Big Bang Nucleosynthesis

Bruce A. Bassett SAAO and UCT African School of Physics

Contents

Why should we care about BBN?
What is Big Bang Nucleosynthesis (BBN)?
What does it tell us?

I will mainly be using astro-ph/0303073 "Nucleosynthesis without a computer", V. Mukhanov

Brief thermal history of the Universe

- 10¹⁹ GeV The Planck energy. Quantum gravity required.
- 10¹⁶ GeV The GUT scale; inflation
- 100 GeV Electroweak symmetry breaking
- 100 MeV Quark-gluon plasma
- 1 MeV BBN
- 1 eV Formation of the CMB
- 10⁻³ eV Cosmic acceleration, dark energy

Big Bang Nucleosynthesis

The observed abundances of light elements according to mass fraction are:

- Hydrogen 75% - Helium 24% - Metals ~1% Why this distribution? Hydrogen 75% Helium 4He 4He 4He 2H 5H 2H3H

Why should we care about BBN?

It's a great laboratory...

 BBN happens on small scales at energies below 10 MeV, hence we should have complete control over the physics.

Unlike the very early universe at ultra-high energies or the late universe on ultra-large scales

Why should we care about BBN?

It gives great constraints on new physics

- BBN predictions are very sensitive to ambient conditions at t ~ 1 sec (T~ 1 MeV). Hence the constraints on new physics are some of the best available...
- E.g. Cosmologists knew first that there are only three generations

Initial conditions in the early universe 1.1 T >> 1MeV, t << 1s

Equilibrium is maintained between p, n via weak interactions ("beta-decay")

$$n + \nu \rightleftharpoons p + e^-, \qquad n + e^+ \rightleftharpoons p + \overline{\nu}.$$

(looks like a 4-fermion interaction but actually exchange of W-bosons involved):

1.2 In equilibrium the numbers of species *i* is

$$N_i \propto (m_i T)^{3/2} \exp\left(\frac{-m_i}{T}\right)$$

Hence the equilibrium ratio of neutrons to protons is:

$$\frac{n}{p} \approx \exp\!\left(\frac{-Q}{T}\right)$$

where $Q = m_n - m_p \sim 1.29 MeV$

Hence at high temperatures T > 1 MeV the number of neutrons ~ number of protons

$$n \approx p$$

While at very low temperatures

$$n/p \rightarrow 0$$

which is important since neutrons are crucial for making the elements!

But can we trust the equilibrium expressions?

To be in equilibrium or not?

- If the universe expands too fast chemical equilibrium cannot be maintained...
- The criterion for being in equilibrium is actually

$$\Gamma > H$$
 $H \equiv \frac{\dot{a}}{a}$

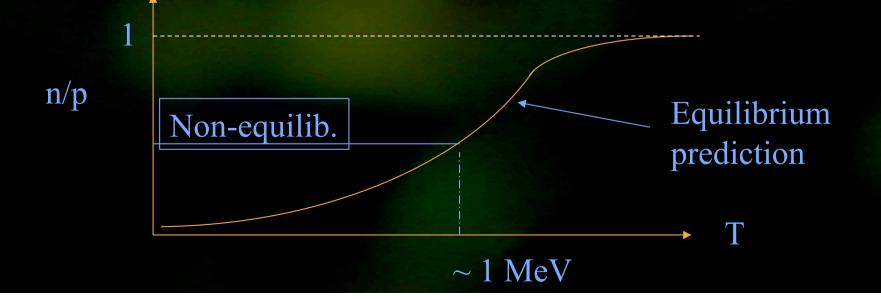
Where Γ is the interaction/decay rate. Why?

When is weak strong?

• At what temperature do the weak interactions go out of equilibrium? $n + \nu \rightleftharpoons p + e^-$, $n + e^+ \rightleftharpoons p + \overline{\nu}$.

 $\Gamma_{pe-nv} \sim G_F^2 T^5$ (high T) ~ 10⁻¹⁰/GeV⁴ T⁵

 $H \sim T^2 / M_{pl}$ (Why is this true?)


Where $M_{pl} \sim 10^{19} \,\text{GeV}$

Hence the weak interactions go out of equilibrium below (why below?)

Tcrit ~ 10^{-3} GeV = 1 MeV (actually 0.8 MeV)

Why do we care?

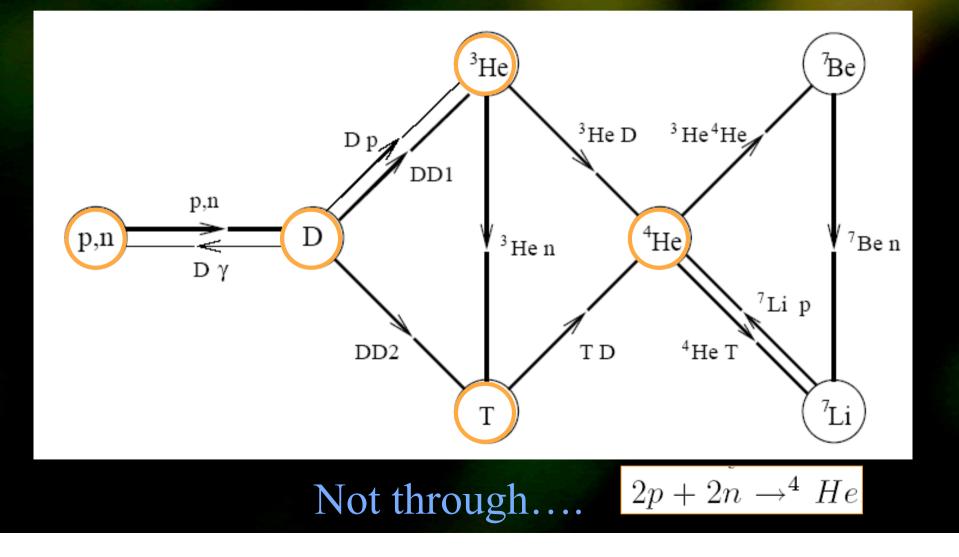
• Below this critical temperature, the equilibrium cannot be maintained and the ratio of neutrons to protons freezes out and becomes essentially constant

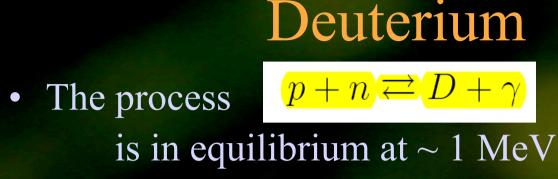
Why do we care? II

• Almost all neutrons available get used to make helium

• Knowing the n/p ratio accurately is crucial to making accurate predictions for the light element abundances...

The freeze-out n/p ratio


The freeze-out ratio is given by:


$$\frac{n}{p} \approx \exp\left(\frac{-Q}{T_{crit}}\right) \approx \exp(-1.29/0.8) \approx \frac{1}{5}$$

With time this decreases slightly to $\sim 1/6$.

Hence, at most we could form 33% of ⁴He by mass which is significantly larger than the observed 24%. Why is there only 24% helium?

Getting to the heavy elements...

• Define:

• Then

$$X_{\rm D} \sim \eta X_p X_n \sim 10^{-12}$$
 (for T ~ 1 MeV)

 $X_D \equiv 2n_D/n_B$

Where $\eta = n_{\rm B}/n_{\gamma} \sim 10^{-8} \,\Omega_{\rm B}h^2$ is the baryon-tophoton ratio (entropy). So almost no ⁴He can be formed at this point because there are too many energetic photons left to form any *D*! Deuterium

 ^{2}H

Deuterium II

• One can show the number of photons with energies above the *D* binding energy (2.2 MeV) drops below the number of *D* nuclei at T = 0.06 MeV

 Hence we have to wait until this low temperature for significant amounts of *D* (and hence other elements) to form.

Tutorial Problem

 Calculate the age of the universe when the temperature falls to 0.08 MeV assuming that at *1 s* the temperature was 1 MeV

1. Calculate the age of the universe when the temperature falls to 0.08 MeV

$$a \propto 1/T, a \propto t^{1/2}$$

$$\Rightarrow t_2 = t_1 \left(\frac{T_2}{T_1}\right)^2 \approx 1s \times \left(\frac{1MeV}{0.08MeV}\right)^2 \approx 156s$$

Helium 4

 At T ~ 0.08 *MeV* the universe is about 200 seconds old and light elements can be formed.

 Basically every available neutron at this time goes into ⁴He.

 But we said that the n/p ratio is frozen at T < 0.8 MeV ...so why don't we get 33% of ⁴He by mass?

Neutron half-life

• Free neutrons decay with a half-life of

 Hence, after ~ 200s the ratio of free neutrons to protons has decreased to

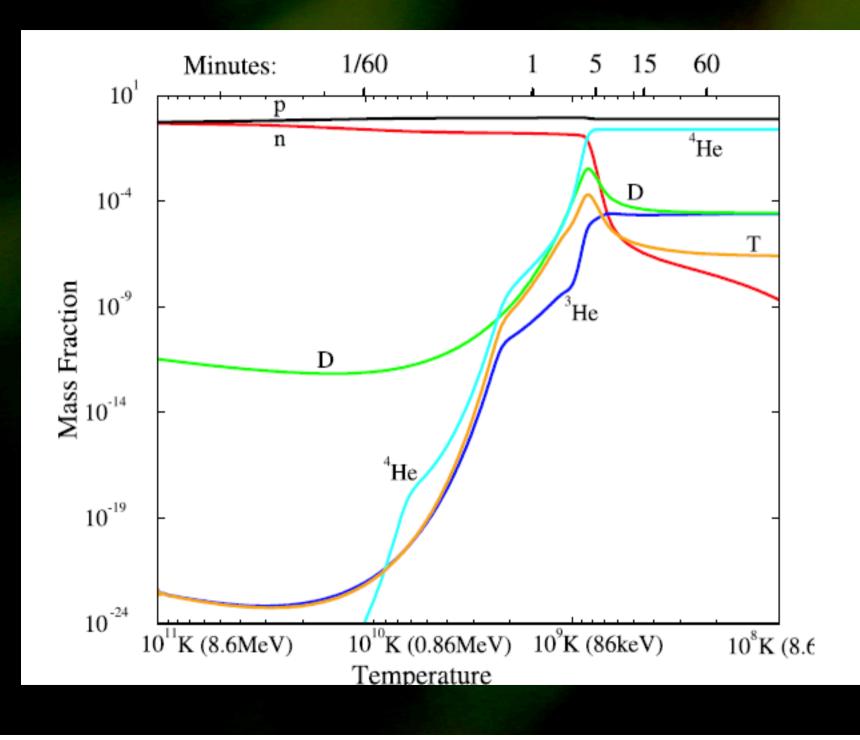
$$\frac{n}{p} \approx \frac{1}{6} \exp\left(-\frac{200}{886}\right) \approx 0.125$$

• Hence we expect $X_{4_{He}} \approx 2(n/p) = 0.25$ which agrees very well with the observed fraction. Crucial

which agrees very well with the observed fraction. Crucia that the age of the universe and neutron half-life are comparable!

Lithium and Beryllium

• One can show that the final predicted value of ⁷*Li* is


$$X_{li} \sim 10^{-9}$$

And for 7Be

$$X_{7Be}^{f} \sim O(1) \, 10^{-12} \frac{X_{3He}^{f}}{\left(X_{D}^{f}\right)^{2}}$$

 $X_D^f \sim 4 \times 10^{-4}, X_{^3He}^f \sim 0.1 X_D^f$ and correspondingly $X_{^7Be}^f \sim 2.5 \times 10^{-10}$.

Hence BBN makes precise predictions for *all* the light elements which are in good agreement with observed abundances.

Using BBN as a test of new physics

• The abundance of light elements is very sensitive to two things:

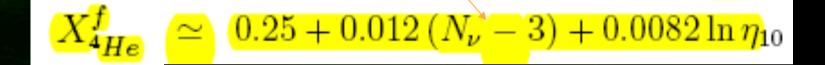
- 1. The age of the universe when the temperature drops to 0.08 MeV (why?)
- 2. The expansion rate of the cosmos at $T \sim 1$ MeV (why?)

Neutron decay

 If the cosmos was e.g. 10 years old at T=0.08 MeV there would be no free neutrons and hence no ⁴He.

This can be used to constrain *any* physics which changes the half-life of free neutrons (such as changes to the fine-structure "constant") or the age of the cosmos at T=0.08 MeV

Expansion rate sensitivity

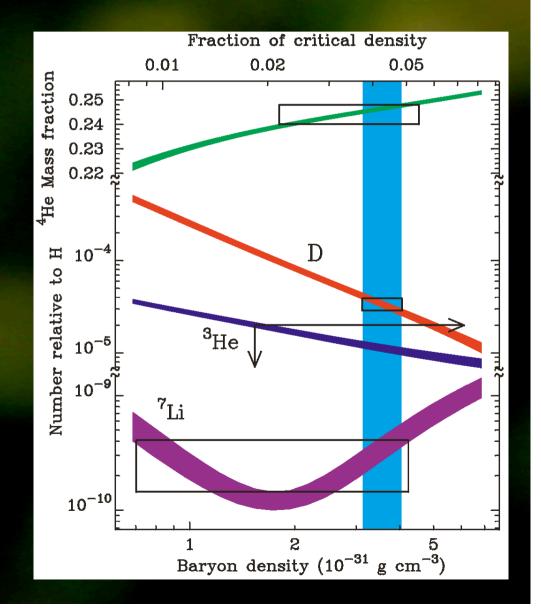

• If the cosmos was expanding very slowly, the n/p ratio would stay in equilibrium much longer and drop towards zero before freezing since

$$\frac{n}{p} \approx \exp\left(\frac{-Q}{T}\right)$$

- Hence we can constrain any new physics which changes the expansion rate at this time...
- This puts strong limits on new types of particles, magnetic fields, dark energy etc...

The classic examples

• One can calculate the ⁴He fraction allowing for an arbitrary number of generations of quarks, neutrinos etc... (call it N_{y})



where $\eta_{10} \equiv \eta/10^{-10}$

This strongly favours $N_v = 3$ (later confirmed by particle physicists) and tells us about the baryon density in our universe...

The Baryon density...

- Value of $\Omega_{\rm B}$ from BBN is self-consistent and gives $\Omega_{\rm B} \sim 0.04\text{-}0.05$
- This value agrees well with the completely *independent* estimate from the CMB
- BBN is very strong support for the expansion of the cosmos and the standard Big Bang model.

