
The Response in Argon at
Pressures of 3750 torr

(RAPtorr) event framework
D. Brailsford

HPTPC RAPtorr ‘hackathon’

10/01/19

RAPtorr key features
• RAPtorr is a lightweight, configuration file-based, event processing

framework

• RAPtorr provides the user with an interface to a generic ‘event’ object
(a rapbase::Event) for analysis purposes whilst also handling retrieval/
creation and long term storage of said event

• The user is able to store any c++ classes they wish inside the
rapbase::Event’s container

• No need for TObject inheritance

• Users are able to form relationships between objects stored in the
rapbase::Event

• Users are able to pass parameters via configuration files to their
analysis code

• No need to recompile each time you want to tweak a parameter
!2

TPC
file(s)

uToF
file(s)

dToF
file(s)

TPC readout
interface

Input
manager

Empty event
input interface

Event from file
interface

RAPtorr
file

User’s code (event
processor)

Output
manager

The event
loop

External algorithms e.g.
reconstruction, image

cleaning

rapbase::event transfer

Raw data transfer

User object transfer

�3

Raw input
interface

Event flow

RAPtorr key features
• RAPtorr is a lightweight, configuration file-based, event

processing framework

• RAPtorr provides the user with an interface to a generic ‘event’
object (a rapbase::Event) for analysis purposes whilst also
handling retrieval/creation and long term storage of said event

• The user is able to store *any* c++ classes they wish inside the
rapbase::Event’s container

• No need for TObject inheritance

• Users are able to pass parameters via configuration files to their
analysis code

• No need to recompile each time you want to tweak a parameter
!4

Usercode/event processor
• Users write their own executable

class which inherits from the
rapstruc::EventProcessor

• The user’s class then gets executed
at certain points in the event loop

• Most important function is
ProcessEvent

• This function provides the
interface to each rapbase::Event

• Other functionality also provided
(but not shown on the example on
the right)

!5

Saving information in the
rapbase::Event

• Straightforward process

• You need:

• A label to save your object with

• A unique_ptr to your object

• Then it’s a one line command to store

std::string container_name = "testclasscontainer";
std::unique_ptr<rapobj::TestClass> test_obj = std::unique_ptr<rapobj::Test…
event.AddProduct(container_name, std::move(test_obj));

!6

Retrieving information from
the event

• Slightly more faffy

• The event hands over a ‘ProductBoxContainer’ (similar to a vector)
which hold a collection of ‘ProductBox’es where each ProductBox
holds an object you’ve stored in the event

• The tutorial code can explain to better than I can here

• To get the stored objects, you extract each product box, then extract
the object

• Why this way?

• ProductBox needed to make object storage class agnostic

• ProductBox holds relationship information

• System is based on handing over references to the underlying
object. The event owns the object but it can loan it back to you

!7

The role of the configuration
file

• The usercode/event processor necessary for rapbase::event
interaction

• The usercode/event processor has no power over where a
rapbase::event comes from or where it goes after you’re
done with it

• It’s also very useful to be able to pass parameters to your
code at run time

• This is the role of the config file

• (and why there is the faffy libconfig dependency)

!8

The RAPtorr config file
source = {
 type = "empty";
 run = 1;
 subrun = 1;
 first_event = 1;
}

output = {
 save_events = true;
 file_name = "tutorialoutput.root";
}

app = {
 tutorialApp = { #name of your user code class
 #Everything gets passed to your user code
 test_input = "WOW!"; #Put whatever input parameters you want here
 }
}

Where the
rapbase::event comes

from

Where the
rapbase::event goes

after you’re done

Pass parameters to
your code

!9

Running a raptorr exe

tutorialApp	-c	${RAPTORR_DIR}/src/tutorial/tutorialapp_filesource.cfg	//	
	-n	5	-s	tutorial_raptorr_output.root	-o	tutorial_raptorr_output_2.root

Exe name cfg file

Num events to
process

Input RAPtorr
file

output RAPtorr
file

!10

Developer tenants
1. Do not use bare pointers unless absolutely necessary

1. Opt for unique_ptr or references when possible

2. wrap classes, functions inside an appropriate namespace.
Unless you are working in an empty directory, look at the
namespace neighbouring files use

3. If in doubt, ask!

*Rules can be relaxed in executables

!11

How to create events from a
dmtpc file?

• Works on RHUL linappservs only at the moment due to dmtpc dependency

• RAPtorr needs to be compiled with dmtpc. To do this, export an additional
environment variable before running cmake

• export DMTPCSYS=/scratch3/wparker2/hptpc_root6/hptpc-daq/

• Take a look in $RAPTORR_DIR/src/exe/testapp_tpcreadout_dmtpcfile.cfg

• You need to use the brand new ‘tpcreadout’ source type

• You also specify the name of the dmtpc file in there

• No command line overrides yet, sorry!

• The top level class stored in the rapbase::Event is the rapobj::TPCReadout
class

• $RAPTORR_DIR/src/obj/TPCReadout.hxx
!12

Hackathon contribs.
• RAPtorr core stuff is in a usable place so we can focus on

physics

• We should build a set of libraries which contain useful classes/
routines for analysis, separated by detector type

• The general idea is that we form functions/classes/routines into
libraries and then use those libraries in our executables

• I’ve produced a skeleton directory structure already

dataproc tpc waveform

ccdutof

utof

exe
!13

Summary

• RAPtorr is an event processing framework

• Hides the nasties and lets you mostly focus on physics
work

• RAPtorr now interfaces with dmtpc

• We should be in a good place to start coding up physics

!14

