Lancaster &=x
University ©

The Response Iin Argon at
Pressures of 3750 torr

(RAPtorr) event framework

D. Brailsford
HPTPC RAPtorr ‘hackathon’
10/01/19

RAPtorr key features

RAPtorr is a lightweight, configuration file-based, event processing
framework

RAPtorr provides the user with an interface to a generic ‘event’ object
(a rapbase::Event) for analysis purposes whilst also handling retrieval/
creation and long term storage of said event

The user is able to store any c++ classes they wish inside the
rapbase::Event’s container

* No need for TObject inheritance

Users are able to form relationships between objects stored in the
rapbase::Event

Users are able to pass parameters via configuration files to their
analysis code

* No need to recompile each time you want to tweak a parameter

2

User object transfer

L
rapbase::event transfer

Il B BB B B BE e
Raw data transfer

User’s code (event Ly
processor) .

External algorithms e.g.

Event flow

cleaning

reconstruction, image
The event -
loop

Input Output
manager manager

Empty event || TPC readout Raw input
input interface mterface interface

¢',A

uToF dToF
flle(s) flle(s) flle(s)

RAPtorr
file
Event from file
interface

RAPtorr key features

RAPtorr is a lightweight, configuration file-based, event
processing framework

RAPtorr provides the user with an interface to a generic ‘event’
object (a rapbase::Event) for analysis purposes whilst also
handling retrieval/creation and long term storage of said event

The user Is able to store *any* c++ classes they wish inside the
rapbase::Event’s container

* No need for TObject inheritance

Users are able to pass parameters via configuration files to their
analysis code

* No need to recompile each time you want to tweak a parameter

4

Usercode/event processor

Users write their own executable
class which inherits from the
rapstruc::EventProcessor

1
2
3
4
5
6
/
8

testApp : public rapstruc::EventProcessor{

9 public:
The user’s class then gets executed FEEEERISZE
. . . 11 rapstruc: :EventProcessor ;
at certain pOlntS N the event |OOp 12 ProcessEvent(rapbase: :Event &event
13 private:
: : . 14 };
Most important function is 15
ProcessEvent o
18 testApp: :ProcessEvent(rapbase: :Event &event){
: : : 19
* This function provides the 20 return true;
interface to each rapbase::Event [S
23 main (argc, *argv| 1){
. . . 24 std::unique_ptr<testApp> app = std::unique_ptr<testApp>(new testApp);
Other funCtIOl’lallty aISO prOVIded 25 rapstruc::EventLoop loop(argc, argv, std::move(app));

(but not shown on the example on RSN ISE

27 return 0;

the right) 28 }

Saving information in the
rapbase::Event

e Straightforward process

e YOU need:
e A label to save your object with
e A unique_ptr to your object

e Then it’s a one line command to store

std::string container_name = "testclasscontainer";
std::unique_ptr<rapobj::TestClass> test_obj = std::unique_ptr<rapobj::Test...
event.AddProduct(container_name, std::move(test_obij));

6

Retrieving information from
the event

Slightly more faffy

The event hands over a ‘ProductBoxContainer’ (similar to a vector)
which hold a collection of ‘ProductBox’es where each ProductBox
holds an object you’ve stored in the event

* The tutorial code can explain to better than | can here

To get the stored objects, you extract each product box, then extract
the object

Why this way?
* ProductBox needed to make object storage class agnhostic
* ProductBox holds relationship information

e System is based on handing over references to the underlying
object. The event owns the ob;'ect but it can loan it back to you

The role of the configuration
file

 The usercode/event processor necessary for rapbase:.event
Interaction

* The usercode/event processor has no power over where a
rapbase::event comes from or where it goes after you're
done with it

* |t’s also very useful to be able to pass parameters to your
code at run time

* This is the role of the config file

e (and why there is the faffy libconfig dependency)

8

source = {

The RAPtO T (g Tile

type = "emptyu, b

run = 1;

subrun = 1;
first_event = 1;

}

output = {

save_events = true;

file_name = "tutorialoutput.root";

o ~ Where the }
i rapbase::event comes |

| Where the :
.\ rapbase::event goes |

Pass parameters to
yourcode

tutorlaIAp = { #name of your user code class
#Everything gets passed to your user code

}

test_input = "WOW!";

#Put whatever input parameters you want here

Running a raptorr exe

| Exe name |

tutoriélApp -C ${RAPTORR_DIR}/Src/tutorial/tutorialapp_filesource.cfg //
-n 5 -s tutorial raptorr_output.root -o tutorial raptorr_output 2.root

i Num events to |
' process |

' output RAPtorr |

' Input RAPtorr |
‘ file

file

10

1.

Developer tenants

Do not use bare pointers unless absolutely necessary

1. Opt for unique_ptr or references when possible

. wrap classes, functions inside an appropriate hamespace.

Unless you are working in an empty directory, look at the
namespace neighbouring files use

If in doubt, ask!

*Rules can be relaxed in executables

11

How to create events from a
dmtpc file?

 Works on RHUL linappservs only at the moment due to dmtpc dependency

* RAPtorr needs to be compiled with dmtpc. To do this, export an additional
environment variable before running cmake

e export DMTPCSYS=/scratch3/wparker2/hptpc_root6/hptpc-dag/
e Take a look in $RAPTORR_DIR/src/exe/testapp_tpcreadout_dmtpcfile.cfg
* You need to use the brand new ‘tpcreadout’ source type
* You also specify the name of the dmtpc file in there
* No command line overrides yet, sorry!

 The top level class stored in the rapbase::Event is the rapobj:: TPCReadout
class

 SRAPTORR_DIR/src/obj/TPCReadout.hxx

12

Hackathon contribs.

RAPtorr core stuff is in a usable place so we can focus on
physics

We should build a set of libraries which contain useful classes/
routines for analysis, separated by detector type

The general idea is that we form functions/classes/routines into
libraries and then use those libraries in our executables

I’ve produced a skeleton directory structure already

dataprocr———tpc|[——waveform
utof 1 ccd
utof

exe

13

Summary

e RAPtorr is an event processing framework

e Hides the nasties and lets you mostly focus on physics
work

e RAPtorr now interfaces with dmtpc

 We should be in a good place to start coding up physics

14

