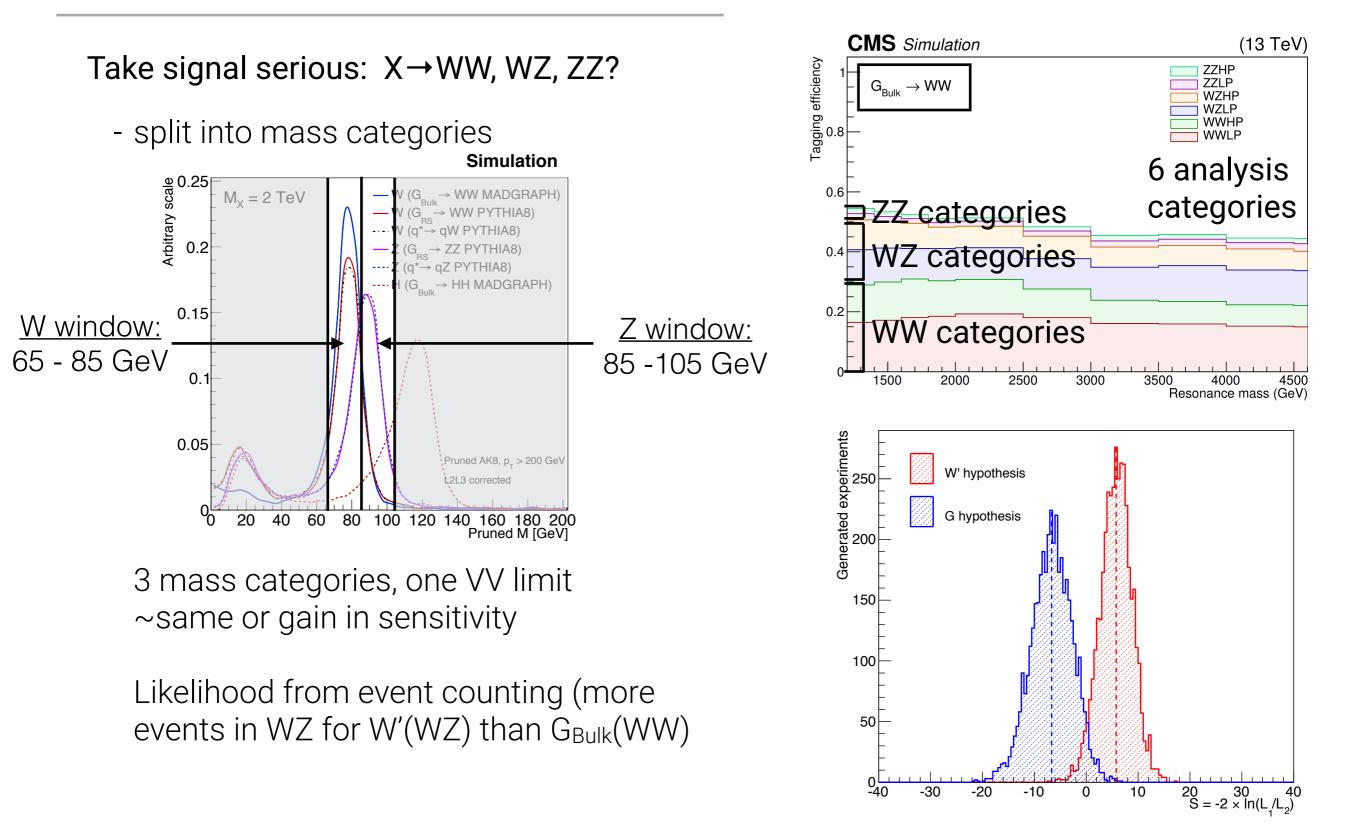
39

Summary and outlook



Backup

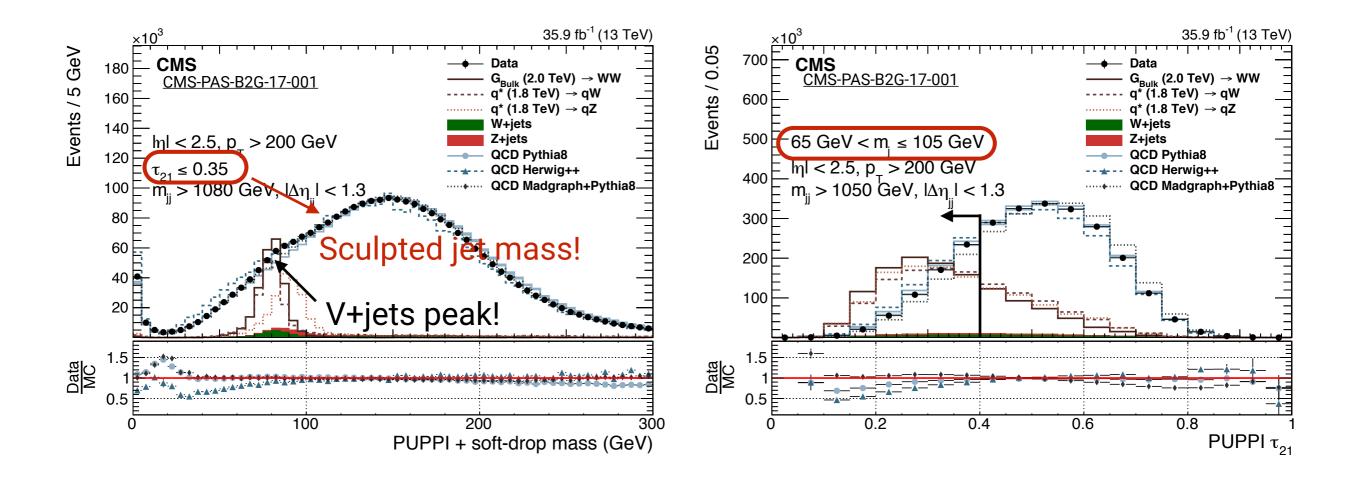
Enhancing sensitivity



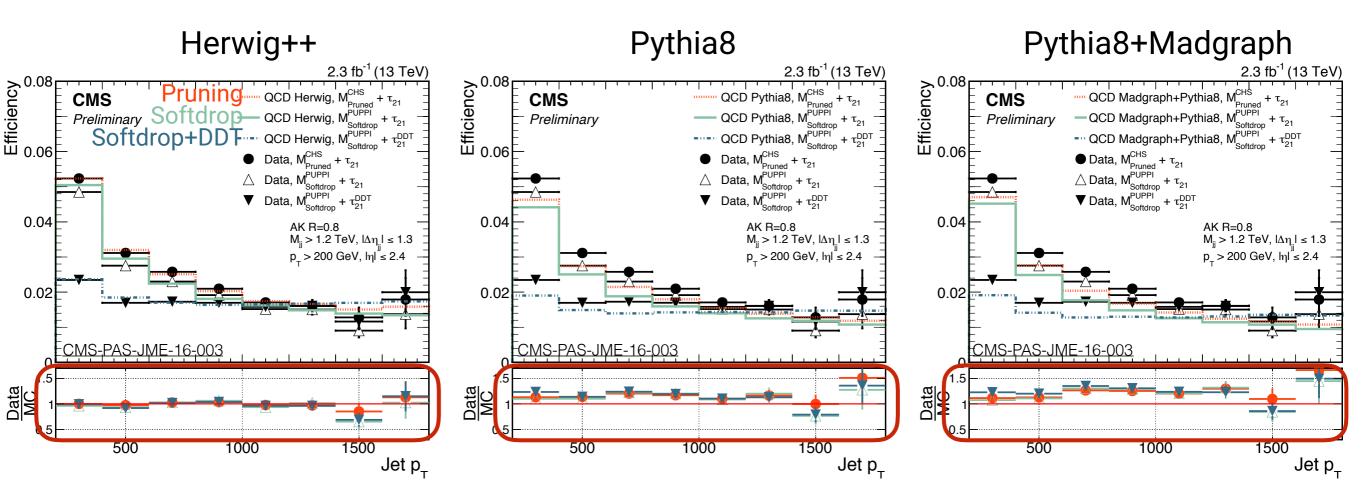
Systematics 2015

Source	Relevant quantity	HP uncertainty $(\%)$	LP uncertainty (%)
Jet energy scale	Resonance shape	2	2
Jet energy resolution	Resonance shape	10	10
Jet energy and m_{jet} scale	Signal yield	0.1–4	
Jet energy and m_{jet} resolution	Signal yield	0.1 - 1.4	
Pileup	Signal yield	2	
Integrated luminosity	Signal yield	2	
PDFs (W')	Signal yield	4-19	
PDFs (Z')	Signal yield	4-13	
$PDFs (G_{bulk})$	Signal yield	9-77	
Scales (W')	Signal yield	1-14	
Scales (Z')	Signal yield	1-13	
Scales (G_{bulk})	Signal yield	8-22	
Jet energy and m_{jet} scale	Migration	1-50	
V tagging τ_{21}	Migration	14	21
V tagging $p_{\rm T}$ -dependence	Migration	7-14	5-11

Developing a new V-tagger: Performance in data

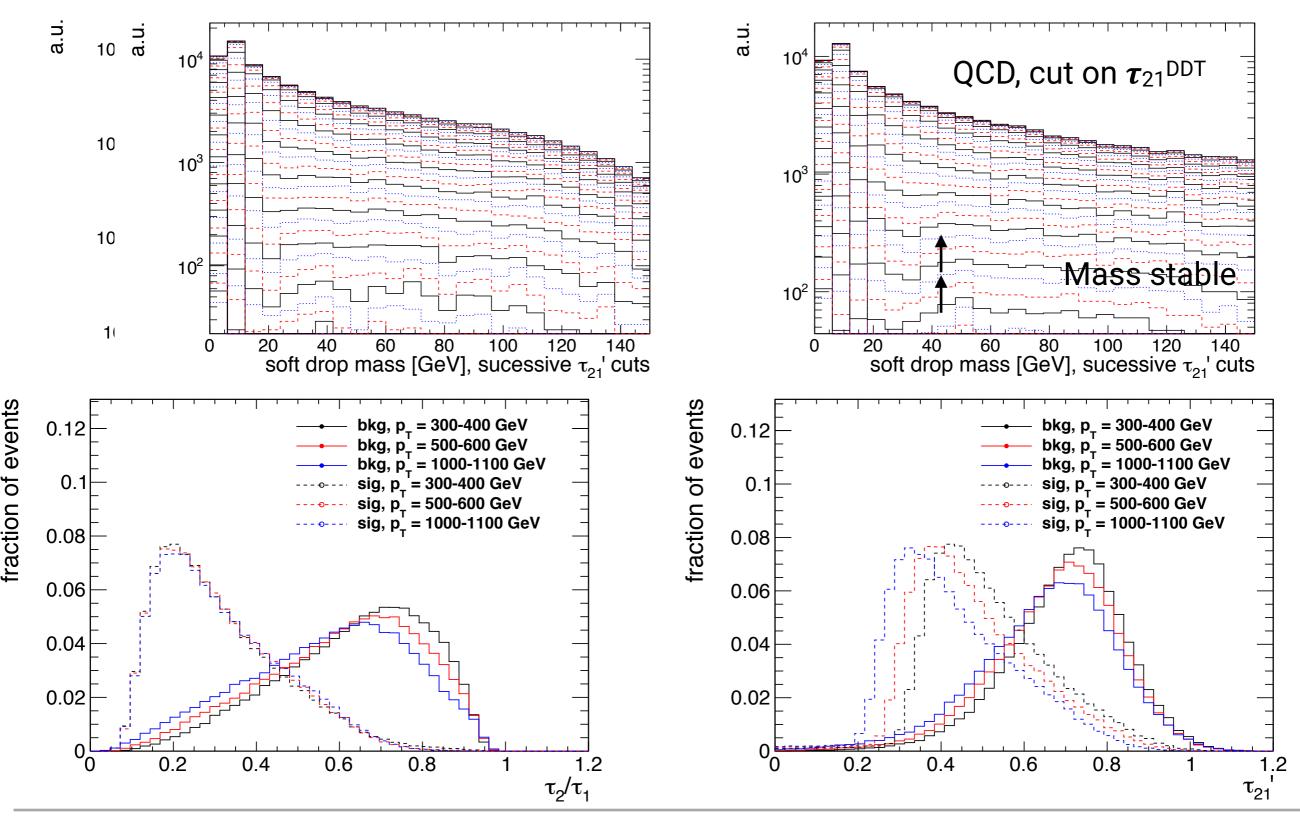


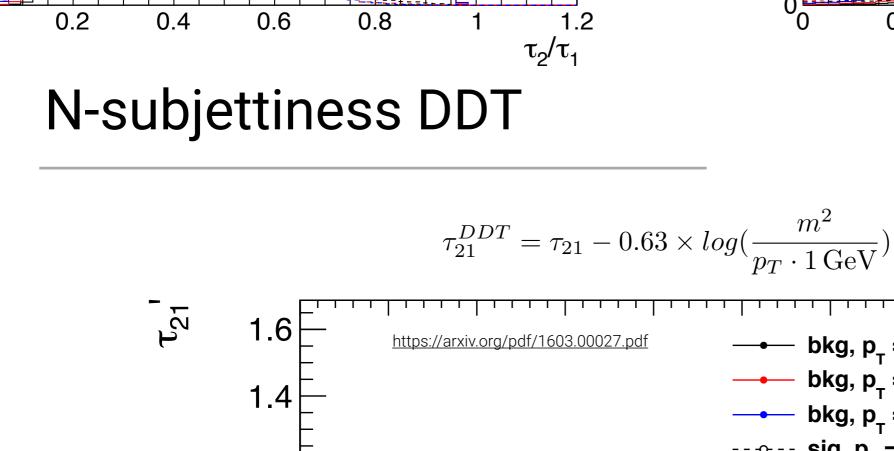
Developing a new V-tagger: Performance in data

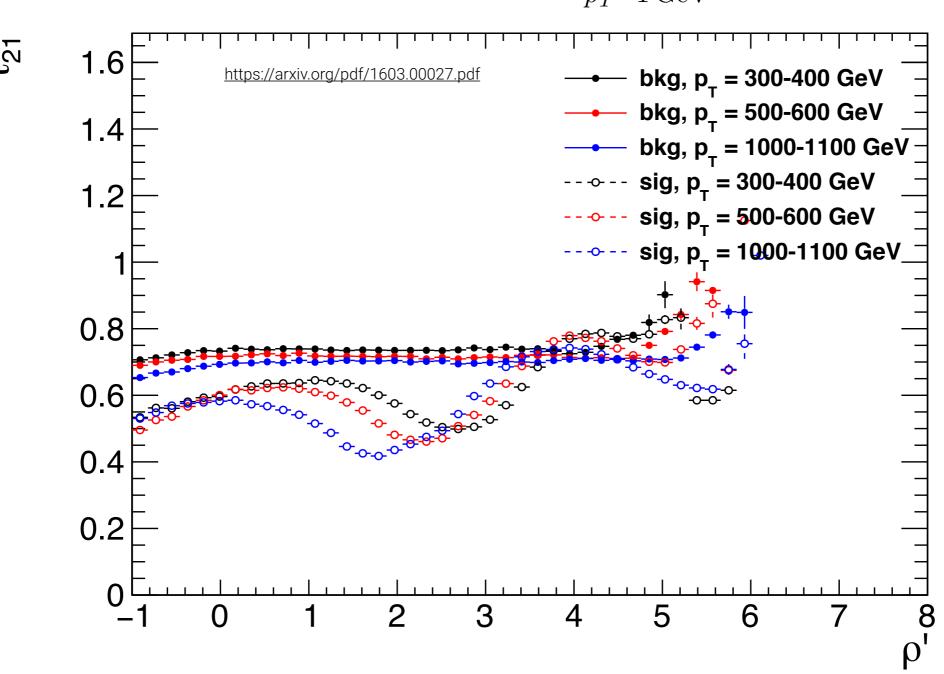


- Substructure variables strong dependence on shower generator
 - different description of gluon radiation
- Best description with Herwig++ , p_T dependence well described by all generators
- Need to ensure we know real signal eff. in data from region well described by MC!

Designing Decorrelated Taggers (DDT)







0.2

0.4

0.6

0.8

1

W-tag SF method

Scale factors for W tagging scale factors (SF) are measured for five different working points 3 for Puppi+Soft Drop algorithm ($\tau_{21} \ge 0.35$; $\tau_{21} \ge 0.4$; $\tau_{21} \ge 0.55$) and 2 for the CHS+Pruning algorithm ($\tau_{21} \ge 0.45$; $\tau_{21} \ge 0.6$). To extract the Scale Factors for the Scale (μ in the following), Resolution (σ in the following) and the τ_{21} Efficiency (ϵ in the following) a two step fit to a pure tt sample is used:

- 1. fit to W-enriched category (High Purity: τ_{21} <X) to extract μ and σ of the distribution
- 2. simultaneous fit to both High Purity and Low Purity (τ_{21} >X) categories, using the information for μ and σ from step 1 and extracting ϵ

The functions used to describe the two categories as a function of the ak08 groomed mass are:

$$\underline{\text{High Purity}} \quad L = \prod_{i}^{N \text{ pass}} \left[N_W \cdot \varepsilon_{HP} \cdot f_{passed}(m_j) + N_2 \cdot f_{comb}(m_j) \right]$$

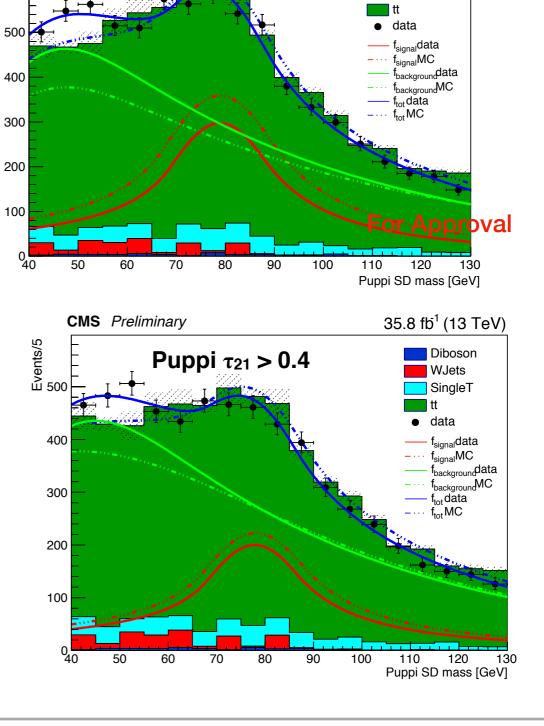
$$\underline{\text{Low Purity}} \qquad L = \prod_{i}^{N fail} \left[N_W \cdot (1 - \varepsilon_{HP}) \cdot f_{fail}(m_j) + N_3 \cdot f'_{comb}(m_j) \right]$$

Where f_{passed} and f_{fail} (red curves in the following plots) describe the W peak in the two categories, while f_{comb} (green curves in the following plots) describe the combinatorial (e.g. from events with a b-jet merged in the AK08 jet) and general background of the tt events.

The events used for the SF extraction require in the final state 1 ak08 (p_t >200) + 1 b-tagged ak04 + 1 lepton + 1 semileptonic W (p_t >200 GeV) following the selection reported in JME-16-003.

W-tag SF - Softdrop

CMS Preliminary 35.8 fb¹ (13 TeV) Events/5 00 **Puppi** τ₂₁ < 0.35 Diboson WJets SingleT tt 600 data f_{signal}data 500 f_{signal}MC background hackgroundMC 400 f_{tot}data f_{tot} MC 300 200 100 0 40 70 80 90 100 120 50 60 110 130 Puppi SD mass [GeV] **CMS** Preliminary 35.8 fb¹ (13 TeV) Events/5 008 006 Diboson **Puppi** τ₂₁ < 0.4 WJets SingleT tt data _{signal}data 600 f_{signal}MC backgrounddata 500 T_{background}MC f_{tot}data MC 400 300



CMS Preliminary

Puppi $\tau_{21} > 0.35$

Events/5 009 000

35.8 fb¹ (13 TeV)

Diboson

WJets

SingleT

700

200

100

0<mark>4</mark>0

60

50

70

80

90

100

120

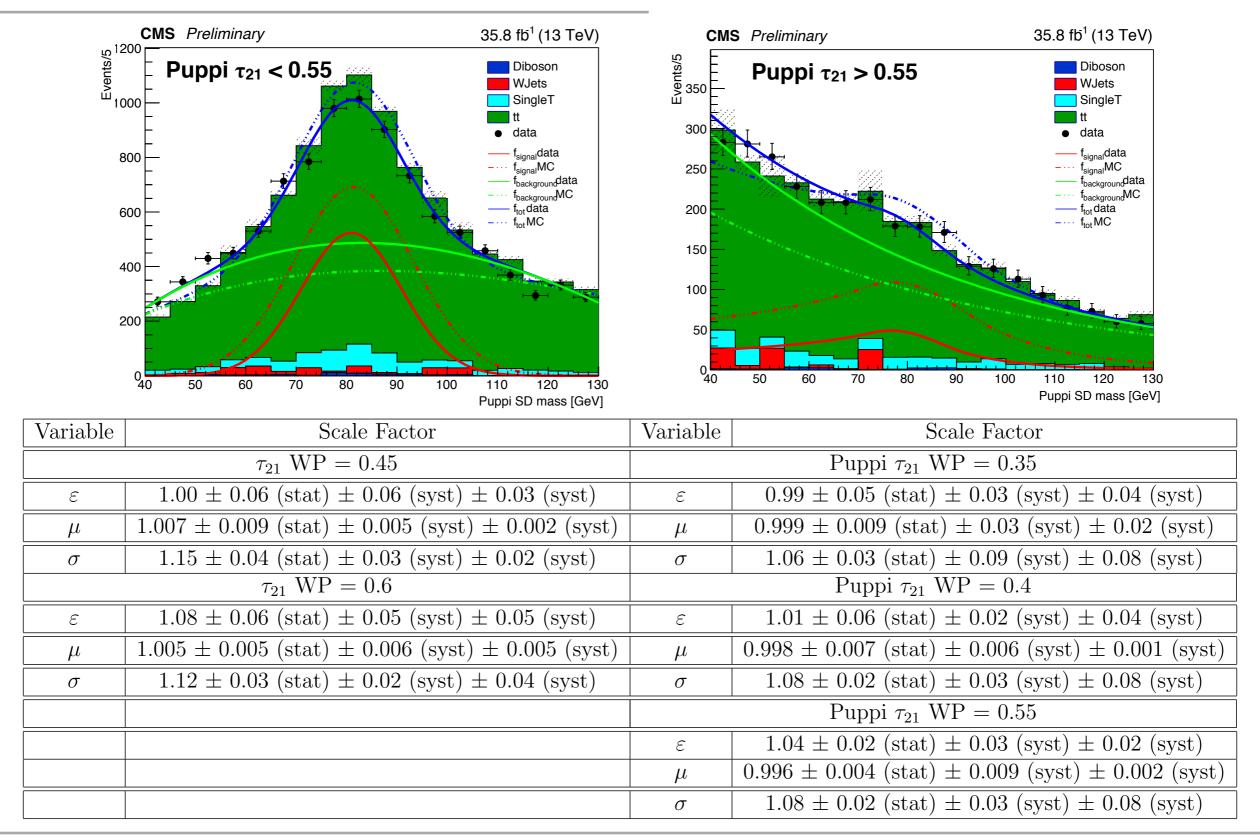
Puppi SD mass [GeV]

130

110

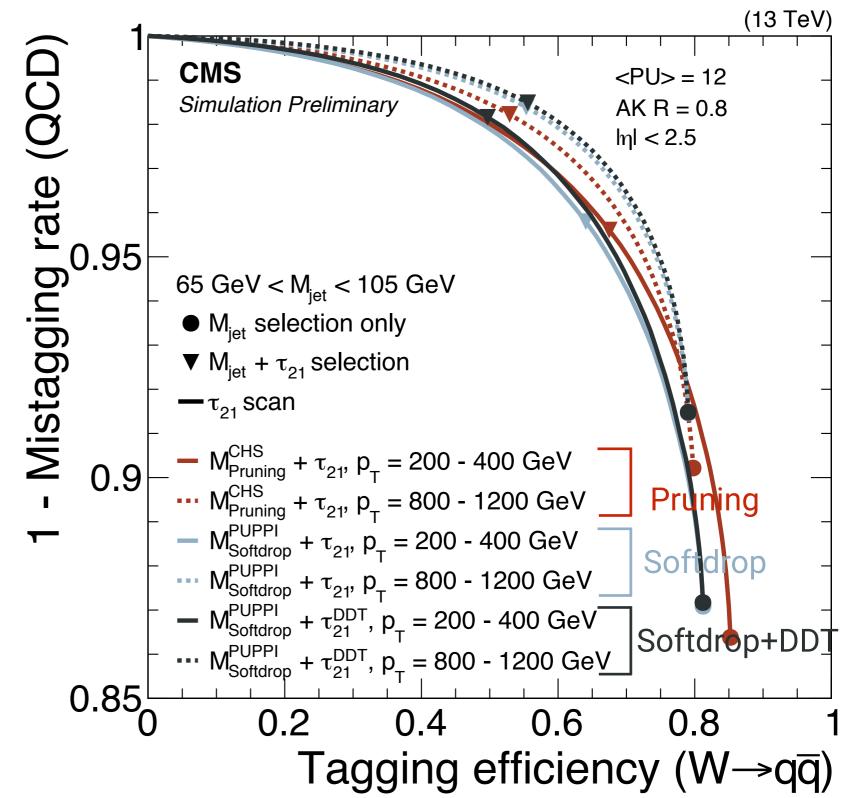
For Approval

W-tag SF summary

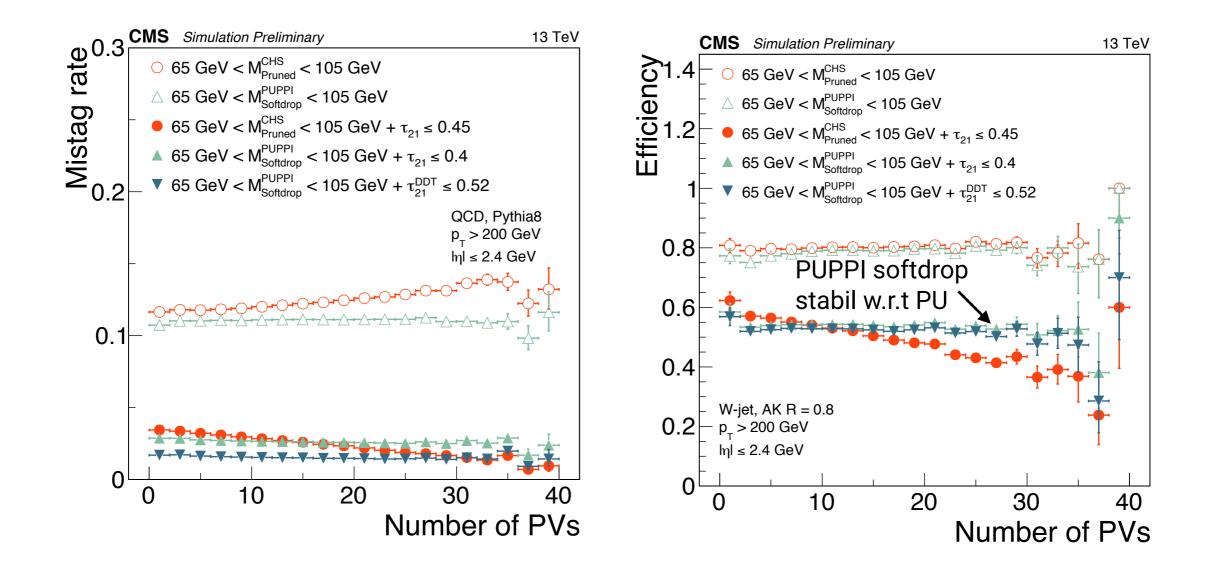


V-tagging performance

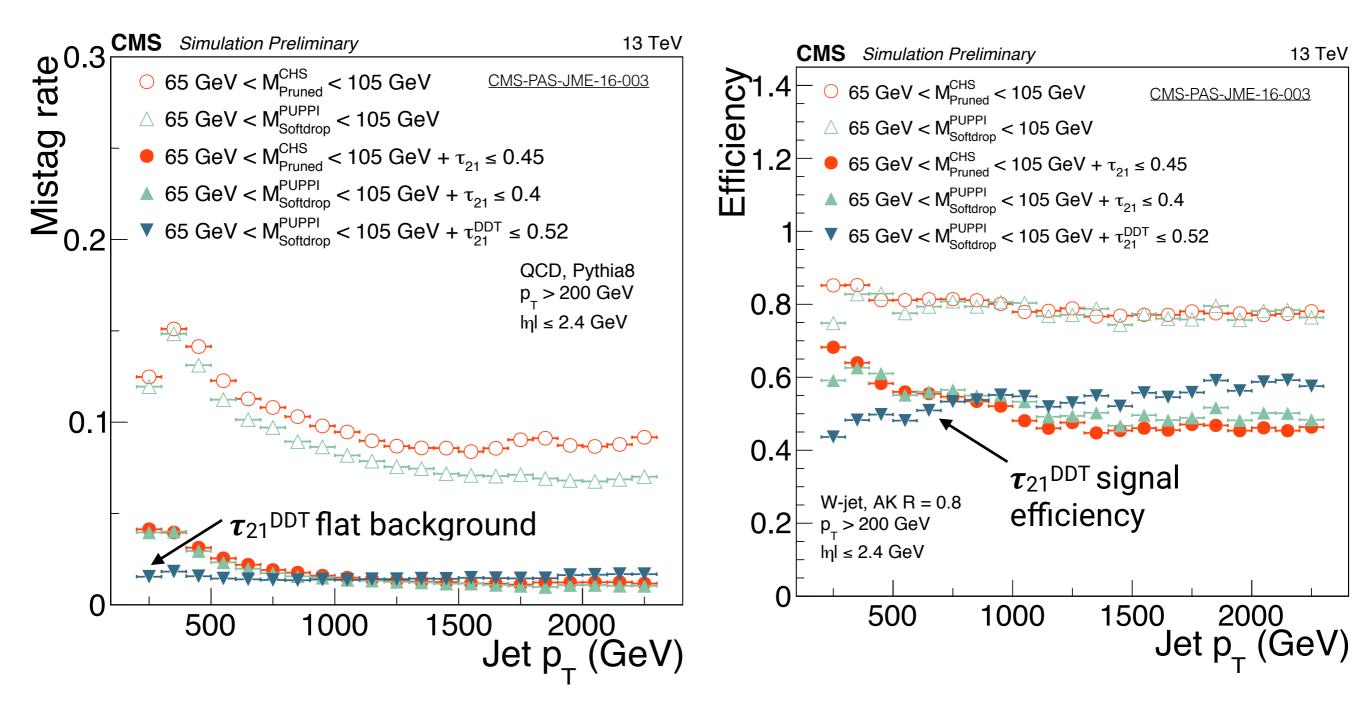
- Similar performance for
 - Low-p_T (200-400 GeV):
 ~65% signal efficiency at ~4% mistag rate
 - High-p_T (800-1200 GeV):
 50-55% signal efficiency at
 1-2% mistag rate



V-tagging performance



V-tagging performance



Mass: Pruning

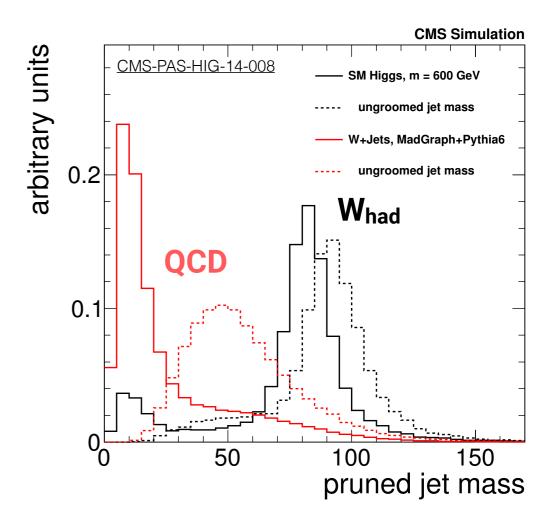
Removes soft, large angle constituents from the jet

- Recluster jet using Cambridge-Achen algorithm, removing each recombination that has

$$\Delta_{ab} > R_{\text{prune}} = R_{\text{fact}} \cdot \frac{2m}{p_T} \quad \min(p_{\text{Ta}}, p_{\text{Tb}}) < z_{\text{cut}} p_{\text{T},(a+b)}$$
$$R_{\text{fact}} = 0.5, z_{\text{cut}} = 0.1$$

Push q/g mass to zero, increase V mass resolution

- but, do not fully remove soft emissions and cannot be analytically calculated due to nonglobal logs (e.g soft emissions entering jet cone from outside)
- want infrared and collinear safe jet observable!

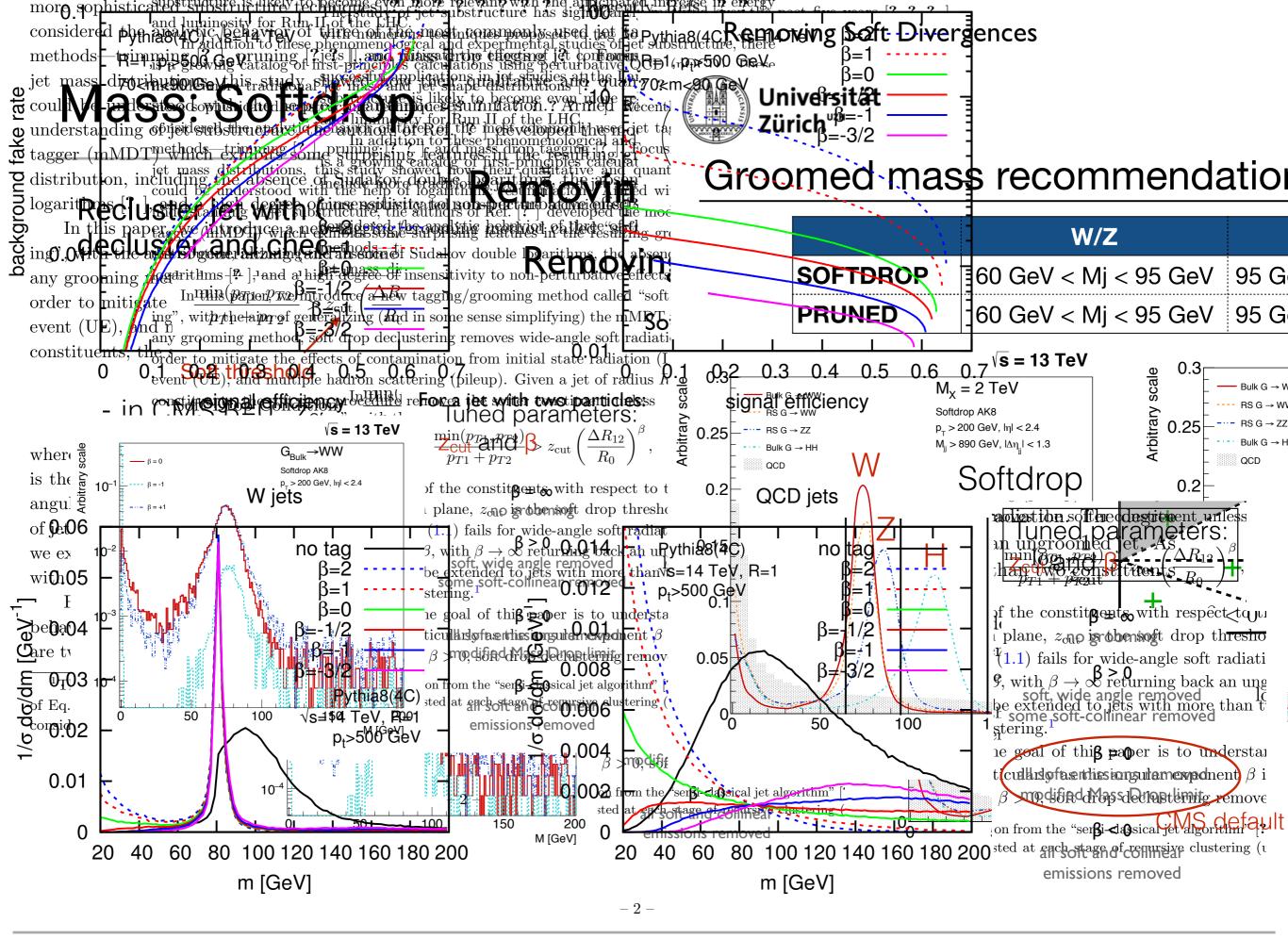


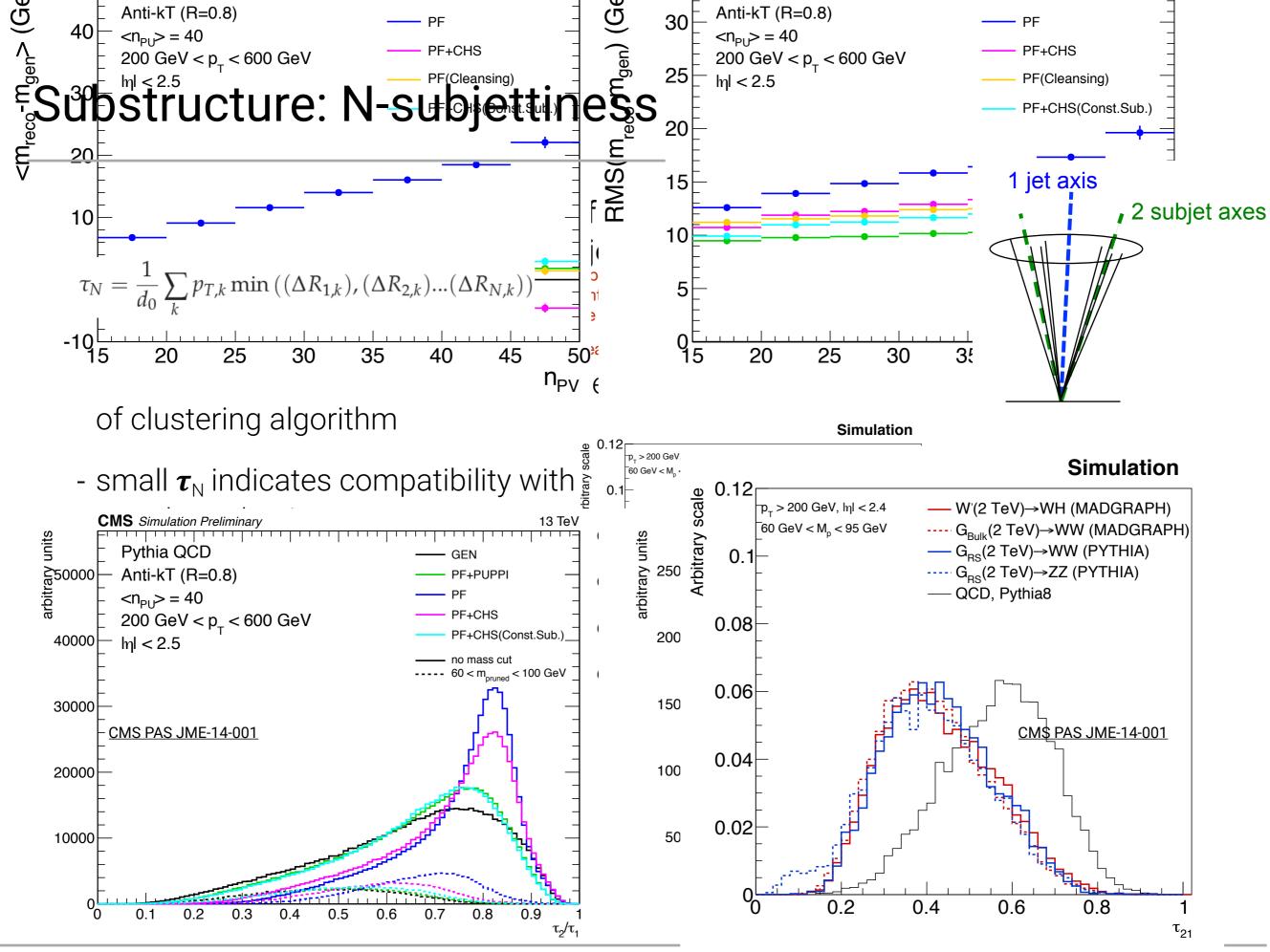
CMS Preliminarv

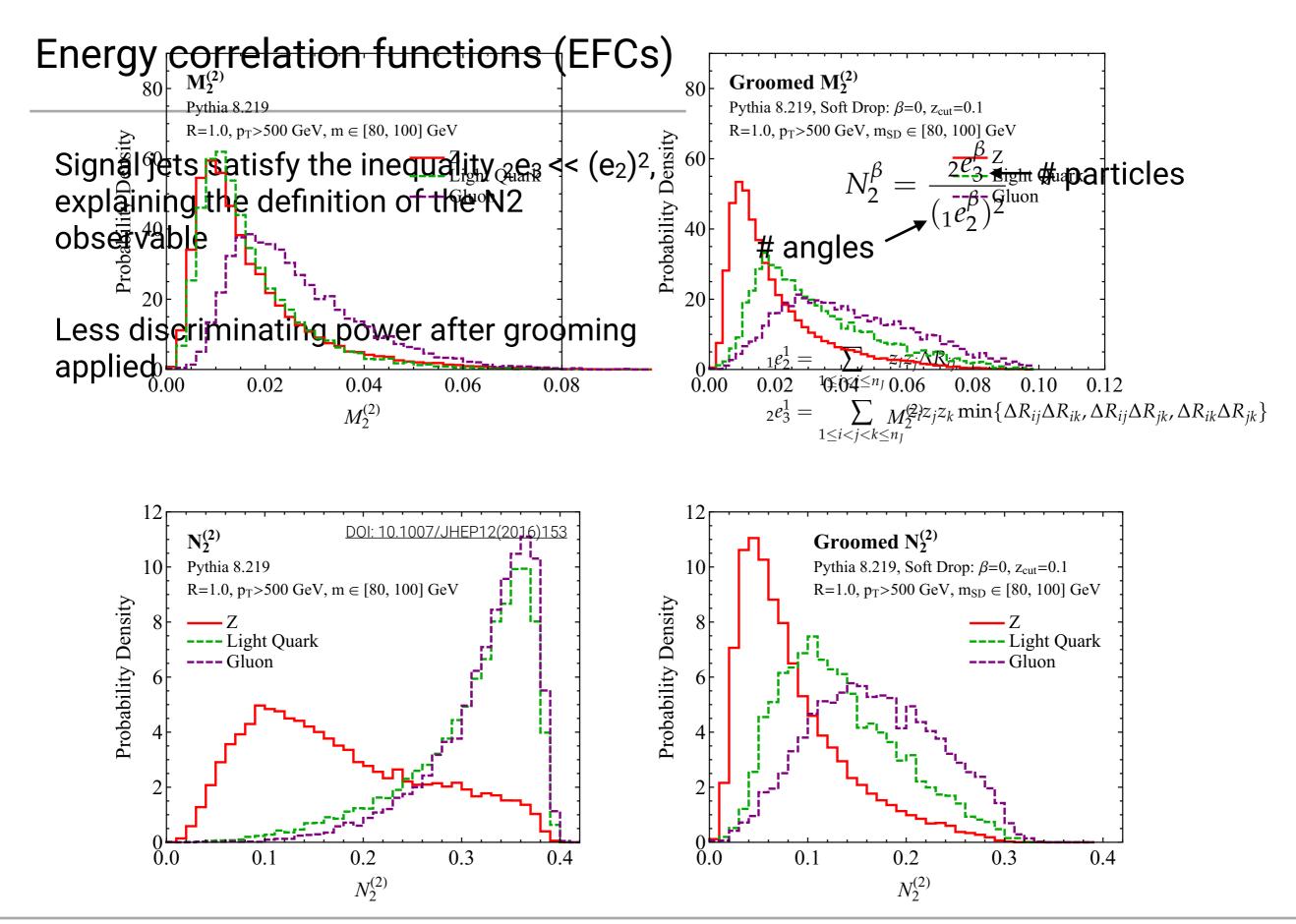
19.3 fb⁻ (8 TeV). W

teoleisijet final-f

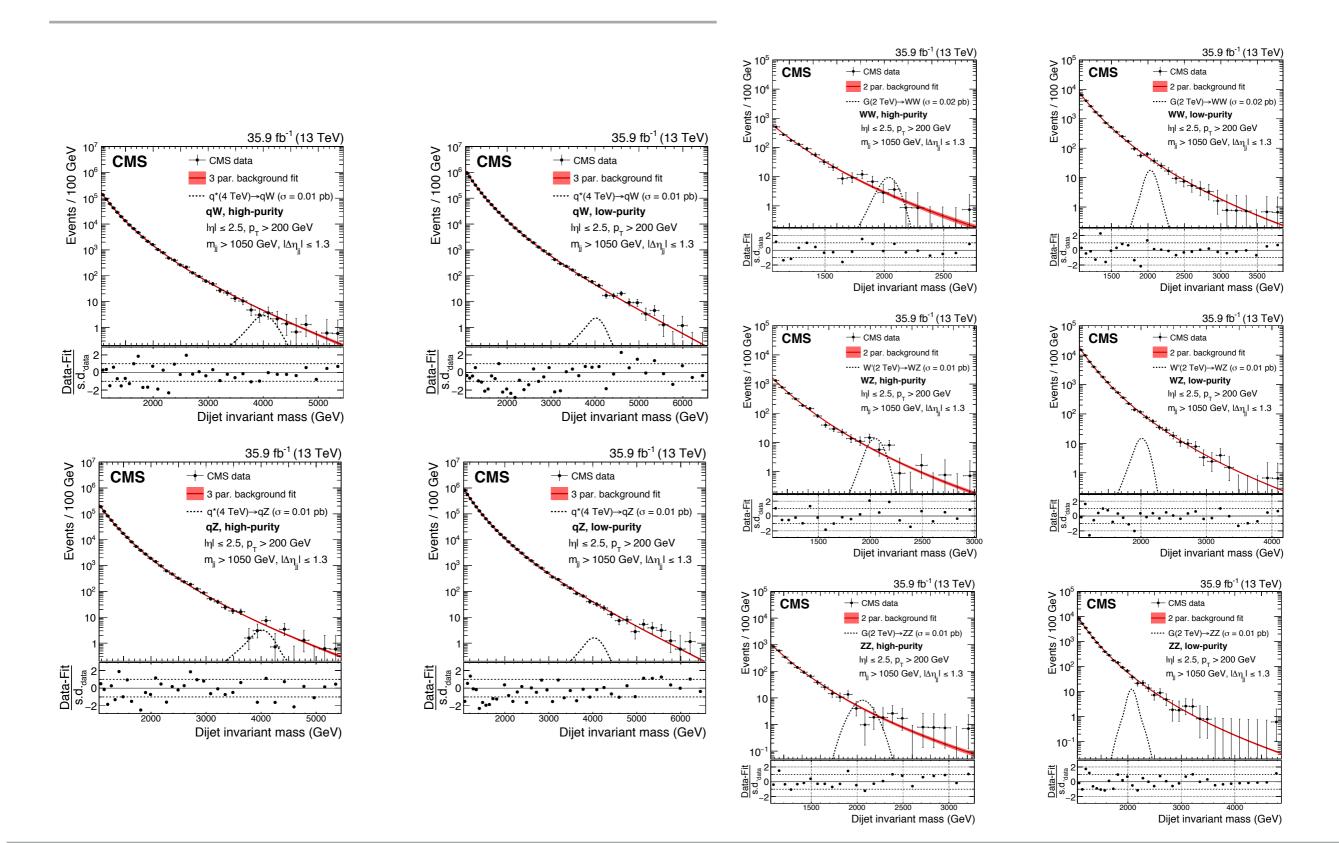
9





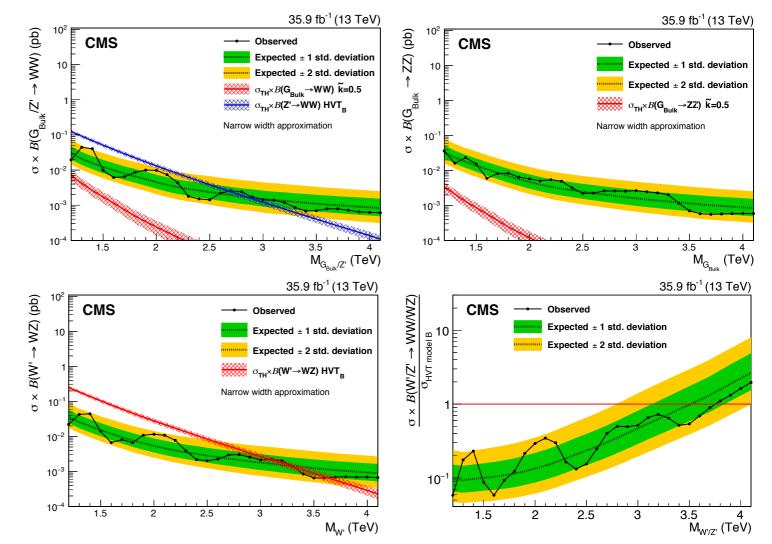


B2G-17-001

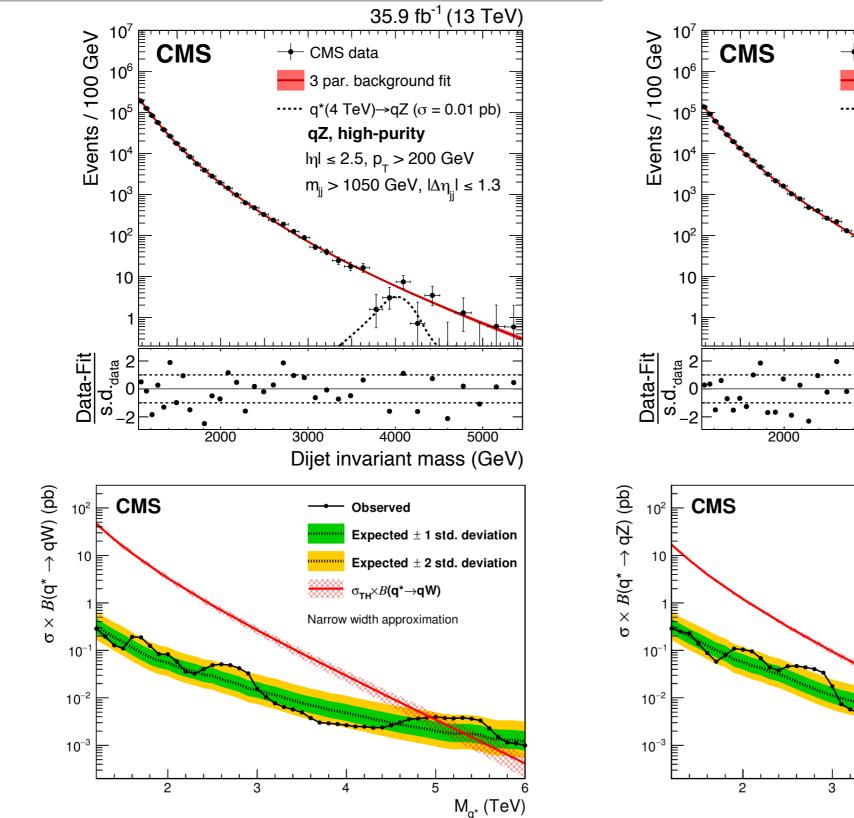


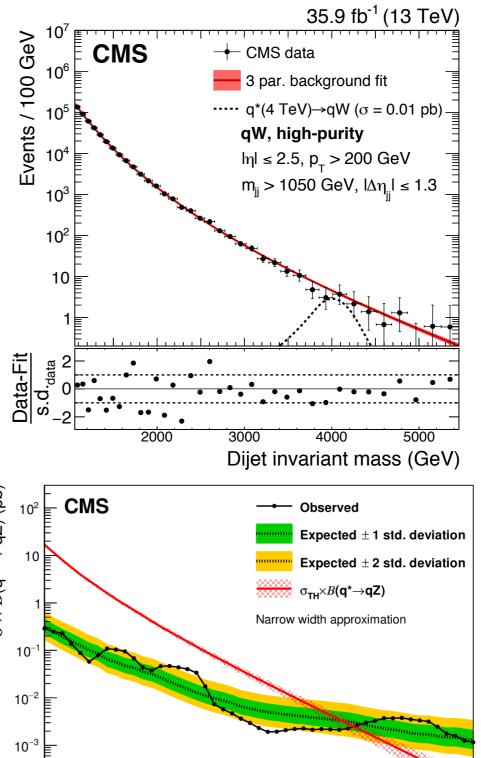
B2G-17-001

	Relevant quantity	Uncertainty (%)				
Source		Double-tag		Single-tag		
		HP+HP	HP+LP	HP+j	LP+j	
Jet energy scale	Resonance shape	2	2	2	2	
Jet energy resolution	Resonance shape	6	7	4	3	
PDF	Resonance shape	5	7	13	8	
Jet energy scale	Signal yield	<1		<1		
Jet energy resolution	Signal yield	<1		<1		
Jet mass scale	Signal yield	<2		<1		
Jet mass resolution	Signal yield	<6		<8		
Pileup	Signal yield	2				
PDF (acceptance)	Signal yield	2				
Integrated luminosity	Signal yield	2.5				
Jet mass scale	Migration	<36		<10		
Jet mass resolution	Migration	<25		<7		
V tagging τ_{21}	Migration	22	33	11	22	
V tagging $p_{\rm T}$ -dependence	Migration	19–40	14–29	9–23	4–11	
PDF and scales (W' and Z')	Theory	2–18				
PDF and scales (G _{bulk})	Theory	8–78				
PDF and scales (q*)	Theory			1-	1–61	



Results: Excited quarks



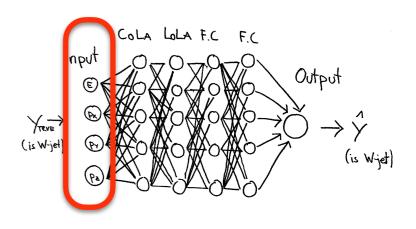


5

6

 $M_{q^{\star}}$ (TeV)

LoLa: Input



Signal

- Fully merged hadronic W-jets (AK8) from $G \rightarrow WW \rightarrow 4q (M_{W'} = 0.6-4.5 \text{ TeV})$
- Do not mix signal samples until one is understood (can change with W polarisation)

Background

- QCD Pythia 8 non-W jets
- Danger: Jet substructure strongly depends on shower generator (different

Four features per jet constituent

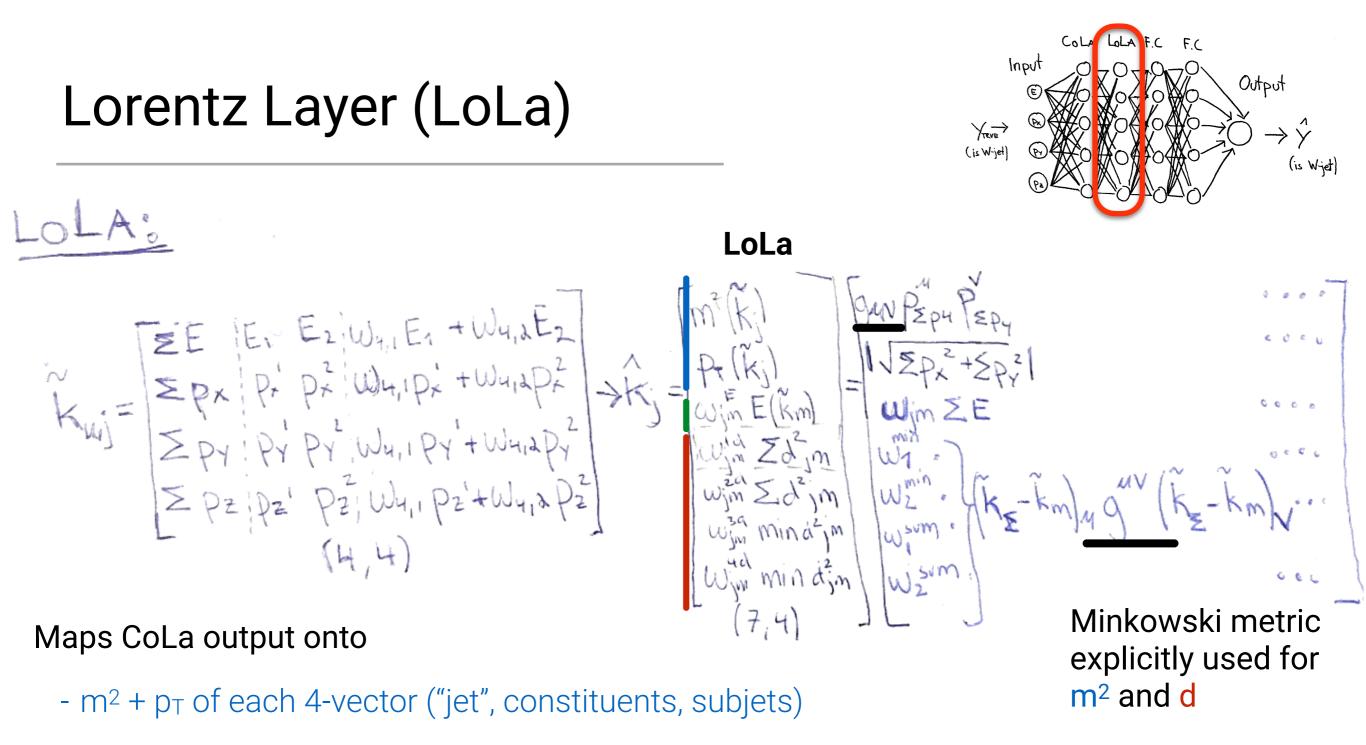
 4-vectors of the N=20 highest-p_T jet constituents of AK8 jets

Input is 4x20 matrix $k_{\mu,i}\,per\,jet$

$$(k_{\mu,i}) = \begin{pmatrix} k_{0,1} & k_{0,2} & \cdots & k_{0,N} \\ k_{1,1} & k_{1,2} & \cdots & k_{1,N} \\ k_{2,1} & k_{2,2} & \cdots & k_{2,N} \\ k_{3,1} & k_{3,2} & \cdots & k_{3,N} \end{pmatrix}$$

$$(4 \text{ Features , 20 constituents})$$

OLA F.C F.C Input Output Combination Layer (CoLa) YTEVE (is W-jet) (is W-jet) E.g for 2 constituents CoLa WH, IP2 4,2) inext combinations 4,2 momenta ΣPK $^{\circ f}$ Linear combinations similar to jet-clustering Σ PY P - Sum of all momenta - Each original constituent momenta - Linear combinations + trainable weights. Can "weight" constituents away, reconstruct substructure axes \rightarrow groomer



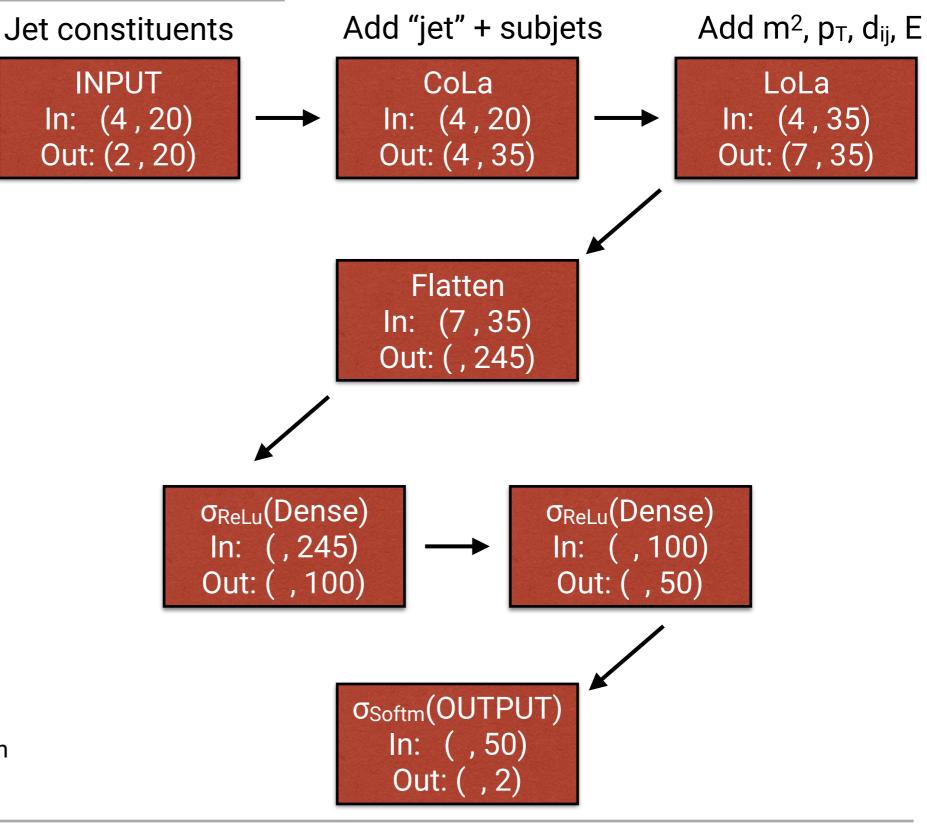
- Energy of all 4-vectors (with trainable weight)
- Distance between all 4-vectors in Minkowski space (2*min+ 2*sum)
 → n-subjetiness

Model summarised

- 4 layer DNN doing supervised learning with fixed-size input vectors
 - feed forward sequential network
 - Two novel layers (CoLa and LoLa) implementing Minkowski metric and "substructure" calculations (see later) and two fully connected layers

Technicalities

- Keras with Theano backend
- Loss function: categorical crossentropy
- ADAM optimiser (adapt learning rate of model parameters during training)
- Train 200k + Test 60k + Val 60k on AWS



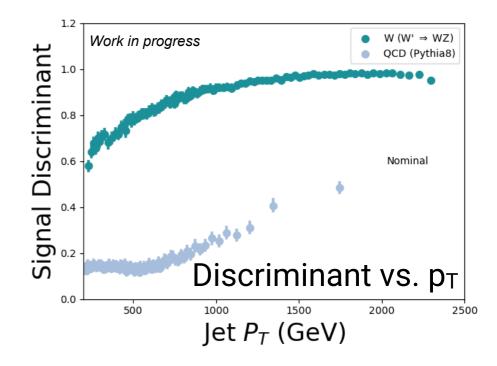
Three things to consider when making a DNN tagger:

- is the absolute performance better (compared to common methods, a standard BDT)?

Three things to consider when making a DNN tagger:

- is the absolute performance better (compared to common methods, a standard BDT)?
- is the tagger p_T -dependent?

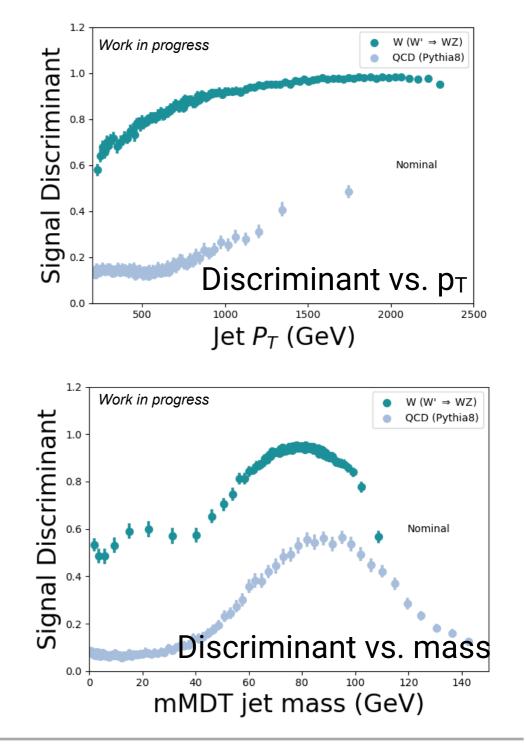
Output strongly correlated with p_T/mass



Three things to consider when making a DNN tagger:

- is the absolute performance better (compared to common methods, a standard BDT)?
- is the tagger p_T -dependent?
- does the tagger sculpt the mass spectrum?

Output strongly correlated with p_T/mass

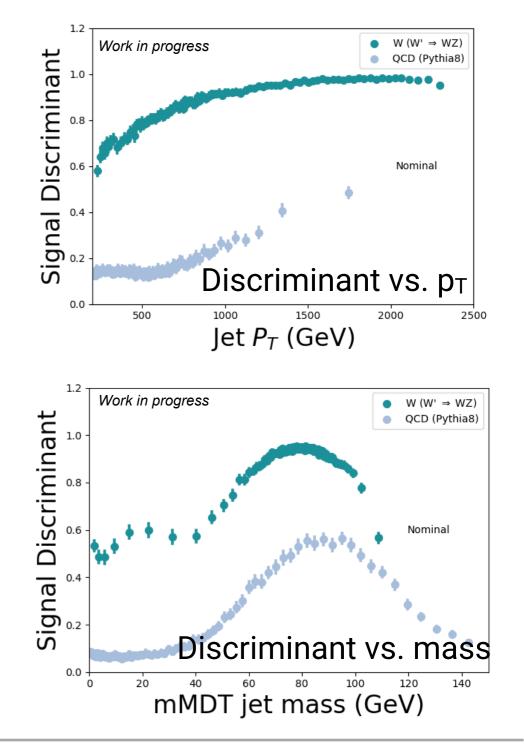


Three things to consider when making a DNN tagger:

- is the absolute performance better (compared to common methods, a standard BDT)?
- is the tagger p_T-dependent?
- does the tagger sculpt the mass spectrum?

These three measures are equally important in quantifying performance

Output strongly correlated with p_T/mass



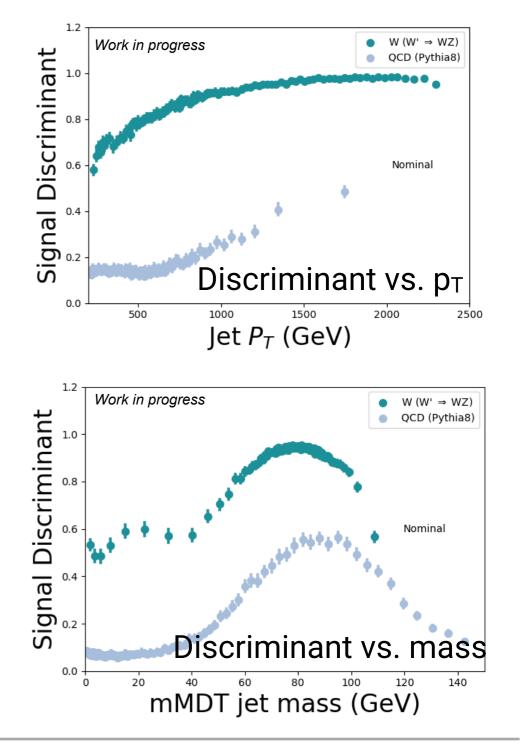
Three things to consider when making a DNN tagger:

- is the absolute performance better (compared to common methods, a standard BDT)?
- is the tagger p_T-dependent?
- does the tagger sculpt the mass spectrum?

These three measures are equally important in quantifying performance

A DNN will naturally learn that p_T and mass are discriminating variables unless its penalised for it

Output strongly correlated with p_T/mass



Three things to consider when making a DNN tagger:

- is the absolute performance better (compared to common methods, a standard BDT)?
- is the tagger p_T-dependent?
- does the tagger sculpt the mass spectrum?

These three measures are equally important in quantifying performance

A DNN will naturally learn that p_T and mass are discriminating variables unless its penalised for it

Output strongly correlated with p_T/mass

