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These notes offer a basic introduction to the primary mathematical concepts of quantum
physics, and their physical significance, from the operator and Hilbert space point of view,
highlighting more what are essentially the abstract algebraic aspects of quantisation in con-
trast to more standard treatments of such issues, while also bridging towards the path integral
formulation of quantisation. A discussion of the (first) Noether theorem and Lie symmetries
is also included to complement the presentation. Emphasis is put throughout, as illustrative
examples threading the presentation, on the quantum harmonic oscillator and the dynamics of
a charged particle coupled to the electromagnetic field, with the ambition to bring the reader
onto the threshold of relativistic quantum field theories with their local gauge invariances as
a natural framework for describing relativistic quantum particles in interaction and carrying
specific conserved charges.

1 Introduction

1.1 Motivations

With the Summer 2008, the world community of high energy physicists is eagerly awaiting to see the first
proton beams circulate in the Large Hadron Collider (LHC), located at the “Centre Européen, Organisation
européenne pour la Recherche Nucléaire” (CERN, Geneva, Switzerland; see http://www.cern.ch). Using
fully electronics equipped detectors filling up huge caverns one hundred meters under ground, at different
intersection points of two oppositely moving proton beams in a 27 kilometers long circular collider, these
beams being held in their tracks by thousands of over ten meters long superconducting magnets kept cold
at 1.9 K by a true liquid helium factory—in itself an engineering feat heretofore never witnessed on the
face of this Earth—, teams of thousands of physicists and engineers will start taking data at rates and at
energies never before contemplated, to be analysed in search for the few tell-tale signs of discoveries to be
made, those expected like those unexpected. Among the primary motivations for this truly encompassing
international enterprise bridging peoples from all continents, the hopes are to finally settle some of the
crucial questions that our present day theories for the fundamental interactions and the Universe have
unearthed and on whose answers so much hinges for any progress forward, and to catch the first glimpses
of what must be lying beyond, beyond the known energy and distance and time scales, and thereby reach
towards those that prevailed at the origins of time and of our physical Universe.

One such question is that of the origin of mass, specifically inertial mass of all the known and
unknown fundamental constituents of matter and interactions, the elementary particles such as the electron
or the quarks (see Tables 1 and 2). Because of its simplicity, and inspired by the dynamics underlying the
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Families Q
νe νµ ντ 0

Leptons
e− µ− τ− −1

u (up) c (charm) t (top) + 2
3

Quarks
d (down) s (strange) b (bottom) − 1

3

Table 1: The structure of matter: the periodic table of the elementary particles (all of spin 1
2 ).

Interaction Carrier Spin Local gauge symmetry

Strong 8 gluons 1 SU(3)c
Electromagnetic γ (photon) 1 Electroweak interaction
Weak W±, Z0 1 SU(2)L×U(1)Y
Gravity graviton (?) 2 Spacetime reparametrisations

(spacetime curvature) (local Poincaré group ISO(3,1))

Table 2: The structure of the fundamental interactions: from the strongest to the weakest.

Figure 1: A Feynman diagram: the interaction between two particles through the exchange of the energy
and the momentum carried by another particle, the carrier of the interaction.

phenomenon of superconductivity in condensed matter physics with its condensation of electron Cooper
pairs, a large consensus favours the so-called Higgs mechanism, in which particles acquire mass, namely
inertia, through their interaction energy with a condensate of particles of some other type, the so-called
higgs boson. If the higgs boson does indeed exist by Mother Nature’s own choice, and not by the theorists’
fancies however imaginative and elegant their intellectual inventions may be, it will be discovered at the
LHC. When wanting to extend to matter particles the elegance displayed through the so-called gauge
symmetries of the fundamental interactions with their specific carriers (see Figure 1), expectations are
high for the discovery of a new world prevalent at the higher energies in which each of the known particles
of spin 1/2 or 1 is accompanied by a supersymmetric partner of spin 0 or 1/2, respectively. Such new
structures lie beyond the limits of the present day accepted model, the so-called Standard Model, having so
far survived beyond anyone’s best bets the most stringent experimental tests imaginable. More generally,
one expects that some form of new physics beyond that Model will start to unravel at the LHC, such as
supersymmetry but possibly something we actually never thought of since Mother Nature has this supreme
knack for always outwitting us for She seems to never be using the same trick twice. More speculative
or fascinating phenomena, as one may like to call them, are also foreseen by some, though based on less
solid and more tantalising ideas and conjectures, such as the possibility of “large” extra spatial dimensions
having remained hidden to our senses until now, or the production of light black holes if gravity acts at
some energy scale in such extra spatial dimensions lower than that at which it appears to be acting in
our four dimensional spacetime world. Many more such fascinating features are potential possibilities, all
having in common that they would leave behind in LHC data subtle tell-tale signs to be brought to the fore
through painstaking analysis, especially through precision studies of the electroweak flavour interactions.
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Quantum Special Relativity Gravity

~ c GN
ց ւ ց ւ

Relativistic General Relativity
Quantum Field Theory (not quantum)

Local
gauge SU(3)c×SU(2)L×U(1)Y Local spacetime

symmetries diffeomorphisms
↓

? Grand Unification
ց ւ

? Quantum Gravity ?

Table 3: General conceptual framework: road map to the final unification.

But on which paper music are the scales of the Standard Model and its description of all known
fundamental particles and interactions written? By which rules have the harmonies performed by this
huge and richly diversified and dynamic symphonic orchestra of the microscopic universe been organised
and directed ever since the creation of the physical Universe? Building on the legacy of XIXth century
physics, through the marriage of these two fundamental conceptual revolutions which have been quantum
physics, involving as fundamental physical constant ~ = h/2π—the reduced Planck constant—, and special
relativity, involving as fundamental physical constant c—the speed of light in vacuum as the limiting speed
for any actual exchange of energy and momentum, namely any interaction—, physics of the XXth century
has come to realise that relativistic quantum field theory (QFT), though a conceptual revolution still to be
completed in the XXIst century [1, 2], provides the right harmonies by which to scale up the fundamental
dynamics and matter content of our world (see Table 3). A dynamical field possesses both at the same
time an oscillatory character and a wavelike spacetime propagation behaviour inclusive of interference
properties. As is true for any oscillatory system, when quantised a dynamical field possesses quantum
states of quantised energy, the number of these quanta being modified through exchanges of energy, namely
interactions through the exchanges of particles. Yet its spacetime dynamics remains wavelike with all its
ensuing correlation and interference properties. A quantum field thus achieves the description of a system
which at the same time is constituted of particles—when one measures its energy content and its quantum
states—and of waves—when one considers its spacetime dynamics and correlations, thereby by-passing
any possible issue of conceptual inconsistencies of these dual perceptions of the physical reality.

On account of Noether’s theorem which associates a conserved dynamical quantity to each gen-
erator of a symmetry of a dynamics, relativistic fields evolving within a Minkowski spacetime with its
invariance properties under spacetime translations and rotations also possess conserved energy, momen-
tum and angular-momentum. The quantum states of a relativistic quantum field theory thus carry all the
hallmarks defining a relativistic quantum particle, namely its energy, momentum—hence relativistic invari-
ant mass m through the relation E2− (~pc)2 = (mc2)2, E and ~p being the particle’s energy and momentum,
respectively—, and also spin. Yet in their spacetime dynamics these particles possess all the properties of
waves as well. Furthermore, other conserved quantities that particles may carry, such as the electric charge,
are then also associated to some other, non spacetime symmetries, so-called internal symmetries. When
these symmetries are realised in such a manner that the effected transformations may be different at each
point in spacetime, even though in a continuous fashion throughout spacetime—namely, gauge symmetry
transformations—, the result is necessarily the existence of an interaction—a gauge interaction—with its
own field of which the quanta are the carrier of that interaction acting between those particles carrying
the charge associated to that symmetry. All known fundamental interactions are understood within that
framework, given some symmetry group (see Table 3).

The conceptual framework of relativistic quantum field theory—the music paper for the harmonies
of the microscopic universe—is thus a most encompassing one producing, through the marriage of ~ and c,
quite a unification of concepts accounting for observational facts of the physical Universe. For instance, note
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that rather than having to speak and consider all possible particles in the Universe of a given species, say
all electrons of the Universe, it suffices to consider the single field filling all of spacetime of which the quanta
are that specific particle but existing in different quantum states, hence with different energy-momentum
and spin values. All electrons of the Universe are indistinguishable because they are harmonic quantum
excitations of a same and single underlying basic physical reality, the electron field. This totally new view
point on the reality of the physical world is but one illustration of the unification of concepts unravelled
through the construction of quantum field theories as an appropriate framework for the understanding of
the fundamental particles and their interactions. Quite a towering achievement of XXth century physics,
its fourth but yet unfinished conceptual revolution of the harmonies of the physical Universe!

Indeed, this achievement remains partially unfulfilled since, as is well known, when computing within
these theories corrections to quantum processes generated by higher order exchanges of particules, one al-
ways encounters divergences generated by fluctuating harmonic modes of the fields at the highest energy
or shortest distances scales. However, for all the above gauge theories describing all the fundamental inter-
actions except for gravity, these ultra-violet (UV) divergences may be renormalised away, when expressing
all observables in terms of the physical parameters of particles rather than those un-normalised param-
eters defining the theory before considering its quantised version. Thus even though on a practical level
one may live comfortably with such a situation, the fact remains somewhat unsettling, and may well beg
for a final theory within which relativistic quantum field theory would find its rightful place in a certain
limit, somewhat like Newton’s nonrelativistic dynamics is a limiting subcase of Einstein’s special relativity
dynamics for velocities small compared to c. However, gravity remains an exception in that respect. Even
though the third conceptual revolution of XXth century physics, namely General Relativity (GR) resulting
from the marriage of c and Newton’s constant GN for the gravitational interaction, has achieved a great
unification of concepts in its own right with regards to the Universe at its largest scales where gravity reigns
supreme, all attempts so far at a final marriage of all three fundamental constants ~, c and GN within the
field theory context have failed. Even though GR itself is also a gauge dynamics, though of a different type
since the symmetries involved are those of spacetime rather than internal symmetries as is the case for all
other three fundamental interactions, the renormalisation programme has not resolved the issue of the UV
divergences within a field theory approach to quantum gravity including all of matter and interactions (see
Table 2). Thus indeed, the final unification of gravity with the other three fundamental interactions and
all forms of matter particles within a single quantum framework remains one of the formidable challenges
offered to the young and creative physicists of the XXIst century. XXIst century physics is in search of a
next Einstein [1, 2]. Let us all dream and work hard that she will come from Africa!

The purpose of these notes is mainly to provide an introduction, put may be in more mathematical
terms and concepts than what is usual, to the basics of quantum physics, whatever the type of dynamical
system being considered provided it possesses a classical variational principle description based on an action
(see for instance Ref. [3]). This framework encompasses both nonrelativistic as well as relativistic systems,
as well as systems with finite or infinite numbers of degrees of freedom, field theories being of course of
the latter class. In order to also reach out more to our more mathematically inclined readers, emphasis
is laid on the algebraic and geometric aspects of quantisation rather than more traditional trodden paths
through the Schrödinger wave equation for instance. Yet, physics illustrations and applications are never
far behind, while at the same time aiming towards an understanding of the basics of relativistic quantum
field theory, even though the latter as such are not addressed in the present pages. Previous lectures
in these Series have already discussed such aspects, with notes available in Refs. [1, 2]. An excellent
treatise is Ref. [4]. No attempt shall be made to provide here any further references, and even less an
exhaustive list of reviews on these topics. Such material is readily available through references given in
those above. In particular, the basics of special relativity are not included either, since many sources
for thorough, detailed and clear presentations are easily found as well (for a web site of interest, see
www.phys.unsw.edu.au/einsteinlight/).
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1.2 An outline

Lagrangian ←→ Hamiltonian
formulation (Legendre transform) formulation

տ ր
~ l ACTION (Symmetries) l ~

ւ ց
Path/Functional integral Canonical/Operator

quantisation ←→ quantisation

As illustrated in the above diagram, the quantity central to our entire discussion is the action of the
system. Its dynamical equations of motion follow from it through the variational principle which requires
that classical trajectories be extremal points of the action in configuration space. The action also embod-
ies most elegantly the existence of symmetries by being invariant, possibly up to a surface term, under
the corresponding transformations of the degrees of freedom of the system. As a consequence, through
Noether’s theorem, one readily identifies conserved quantities. Because of the necessary requirement of
(space)time locality, the action is given by the (space)time integral of a local function of configuration
space, namely of the degrees of freedom of the system and their (space)time derivatives. This function is
known as the Lagrange function or Lagrangian of the system, or Lagrangian density in the case of fields
for which a space and time integration is effected to obtain the action.

One possible path towards quantisation is to directly move from the classical dynamics in its La-
grangian form to the path integral, or functional integral representation of the quantum dynamics (the
l.h.s. of the above diagram). Here rather we shall take the “canonical path”, namely move from the La-
grangian formulation to the Hamiltonian one for a given system, to which the rules of canonical operator
quantisation are then applied to result in a purely abstract algebraic construction defining the quantised
system (the r.h.s. of the above diagram). However, we shall show how both realisations of a quantum
system are actually equivalent, as much from the mathematical as from the physical point of view. Simply,
depending on the problem at hand, one representation may be more convenient than the other to address
some issues or computations, while they also speak differently even though in complementary ways to one’s
physical intuition. The path integral approach has provided much fruitful insight into the nonperturbative
dynamics of nonlinear quantum field theories, for instance. Here the operator approach is rather empha-
sized, first, because it allows to quickly develop a language which mathematicians and physicists alike can
easily share, and second, because it is the most straightforward path to grasping why it is that relativistic
quantum field theories are in fact theories of relativistic quantum particles, and vice versa, simply by rely-
ing on the quantum physics of the ordinary one dimensional harmonic oscillator, certainly the simplest of
all nontrivial dynamical systems, and in a certain manner thus the “mother” of all quantum field theories,
at least in as far as perturbative quantisation and renormalisation of field theories are concerned. This is
no small wonder! Indeed, when applied for instance to the electromagnetic interactions of electrons and
photons, namely the theory of quantum electrodynamics (QED), such techniques have produced theoretical
results precise to eleven decimal places in perfect agreement with experimental results known to the same
amazing degree of accuracy. When the art of quantum physics is pushed to such extremes of excellence,
any shadow of a discrepancy could be the harbinger for new physics beyond the Standard Model.

It is here that these notes find another of their motivations. Namely, to bring the reader onto the
threshold of quantum field theory, a study that he/she could then hopefully embark on afterwards on
his/her own, with the help possibly of references such as those in Refs. [1, 2, 4]. One of the ambitions
of these notes is to demystify, if necessary, what relativistic quantum field theory actually is in its basic
essentials and physical representations, simply as a natural framework for theories of relativistic quantum
particles in interaction and characterised by conserved charges in direct correspondence with important
symmetries whether of spacetime or internal space geometries.

The outline of the notes is as follows. In the next Section, the Lagrangian formulation of dynamical
systems is briefly reviewed. In Section 3, through a Legendre transform, one moves over to the Hamiltonian
formulation of the same dynamics, leading to the phase space representation of its degrees of freedom and
the ensuing geometrical structures. Section 4 then addresses the canonical quantisation of the Hamiltonian
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formulation, emphasizing mostly the purely abstract aspects to that programme, as well as the different
representations possible for those abstract structures. It is also at that point that the junction with the
path integral quantisation of the classial Lagrangian dynamics is made. Finally, Section 5 discusses the
content and consequences of the Noether theorem, a most important result in relation to the existence
of continuous (Lie) symmetry groups of transformations leaving the equations of motion of the system
invariant and with as further consequence the existence of conservation laws. Some concluding comments
are offered in Section 6.

2 Lagrangian Dynamics

2.1 The Action Principle

Let us consider some dynamical system. Its configuration space (the space of all its possible configurations)
may be characterised in terms of some manifold MN of dimension N . For example, in the case of a single
point particle moving along an infinite straight line, the possible configurations of the system are any of the
positions along that line; its configuration space is thus the real line, MN = R, a one dimensional space,
N = 1, for this one degree of freedom system. By extension, the configuration space of a single point
particle moving in an N dimensional Euclidean space is MN = RN . Likewise, a point particle constrained
to be moving on a circle has that circle as configuration space. More generally, constrained to be moving
on a sphere of dimension N , its configuration space is the N -sphere, MN = SN . Such a point particle
could also be moving on a torus of dimension N , the cartesian product of N circles, corresponding to a
configuration space which is the N dimensional torus, MN = TN .

The configuration space manifold MN is also taken to be connected, for if it were to have multiple
components, each component could be seen to correspond to a different system, each of these systems being
decoupled from one another. Generally, configuration space also comes equipped with some geometry,
defined in terms of some metric structure, usually a positive definite one.

Being a manifold, a local system of coordinates may be defined over configuration space, which is also
required in order to perform actual calculations and for representing trajectories of the system throughout
its configuration space. Generally, such local coordinates are denoted qn ∈ R with n = 1, 2, . . . , N ,
corresponding to generalised coordinates in configuration space. For example, if configuration space is
Euclidean, MN = RN , these coordinates could be taken to be cartesian coordinates with respect to some
scalar product, or positive definite metric structure defined over configuration space. In the case of the
N -sphere, MN = SN , or the N -torus, MN = TN , natural coordinates would correspond to some angular
parametrisation of the configuration space manifold.

For a realistic system, the number, N , of such degrees of freedom qn (n = 1, 2, . . . , N) may be
extremely large indeed. Imagine a system of N particles moving in three dimensional Euclidean space
representing physical space. The associated configuration space is R3N . Choosing to work in terms of
cartesian coordinates, these 3N degrees of freedom may be expressed as time dependent functions xiα(t),
with i = 1, 2, 3 and α = 1, 2, . . . , N . But in practice for a cubic centimeter of ordinary matter, N is given
essentially by Avogadro’s number, NA ≃ 6× 1023. Note also that the cartesian choice of coordinates may
not be the most convenient one for the general N -body system, even already for the N = 2 two-body
problem for which relative and center-of-mass coordinates are more relevant.

Any time history of the system is associated to some trajectory in configuration space, representing
all the successive configurations of the system as it evolves in time. Having specified a local coordinate
system over configuration space, such a trajectory is then given by a set of time parametrised functions
qn(t) (n = 1, 2, . . . , N), assumed to be sufficiently smooth for all practical purposes. These functions thus
correspond to the degrees of freedom of the system, since they represent the freedom the system has in
moving throughout its space of possible configurations as time evolves. Note that the parameter t need
not necessarily be the physical time as measured on a clock, even though quite generally t is chosen to
be such a physical observable. Indeed t serves the purpose of parametrising the dynamical evolution of
the system along its trajectories in configuration space, and any such parametrisation is acceptable. In
particular for systems invariant under arbitrary transformations of spacetime coordinates, such as General
Relativity, string and M-theory, or even the single parametrised relativistic particle [3], the time evolution
parameter t is such an arbitrary choice, of which the physical time itself is then a particular function.
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Note that the number N of degrees of freedom need not be finite. The above framework remains
applicable for systems with an infinite number of degrees of freedom, including field theories. This number
could be infinie countable or even non countable. Consider for instance a real scalar field, φ(t, ~x ) ∈ R,
defined over spacetime, ~x parametrising the space dependence of the field. As a matter of fact, that space
variable may be seen to correspond to an index, albeit a continuous one, labelling the different degrees of
freedom of the system,

φ(t, ~x ) = φ~x(t)↔ q~x(t)↔ qn(t). (1)

Even if the label ~x takes values in a continuous set, the number of degrees of freedom is not necessarily
infinite non countable. In the case for instance of a torus topology for the spatial directions, through
Fourier mode analysis in ~x the number of degrees of freedom is infinite discrete, thus infinite countable
with N →∞. Consequently, at least formally the entire discussion to be developed in these notes extends
also to field theories, keeping aware of possible difficulties arising because of an infinite number of degrees
of freedom.

Given such a parametrisation of configuration space, how does one determine the dynamics of the
system within its configuration space? Through which equations of motion governing its time evolution?
As mentioned previously, such dynamics follows from the variational principle applied to a specific quantity
known as the action of the system, S[qn]. This action is a functional of configuration space, namely a
number which is a function of functions, constructed out of the time dependent functions qn(t) character-
ising any trajectory of the system in its configuration space. As already indicated, the action is a most
encompassing and powerful concept, and plays a central rôle in accounting for the dynamics of the system
and all the properties thereof, since,

1. the dynamical equations of motion follow from the action, S[qn], through the variational principle,
and,

2. as will be discussed later on, through Noether’s first theorem, invariance of the action under symmetry
transformations embodies the existence of conservation laws, namely the existence of conserved
quantities for the classical system, corresponding to conserved quantum numbers (such as the electric
charge, the spin and angular-momentum, etc.) for the quantised system.

Requiring locality in time, the action must of the form

S[qn] =

∫ tf

ti

dt L(qn(t), q̇n(t)), (2)

where L(qn, q̇n) is some function of the variables qn and q̇n—viewed at this stage as independent variables
with respect to which separate partial derivatives of the function L(qn, q̇n) may be taken—, known as the
Lagrange function or Lagrangian of the system. When substituted in the above integral, the Lagrange
function is composed with the time dependence qn(t) representing the flow of the system in time along
any specific trajectory in configuration space represented by the functions qn(t) (n = 1, 2, . . . , N). In that
case, q̇n(t) then stands for the ordinary derivative of the function qn(t) with respect to time t, a notation
customary in mechanics,

q̇n(t) ≡ dqn(t)

dt
[generalised velocities]. (3)

The value for the action, S[qn], is thus associated to a specific trajectory in configuration space corre-
sponding to the time interval [ti, tf ] for which one has the initial and final configurations qn(ti) = qni and
qn(tf ) = qnf . This trajectory may be pictured as some curved line in configuration space connecting these
two end points.

Remarks

1. In the case of a field theory, locality in both time and space implies that the Lagrange function should
itself be given as the space integral of a Lagrangian density, L(φ, ∂tφ, ∂~xφ), the latter being a local
function of the field and its time and spatial derivatives, to be then composed with the time and space
dependence of the field, φ(t, ~x ), when evaluating the corresponding action,
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S[φ] =

∫ tf

ti

dt

∫

space

d~xL(φ(t, ~x ), ∂tφ(t, ~x ), ∂~xφ(t, ~x )), L =

∫

space

d~xL(φ(t, ~x ), ∂tφ(t, ~x ), ∂~xφ(t, ~x )). (4)

Essentially, the Lagrange function of the system remains given as a sum over the degrees of freedom of the
system distinguished by the vector index ~x.

2. The Lagrange function may, in general, also have an explicit time dependence, L(qn, q̇n; t). However in
such a situation, if t stands for the physical time, the energy of the system is not conserved, a situation
which does not apply at a fundamental physical level. It is for this reason that at the outset we take the
Lagrange function not to have any explicit time dependence, L(qn, q̇n). As will be established later on,
the Hamiltonian (which coincides with the energy when the time evolution parameter t coincides with the
physical time) is then indeed a constant of motion, namely a conserved quantity.

3. One could consider systems for which the Lagrange function may depend on derivatives of the degrees
of freedom of order exceeding one, L(qn, q̇n, q̈n, · · · ). However, through the introduction of an appropriate
choice of auxiliary variables of which the equations of motion are such that these extraneous degrees of
freedom coincide with the successive time derivatives of the original ones, qn, it is always possible to bring
the description of the system into the above general form, in which the Lagrange function depends on the
complete set of degrees of freedom, inclusive of the auxiliary ones, and their first order time derivatives
only. Hence no loss of generality is incurred through the above choice of parametrisation for the Lagrange
function.

Given the specification of the action functional for the system, its dynamics then follows from the
local variational principle, which states that,

Variational Principle: Classical trajectories of the system correspond to local minima (which
is possible in the best of cases only, otherwise more generally, they correspond to local extrema
or even just stationary points) of the action, S[qn], of the system.

As shall become clear hereafter, this principle implies differential equations of order two in time, one
for each independent degree of freedom qn(t) of the system, namely specific equations of motion of which
the solutions represent the dynamics or time evolution of the classical configurations of the system. Being
differential equations of second order in time means also that one must specify for each of these equations
of motion two boundary conditions, or integration constants, in order to determine in a unique fashion a
specific solution.

The practical implementation of the variational principle proceeds as follows. Imagine that a given
(still unknown) classical trajectory qn(t) determines such a minimum (or stationary point, in general) of
the action, and consider then an arbitrary but “infinitesimal” variation δqn(t) in the neighbourhood of
qn(t). The value for the action will thus change accordingly. Expanding the latter to first order in the
variation δqn(t), the requirement is that to first order the variation of the action should vanish identically.
As we shall see, this latter requirement is to be considered up to surface terms in time, stemming from a
contribution to the variation which is a total time derivative. Thus more explicitly and precisely, one has
the following representation of the variational principle,

qn(t) −→ qn(t) + δqn(t), δqn(t) : infinitesimal variation,

S[qn] −→ S[qn + δqn] = S[qn] + δS[qn] + (higher order terms), (5)

with
δS[qn] = 0, up to surface terms, or total derivatives. (6)

As mentioned above, the latter requirement translates into a set of differential equations of motion for the
functions qn(t), the Euler–Lagrange equations of motion.
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2.2 The Euler–Lagrange equations of motion

Let us proceed with the explicit evaluation of δS[qn] to first order in δqn(t),

δS[qn] = S[qn + δqn]− S[qn] [only to first order in δqn]

=

∫ tf

ti

dt {L(qn + δqn, q̇n + δq̇n)− L(qn, q̇n)}
[
δq̇n(t) =

d

dt
δqn(t)

]

=

∫ tf

ti

dt

{
δqn

∂L

∂qn
+
d

dt
δqn

∂L

∂q̇n

}

=

∫ tf

ti

dt δqn
[
∂L

∂qn
− d

dt

∂L

∂q̇n

]
+

∫ tf

ti

dt
d

dt

[
δqn

∂L

∂q̇n

]
, (7)

where in the last line an integration by parts was effected in order to isolate all terms in δqn as factorised
contributions. In (7), the first term is given as an integral over the entire “volume” of the time interval
[ti, tf ] (in the case of field theory, it is given as an integral also over the volume of space), hence that
term is the “volume” term contribution to δS[qn]. On the other hand, the second contribution in (7) is
a surface term in time, being given by the time integration of the total time derivative of the specific
combination δqn∂L/∂q̇n, of which the value thus depends only on the values of qn(t), q̇n(t) and δqn(t) at
ti and tf , namely the boundary or “surface” of the time interval [ti, tf ] (again in the case of field theory,
one then gets genuine surface terms of space and time). Hence that second contribution is the “surface”
term contribution to δS[qn].

Another remark is worth to be made explicit here. In the above expressions, the so-called Einstein con-
vention for summation is used. Namely whenever an identical index n appears in two quantities that are
multiplied with one another, a summation over n = 1, 2, . . . , N is implicit. For instance

δqn
∂L

∂qn
≡

N∑

n=1

δqn
∂L

∂qn
. (8)

This notation is very common and most widely used in the physics literature. The same practice is thus
followed throughout these notes, unless otherwise specified.

Since according to the variational principle the condition δS[qn] = 0 (up to the surface term contributions)
is to be met whatever the variations δqn(t), a vanishing “volume” contribution is guaranteed only provided
the following equations are obeyed for each of the degrees of freedom qn,

d

dt

∂L(qn(t), q̇n(t))

∂q̇n
− ∂L(qn(t), q̇n(t))

∂qn
= 0, for all n = 1, 2, . . . , N. (9)

Even though discussed explicitly hereafter, it should already be clear that these equations are in general
second order differential equations in time for the functions qn(t), of which the solutions thus determine the
possible classical trajectories in configuration space, depending on a specific choice of boundary conditions.
These equations are the Euler–Lagrange equations of motion of the system.

The specification of boundary conditions may or may not be done according to whether one wishes also
the “surface” term contribution in (7) to vanish identically or not. For instance, keeping the end values
qni = qn(ti) and qnf = qn(tf ) fixed for the time interval [ti, tf ] amounts to considering arbitrary variations
δqn(t) which are necessarily such that

δqn(ti) = 0, δqn(tf ) = 0. (10)

In other words, requiring the variational principle in a “strong” sense, meaning that δS[qn] ought to vanish
including the “surface” contribution, imposes as boundary conditions in order to solve the Euler–Lagrange
equations of motion the following integration constants

qn(ti) = qni , qn(tf ) = qnf . (11)

However quite often such a choice is not convenient, or does not correspond to the actual physical situation
being considered. This is the case for instance when both the initial configuration and generalised velocity
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of the system are specified, qn(ti) = qni and q̇n(ti) = q̇ni , and under such a circumstance the “surface”
contribution to δS[qn] generally does not vanish. Consequently, it is usually preferable to impose the
variational principle in a “weak” sense, meaning that only the “volume” contribution to δS[qn] is required
to vanish, as was discussed above. Imposing the variational principle in a strong sense by also requiring
the “surface” term to vanish is very often too restrictive.

Comments

1. It may readily be established that two Lagrange functions for a same configuration space qn which differ
by a total time derivative of an arbitrary function F (qn) of the configuration space coordinates in fact lead
to identical Euler–Lagrange equations of motion, hence describe identical dynamics in that configuration
space,

L′(qn, q̇n) = L(qn, q̇n) +
dF (qn)

dt
= L(qn, q̇n) + q̇n

∂F (qn)

∂qn
. (12)

This result follows by considering the difference of the Euler–Lagrange equations associated to the two
Lagrange functions, and establishing that this difference vanishes identically irrespective of the choice
for F (qn) (in the context of the exterior differential calculus on the configuration space manifold, the
calculation is equivalent to showing that the squared exterior derivative vanishes identically). But a more
immediate proof notices that the additional term dF (qn)/dt simply induces an additional surface term
contribution to the action S[qn]. Since the Euler–Lagrange equations follow from a volume contribution
only, such a surface term contribution simply cannot affect these equations of motion. This result also
shows that when the dynamics of a system follows from the variational principle, the associated action is
at best defined up to such total derivative contributions.

The fact that the Euler–Lagrange equations of motion are left invariant under such a change in
action implies only that the classical dynamics is independent of such redefinitions of the action. How-
ever, this is not necessarily the case at the quantum level. Indeed, when configuration space possesses
nontrivial topology, in particular non contractible cycles (in other words, when the first homotopy group
or fundamental group of the configuration space is nontrivial), this arbitrariness in the choice of Lagrange
function carries some physical and in principle observable consequences, often leading to extra parameters
of a purely quantum character of which the value must be quantised.

The issue of the inverse variational problem, namely the determination of a Lagrange function given
a set of equations of motion, is also an interesting one, but is not discussed here. Let us only say that
generically, the choice is unique modulo the arbitrariness discussed above, even though there exist large
classes of exceptions for which even an infinite number of different actions all lead to identical equations
of motion.

2. Let us now make more explicit the expression for the Euler–Lagrange equations of motion (9),

∂2L

∂q̇n1∂q̇n2
q̈n2 +

∂2L

∂q̇n1∂qn2
q̇n2 − ∂L

∂qn1
= 0. (13)

In this collection of equations, one for each n = 1, 2, . . . , N , the terms multiplying the generalised acceler-
ations q̈n2 define, at each point in the velocity phase space (qn, q̇n), a N ×N square matrix known as the
Hessian of the Lagrange function,

Hn1n2
(qn, q̇n) =

∂2L(qn, q̇n)

∂q̇n1∂q̇n2
. (14)

Thus depending on whether this matrix is regular or not, these equations may or may not be used to
express all accelerations in terms of the generalised positions and velocities, in the form

q̈n(t) = gn(qn(t), q̇n(t)), (15)

for some functions gn(qn, q̇n). Clearly in such a situation, one recovers equations of motion of the Newton

type, m~̈r(t) = ~F (~r(t), ~̇r(t)), which are second order in time derivatives for each of the degrees of freedom.
Thus a system for which the Lagrange function has a regular Hessian,

det
∂2L

∂q̇n1∂q̇n2
6= 0, (16)
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is said to be a regular system (strictly speaking, it is the Lagrangian used to described the dynamics of
that system which is regular).

In contradistinction, a singular system is one for which the Hessian is singular,

det
∂2L

∂q̇n1∂q̇n2
= 0. (17)

Consequently, the Hessian then possesses at least one eigenvector of vanishing eigenvalue. Denoting such
zero eigenvectors by V nα (qn, q̇n) with the label α distinguishing all such independent zero eigenvectors,
and projecting the Euler–Lagrange equations onto any one of these eigenvectors, one obtains a series of
constraints for the coordinates qn and their velocities q̇n,

V n1

α (qn, q̇n)

[
∂2L(qn, q̇n)

∂q̇n1∂qn2
q̇n2 − ∂L(qn, q̇n)

∂qn1

]
= 0. (18)

Hence singular systems are constrained systems. An important class of constrained systems is that of
gauge invariant systems, of which General Relativity, Yang-Mills theories or string theories are famous
and most relevant and interesting examples.

3. At the classical level, the absolute (numerical) and physical (physical dimension) normalisation of
the action or Lagrange function are totally irrelevant. Rescaling these quantities by a dimensional or
dimensionless factor does not affect the Euler–Lagrange equations of motion which are homogeneous (of
weight one) in the Lagrange function. However when it comes to quantum mechanics, this is no longer
irrelevant and as a matter of fact it is essential that the physical dimension of the action be that of
Planck’s (reduced) constant ~ = h/2π. Likewise, rescaling the absolute normalisation of the action by
a dimensionless factor also has physical consequences or significance. Furthermore, in order that the
quantum dynamics be unitary and thus preserves quantum probabilities, it is a sufficient condition that
the action be a real quantity under complex conjugation, even in the presence of complex valued degrees
of freedom.

2.3 Illustrative examples

2.3.1 Newton’s mechanics of conservative systems

Consider a system of N nonrelativistic massive particles of masses mα, α = 1, 2, . . . , N , and of position
vectors ~rα(t) with respect to some choice of inertial frame (these position vectors may be decomposed in
terms of their cartesian coordinates, since space is taken to be Euclidean in Newton’s mechanics). These
particles are subjected to a collection of forces which are all conservative (which means that those forces
that may not necessarily be conservative develop anyway an identically vanishing power or work, hence
do not contribute to the energy balance of the system; a typical example is that of a force perpendicular
at all times to the velocity ~̇r(t)). Consequently, these forces may be characterised by their total potential
energy V (~rα).

Furthermore, each of the particles possesses a kinetic energy associated to its velocity, leading to
the total kinetic energy of the system,

T (~̇rα) =

N∑

α=1

1

2
mα ~̇rα

2. (19)

In order to reproduce Newton’s equations of motion for this system as Euler–Lagrange equations of
motion for some choice of Lagrange function, let us consider the following combination of T and V ,

L(~rα, ~̇rα) = T (~̇rα) − V (~rα) =

N∑

α=1

1

2
mα~̇rα

2 − V (~rα). (20)

To establish the Euler–Lagrange equations of motion for this choice of Lagrange function, one needs to
consider the partial derivatives of L separately with respect to each of the cartesian coordinates of either

46



~rα or ~̇rα. For a given particle, namely value of α, these quantities combine into a vector quantity again, of
which the cartesian components are these partial derivatives. Hence the compact notation used hereafter
for such partial derivatives, in which a partial derivative with respect to a vector stands for the vector of
which the components are the successive partial derivatives with respect to the components of the vector
with respect to which the vector partial derivative is taken. Therefore, one obtains

∂L

∂~rα
= − ∂V

∂~rα
,

∂L

∂~̇rα
= mα~̇rα, (21)

leading to the Euler–Lagrange equations of motion

mα~̈rα(t) = −∂V (~rα(t))

∂~rα
= ~Fα(~rα(t)). (22)

These are indeed precisely Newton’s equations of motion for the system.

Note that by taking the scalar product of the equation of motion for the particle α with its velocity
~̇rα, and then summing over all particles, any solution ~rα(t) to the equations of motion obeys the following
identity,

N∑

α=1

~̇rα ·
(
mα~̈rα

)
=

N∑

α=1

~̇rα · ~Fα = −
N∑

α=1

~̇rα ·
∂V

∂~rα
. (23)

However since on both sides of this identity one recognises total time derivatives, it may also be expressed
as,

d

dt

[
N∑

α=1

1

2
mα~̇rα

2 + V (~rα)

]
= 0, (24)

namely
d

dt
[T + V ] = 0. (25)

In other words, the quantity
E = T + V, (26)

which defines the total mechanical energy of the system is a constant of motion. This means that the
value it takes for a given solution to the equations of motion is time independent, a constant in time,
even though the specific value that is obtained varies from one solution to another since it depends for
example on the initial values for both the positions, ~rα, and velocities, ~̇rα. Later on, we shall understand
on the basis of Noether’s (first) theorem that the existence of a such a conserved energy is consequence of
a symmetry of the system, namely its invariance under arbitrary constant translations in time.

2.3.2 The free nonrelativistic particle

According to the previous general discussion, the Lagrange function for a single nonrelativistic massive
particle free of the action of any forces is simply

L =
1

2
m~̇r 2. (27)

It thus follows that the equation of motion is

m~̈r(t) = ~0. (28)

Specifying as boundary conditions for these second order differential equations the initial values

~r0 = ~r(t0), ~v0 = ~̇r(t0), (29)

the solution reads
~r(t) = ~r0 + ~v0 (t− t0), ~̇r(t) = ~v0, (30)
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representing a straight line trajectory at a constant velocity. Hence not only is the total energy of the
particle a constant of motion,

E = T =
1

2
m~̇r 2 =

1

2
m~v0

2, (31)

but so is its linear or velocity momentum,

~p(t) = m~̇r(t) = m~v0. (32)

Furthermore its angular-momentum,

~L(t) = ~r(t)× ~p(t) = m~r(t)× ~̇r(t) = m~r0 × ~v0, (33)

is then also a constant of motion. In the same manner as for the energy, we shall understand later on how
conservation of momentum is related to invariance of the system under constant translations in space, and
conservation of angular-momentum to invariance under constant rotations in space.

2.3.3 The nonrelativistic one dimensional harmonic oscillator

Consider a spring of spring constant k allowed to be deformed along a single cartesian direction, with a
mass m attached at one of its ends, the other being kept fixed. Denoting the elongation of the spring by
x (x = 0 being the value for x when the spring in its natural undeformed state, while x < 0 corresponds
to a contracted state of the spring), the force developed by the spring is

F (x) = −kx, F (x) = −kx = −dV (x)

dx
, (34)

with potential energy

V (x) =
1

2
kx2. (35)

Consequently the Lagrange function for this system is simply

L(x, ẋ) =
1

2
mẋ2 − 1

2
kx2, (36)

with as equation of motion
mẍ(t) = −kx(t). (37)

Defining the quantity

ω =

√
k

m
> 0, (38)

one thus obtains the simple linear harmonic equation

ẍ(t) + ω2 x(t) = 0. (39)

Being a linear differential equation of order two, its general solution is the superposition of any two
linearly independent elements in the set of its solutions. Taking for the latter cosω(t− t0) and sinω(t− t0),
where t0 is some time at which the following initial values are specified as boundary conditions,

x(t0) = x0, ẋ(t0) = v0, (40)

it readily follows that the solution is given as

x(t) = x0 cosω(t− t0) +
v0
ω

sinω(t− t0), ẋ(t) = v0 cosω(t− t0)− ωx0 sinω(t− t0), (41)

or equivalently
x(t) = C cos [ω(t− t0)− ϕ0] , ẋ(t) = −Cω sin [ω(t− t0)− ϕ0] , (42)

with

C =

√
x2

0 +
v2
0

ω2
, cosϕ0 =

x0

C
, sinϕ0 =

v0/ω

C
, tanϕ0 =

v0/ω

x0
. (43)
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The latter form makes explicit that the solution is periodic with period T = 2π/ω = 2π
√
m/k, and purely

harmonic since only the mode with the frequency ν = ω/2π is involved, ω thus being its angular frequency.

Because of the acting force of the spring the momentum of the particle is not conserved. However
its energy is and takes the value

E =
1

2
mẋ2(t) +

1

2
kx2(t) =

1

2
mv2

0 +
1

2
kx2

0. (44)

Alternative representations of the general solution are of course possible. One which will become
of relevance when quantising the system is obtained by using as generating basis of the solutions the pure
imaginary exponentials, namely

x(t) =
1√

2mω

[
α0 e

−iω(t−t0) + α∗
0 e

iω(t−t0)
]
. (45)

Here, the normalisation is chosen for later convenience, while α0 stands for a complex valued integration
constant. That the second contribution in this sum involves the complex conjugate coefficient α∗

0 follows
from the requirement that the solution x(t) be real under complex conjugation. Hence the two real
boundary conditions necessary to uniquely specify a solution to the equation of motion are traded for a
single complex valued boundary condition. Of course, the value for α0 may be expressed in terms of a
different choice of integration constants, such as for instance the one made above in terms of x0 and v0.
One finds in that case,

α0 =

√
mω

2

[
x0 +

i

ω
v0

]
, α∗

0 =

√
mω

2

[
x0 −

i

ω
v0

]
. (46)

More generally, defining
α(t) = α0 e

−iω(t−t0), α∗(t) = α∗
0 e

iω(t−t0), (47)

one has

x(t) =
1√

2mω
[α(t) + α∗(t) ] , p(t) = mẋ(t) = − imω√

2mω
[α(t) − α∗(t) ] , (48)

and conversely

α(t) =

√
mω

2

[
x(t) +

i

mω
p(t)

]
, α∗(t) =

√
mω

2

[
x(t) − i

mω
p(t)

]
. (49)

These expressions will become of relevance when considering the Hamiltonian formulation of this system,
and subsequently its canonical quantisation.

2.3.4 The simple pendulum

As an example of a coordinate which is not cartesian, let us turn now to the simple pendulum. Namely
a string of inextensible length ℓ fixed at one end and with a point mass m attached at the other, free to
oscillate in a fixed vertical plane and being kept straight because of its inner tension. The motion of the
mass m is thus circular and of radius ℓ, requiring a single degree of freedom to specify its configuration at
any instant in time, for which we shall take the angular position θ(t) of the mass m measured with respect
to the downward vertical direction. Ignoring any possible friction, the mass m is subjected to only two
forces. One of these is the force of gravity or weight, m~g, of the mass m, a conservative force of potential
energy V (θ) = mgℓ(1− cos θ). The other is the tension T (t) in the string, but being perpendicular at all
times to the velocity of the particle, it does not develop any work nor power and is thus irrelevant as far
as the balance of energy of the system is concerned.

Knowing, on basis of the kinematics of the system, that the norm of the velocity of the mass is
ℓ|θ̇(t)|, it follows from our previous discussion that the Lagrange function for this system is simply

L(θ, θ̇) =
1

2
mℓ2θ̇2 −mgℓ(1− cos θ). (50)
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Consequently
∂L

∂θ
= −mgℓ sin θ,

∂L

∂θ̇
= mℓ2θ̇, (51)

so that the Euler–Lagrange equation of motion of the pendulum is

θ̈(t) +
g

ℓ
sin θ(t) = 0, (52)

a nonlinear differential equation of order two at the basis of the construction of Jacobi’s elliptic functions.
This is indeed also the equation which follows from Newton’s equation of motion for this system. From
the latter equation, one may also establish the value for the tension T (t) in the string,

T (t) = mg

[
ℓ

g
θ̇2(t) + cos θ(t)

]
. (53)

In the limit of small oscillations, such that θ ≪ 1 radian, by linearisation with sin θ ≃ θ + · · · and
cos θ ≃ 1− θ2/2 + · · · , the Lagrange function and equation of motion become

L ≃ 1

2
m
(
ℓθ̇
)2

− 1

2
m
(g
ℓ

)
(ℓθ)

2
, (54)

θ̈ +
g

ℓ
θ = 0. (55)

These expressions are recognised to be equivalent to those for a harmonic oscillator of degree of freedom
(ℓθ) and angular frequency

ω =

√
g

ℓ
. (56)

Hence the period of a simple pendulum in the limit of small oscillations is

T = 2π

√
ℓ

g
. (57)

It is by observing and then measuring such a period of a chandelier in a church in Pisa where he attended
Mass, that Galilei Galileo started thinking about mechanics... The rest is history.

2.3.5 The charged particle in a background electromagnetic field

Let us consider a nonrelativistic particle of mass m and position vector ~r(t) (with respect to some inertial
frame), subjected to conservative forces of which the total potential energy is denoted V (~r ). In addition,
the particle possesses a charge q, and is subjected to a background electromagnetic field, of electric field
~E(t, ~r ) and magnetic field ~B(t, ~r ). Associated to these fields one has the scalar and vector electromagnetic

potentials Φ(t, ~r ) and ~A(t, ~r ), respectively. One of the purposes of the present illustration is to recover
the relation existing between these potentials and the electric and magnetic fields. This will be done
by deriving the equations of motion given a Lagrange function, and identifying these equations with the
Lorentz force developed by the electric and magnetic fields.

In that spirit, let us consider the following Lagrange function,

L(~r, ~̇r; t) =
1

2
m~̇r 2 − qΦ(t, ~r ) + q~̇r · ~A(t, ~r )− V (~r ). (58)

Except perhaps for the term involving the vector potential ~A(t, ~r ), this Lagrange function is recognised
once again to be of the form T−V , with T the nonrelativistic kinetic energy of the particle, and V standing
for the total potential energy comprised, in the present case, of the potential energy V (~r ) as well as the
term qΦ(t, ~r ). Indeed, in the static case, it is well known that the scalar electromagnetic potential Φ(~r )

is related to the electric field by ~E(~r ) = −~∇Φ(~r ), while the potential energy of a charge q in such a field
is qΦ(~r ). Even for a time dependent electromagnetic scalar potential, we have kept this contribution in
the Lagrange function. Note also that we have here an example of a Lagrange function which carries an
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explicit time dependence when the background fields Φ(t, ~r ) and ~A(t, ~r ) vary in time, which is certainly

the case when the electromagnetic fields ~E(t, ~r ) and ~B(t, ~r ) vary in time. An example is that of a passing
electromagnetic wave acting on the charged particle.

Since we are to take partial variations with respect to the components of the position and velocity
vectors, ~r and ~̇r, let us now make these contributions explicit in the expression of the Lagrange function,
and denote the associated cartesian components as xi and ẋi, with i = 1, 2, 3, while the index i may be
freely raised or lowered (since the metric is Euclidean, given by δij). Then

L(xi, ẋi; t) =
1

2
m(ẋi)2 − qΦ(t, xi) + qẋiAi(t, x

i)− V (xi). (59)

Once again, here it is understood that the implicit summations over repeated indices in a product are to
be summed over all their values, i = 1, 2, 3 (hence this also applies to the term in (ẋi)2).

One then readily has

∂L(xi, ẋi; t)

∂xi
= −q ∂Φ(t, xi)

∂xi
+ qẋj

∂Aj(t, x
i)

∂xi
− ∂V (xi)

∂xi
, (60)

∂L(xi, ẋi; t)

∂ẋi
= mẋi + qAi(t, x

i), (61)

hence
d

dt

∂L(xi, ẋi; t)

∂ẋi
= mẍi + qẋj

∂Ai(t, x
i)

∂xj
+ q

∂Ai(t, x
i)

∂t
. (62)

Consequently, the Euler–Lagrange equations of motion become,

mẍi(t) = −q ∂Φ(t, xi(t))

∂xi
− q ∂Ai(t, x

i(t))

∂t
+ qẋj(t)

[
∂Aj(t, x

i(t))

∂xi
− ∂Ai(t, x

i(t))

∂xj

]
− ∂V (xi(t))

∂xi
. (63)

The term in the gradient of the potential energy V (xi) is of course identified with the (sum of the)
mechanical force(s) to which the particle is subjected,

Fi(x
i) = −∂V (xi)

∂xi
, ~F (~r ) = −~∇V (~r ). (64)

The remaining contributions in the r.h.s. of the above equations of motion should thus be identifiable with
the Lorentz force,

~FLorentz(~r, ~̇r; t) = q ~E(t, ~r ) + q~̇r × ~B(t, ~r ). (65)

Consequently, the electric field is to be defined according to

Ei(t, x
i) = −∂Φ(t, xi)

∂xi
− ∂Ai(t, x

i)

∂t
, ~E(t, ~r ) = −~∇Φ(t, ~r )− ∂ ~A(t, ~r )

∂t
. (66)

For what concerns the magnetic field, let us set

~B(t, ~r ) = ~∇× ~A(t, ~r ), Bi(t, x
i) = ǫijk

∂Ak(t, x
i)

∂xj
, (67)

ǫijk being the totally antisymmetry invariant tensor in three dimensional Euclidean space, with the value
ǫ123 = +1. Conversely, one then has

∂Aj(t, x
i)

∂xi
− ∂Ai(t, x

i)

∂xj
= ǫijk Bk. (68)

Consequently, the contributions in ẋi to the equations of motion are identified as

ẋj
[
∂Aj(t, x

i)

∂xi
− ∂Ai(t, x

i)

∂xj

]
= ẋjǫijkBk(t, x

i) =
(
~̇r × ~B(t, ~r )

)i
. (69)
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In conclusion, combining all the contributions and writing the equations in vector form again, we
have finally obtained for the vector equation of motion of the particle

m~̈r(t) = q ~E(t, ~r(t)) + q~̇r(t) × ~B(t, ~r(t)) + ~F (~r(t)), (70)

where the electric and magnetic fields making up the electromagnetic field are related to the scalar and
vector electromagnetic potentials by,

~E(t, ~r ) = −~∇Φ(t, ~r ) − ∂ ~A(t, ~r )

∂t
, ~B(t, ~r ) = ~∇× ~A(t, ~r ). (71)

This analysis has thus established that the Lagrange function (58) indeed describes the dynamics of a
nonrelativistic charged massive particle subjected to a background electromagnetic field, as well as some
mechanical conservative forces. But additionally, we have identified the relations between the electromag-
netic field, namely its electric and magnetic components ~E and ~B, with the associated scalar and vector
components, Φ and ~A, of the electromagnetic potential. Note that the Lagrange function is given in terms
of the latter and not the electric and magnetic fields. The reasons for this feature are far reaching and
physically most significant, but are not discussed here.

Let us also take the opportunity to discuss here different aspects related to these electromagnetic
potential components. Given the fundamental identities of vector analysis,

~∇ · (~∇× ~V (~r )) = 0, ~∇× ~∇S(~r ) = ~0, (72)

valid for any vector, ~V (~r ), and scalar, S(~r ), fields, it follows that given the relations in (71) one has for

the electric and magnetic fields associated to the scalar and vector potentials Φ and ~A

~∇× ~E +
∂ ~B

∂t
= ~0, ~∇ · ~B = 0, (73)

precisely the two homogeneous Maxwell equations of electromagnetism. In other words, the general so-
lution to the homogeneous Maxwell equations is given in the form (71) in terms of the scalar and vector

electromagnetic potentials Φ and ~A (nevertheless, this still leaves to solve the two inhomogeneous Maxwell
equations in which the source terms contribute, namely the scalar charge and vector current densities).
This then raises the issue of the uniqueness of these electromagnetic potentials.

Once again because of the second identity in (72), in fact given any two fields ~E and ~B obeying
the homogeneous Maxwell equations (73) there exist an infinity of electromagnetic potentials reproducing
these fields through the relations (71). Indeed, it is readily checked that the following redefinition of the
electromagnetic potentials

Φ′(t, ~r ) = Φ(t, ~r )− ∂χ(t, ~r )

∂t
, ~A′(t, ~r ) = ~A(t, ~r ) + ~∇χ(t, ~r ), (74)

where χ(t, ~r ) is an arbitrary function of time and space (possibly subjected to boundary conditions at

infinity), leads back to the same electric and magnetic fields as do the potentials Φ and ~A. This symmetry
transformation represents a huge freedom in the choice of electromagnetic potentials, known as a local
gauge symmetry. The idea of a local or gauge symmetry entails the idea that the parameters of the
symmetry transformation may be not only constants (as in ordinary symmetry transformations; think of a
rotation in space of fixed rotation angle and direction), but may be in general arbitrary functions of space
and time, thus corresponding to symmetry transformations which differ, though in a continuous fashion,
from one point to the next in space or in time. This is certainly an extreme realisation of the concept of
symmetry. And in fact this concept of local or gauged symmetries (i.e., made local in time and space) has
proved to be central to all the fundamental interactions. As it turns out, the electromagnetic interaction
is in fact the physics of the electromagnetic potentials Φ and ~A viewed as scalar and vector fields (in a

relativistic context, they are indeed the components of a 4-vector, Aµ = (Φ/c, ~A), µ = 0, 1, 2, 3, of which
the time component, µ = 0, is the scalar potential, and the space components, µ = i = 1, 2, 3, the vector
potential; here c is the velocity of light in vacuum) rather than that of the electric and magnetic fields ~E

and ~B which are “only” derived quantities but not the fundamental quantum fields of the electromagnetic
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interaction (the photon is the quantum of the electromagnetic potential fields, and not as such that of

the electric or magnetic fields). The dynamics of the electromagnetic potential fields Φ and ~A must be
formulated in such a manner that it is invariant under the gauge symmetry transformations (74). As a
passing remark, let us also mention that it is precisely this gauge symmetry which is the reason why the
photon, the quantum of the electromagnetic potential fields, must be exactly massless.

Having identified the gauge symmetry of the scalar and vector potentials, let us also consider how
the Lagrange function (58) transforms under a gauge transformation (74). Denoting by L′ the Lagrange

function in (58) associated to the transformed potentials Φ′ and ~A′, and by L that associated to the non

transformed potentials Φ and ~A, one simply has,

L′ − L = −q
(
−∂χ
∂t

)
+ q~̇r · ~∇χ =

d

dt
(qχ) . (75)

Hence the two Lagrange functions differ only by a total time derivative. We know that in such a case they
share identical equations of motion, and indeed these equations of motion are expressed solely in terms of
the electric and magnetic fields which are gauge invariant in the first place. The gauge symmetry of the
electromagnetic interaction is thus an example of a symmetry transformation under which the Lagrange
function is invariant up to a surface term.

It is also of interest to consider the evolution in time of the energy of the particle for the present
system. Knowing the forces to which it is subjected, we may easily identify those forces which develop
a nonvanishing power or work, by projecting the forces onto, say, the velocity ~̇r(t) (in the case of an

evaluation of the power of the force). Since the magnetic component of the Lorentz force, q~̇r× ~B, is always
perpendicular to the velocity, it is clear that the magnetic field, or this magnetic force never develops
any power nor work, and thus does not contribute to the energy balance in the system. Thus only the
(total) potential energy V (~r ) of the mechanical force(s) as well as the electromagnetic potential energy
qΦ(t, ~r ) associated to the scalar potential should be considered in combination with the kinetic energy to
characterise the total mechanical energy of the particle,

E =
1

2
m~̇r 2 + qΦ(t, ~r ) + V (~r ). (76)

However, in the case that at least one field among the electric or the magnetic fields is not static, namely
carries a time dependence, and thus so do also the scalar and vector potentials, one ought to expect that
this total mechanical energy of the particle is not conserved (imagine a passing electromagnetic wave, thus
setting into motion, or at least a different motion, the particle with otherwise a conserved energy). Indeed,
a simple calculation of the rate of change of the total mechanical energy finds

dE

dt
= q

∂Φ

∂t
− q~̇r · ∂

~A

∂t
. (77)

Hence indeed, it is only when both the scalar and vector potentials are static, and thus so are also the
electric and magnetic fields, namely are time independent, that the total mechanical energy of the particle
is a constant of motion.

3 Hamiltonian Dynamics

As a motivation for the first of the definitions given hereafter and laying the basis for the Hamiltonian
formulation of dynamical systems, let us just say here that one of the purposes of this formalism is to
turn the second order in time differential Euler–Lagrange equations of motion into first order ones, which
is a priori an advantage when it comes to constructing explicit solutions. However, this comes with the
necessity to consider twice as many functions of time to solve for in comparison with the original set of
generalised coordinate functions qn(t) (but on the other hand after all, the Lagrange function already
depends on the variables qn and q̇n), hence the next definition. Let us also mention here in passing that
all mathematical studies of chaotic and dynamical systems are best considered within the Hamiltonian
formalism, since it allows for powerful mathematical concepts and tools to be brought to bear on difficult
issues, leading to the beautiful and still largely to be explored and understood field of symplectic geometry
in differential geometry, which, in conjunction with concepts and techniques developed within quantum
physics and quantum field theories has seen in recent years important progress and some profound results.

53



3.1 Conjugate momenta and phase space

Given the system’s configuration space parametrised by the coordinates qn, and its dynamics determined
from the Lagrange function L(qn, q̇n), by definition the conjugate momenta, pn, of the system, namely a
set of variables each of which is conjugate to one of the degrees of freedom, qn, are defined by the relations,

pn(q
n, q̇n) =

∂L(qn, q̇n)

∂q̇n
, n = 1, 2, . . . , N. (78)

Rather than the so-called velocity phase space spanned by the pairs of variables (qn, q̇n) (n = 1, 2, . . . , N),
one then considers the (momentum) phase space, the 2N dimensional manifold spanned by the pairs
of variables (qn, pn) (n = 1, 2, . . . , N), namely the configuration space coordinates and their conjugate
momenta. In the general case, phase space is the cotangent bundle of the configuration space manifold
MN . However, there are dynamical systems of great interest, both to mathematics and to physics, for
which this is not the case, for instance systems of which phase space is compact on account of some
nontrivial symmetries.

This definition and concept of conjugate momentum calls for a series of comments.

Comments

1. Based on the definition of the conjugate momenta, one readily notices that the Euler–Lagrange equations
of motion may also be written as

ṗn =
∂L

∂qn
. (79)

2. A priori , the conjugate momenta are functions of the velocity phase space (qn, q̇n), pn(q
n, q̇n). But

since one would like to trade the velocity phase space for the momentum phase space spanned by the
local variables (qn, pn), one needs to consider the conditions under which it is possible to express the
generalised velocities q̇n in terms of the phase space variables (qn, pn). Thus locally in velocity phase space
this requires to consider the relations between the pn’s and the q̇n’s, which in the neighbourhood of any
point qn of configuration space requires to consider the following N ×N square matrix,

∂pn1

∂q̇n2
=

∂2L

∂q̇n1∂q̇n2
, (80)

which thus coincides with the Hessian of the Lagrange function of the system. Consequently in the case of
a regular system all such relations may be inverted and all generalised velocities q̇n expressed as functions
of the phase space coordinate variables (qn, pn),

pn(q
n, q̇n) ←→ q̇n(qn, pn). (81)

As an illustration of this argument in a most simple case, imagine that the dependence of the conjugate
momenta on the velocities is purely linear, of the form

pn(q
n, q̇n) = Hnn′(qn)q̇n

′

. (82)

In such a case it is clear that these relations are invertible provided the N×N square matrix of coefficients
Hnn′(qn) is regular. But this matrix coincides precisely with the quantities ∂pn/∂q̇

n′

considered in the
general discussion. In this example, the relations between the pn’s and the q̇n’s are linear, whereas in
the general case they are not. But the argument still applies since the problem of inversion is to be
considered at each point locally in velocity phase space, and by working in the tangent space to that point
precisely similar linear relations are involved of which the coefficients are the entries of the Hessian matrix
of L(qn, q̇n).

On the other hand, if the Hessian is singular, it then follows that the relations between the pn’s
and the q̇n’s may not all be inverted. As we have seen previously, such a situation is characteristic of
constrained systems, and indeed this lack of independence of the conjugate momenta pn then translates
into a series of constraints on phase space of the form φ(qn, pn) = 0 which must properly be dealt with
when considering the Hamiltonian formulation of such systems, which include gauge invariant dynamics,
and their subsequent quantisation.
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3. Even though two Lagrange functions for a same configuration space which differ by a total time
derivative of an arbitrary function of qn lead to identical equations of motion,

L′(qn, q̇n) = L(qn, q̇n) +
dF (qn)

dt
= L(qn, q̇n) + q̇n

∂F (qn)

∂qn
, (83)

the conjugate momenta associated to each do not coincide,

p′n = pn +
∂F (qn)

∂qn
. (84)

Once again, even though this fact does not lead to physical consequences at the classical level, when
configuration space has a nontrivial topology such redefinitions of the action lead to observable effects at
the quantum level.

3.2 Canonical Hamiltonian and Hamiltonian equations of motion

As a motivation for the next definition, let us consider the differential of the Lagrange function, and aim
to make the rôle of the conjugate momenta explicit in that quantity,

dL(qn, q̇n) = dqn
∂L

∂qn
+ dq̇n

∂L

∂q̇n

= dqn
∂L

∂qn
+ d

[
q̇n

∂L

∂q̇n

]
− q̇nd ∂L

∂q̇n
, (85)

hence

d

[
q̇n

∂L

∂q̇n
− L

]
= q̇nd

∂L

∂q̇n
− dqn ∂L

∂qn
. (86)

Since in each of these terms except for the very last one a contribution of pn = ∂L/∂q̇n is now made
explicit, let us use the Euler–Lagrange equation to complete the last term as follows,

d [q̇npn − L] = q̇ndpn − dqn
d

dt

∂L

∂q̇n
+ dqn

[
d

dt

∂L

∂q̇n
− ∂L

∂qn

]

= q̇ndpn − dqnṗn + dqn
[
ṗn −

∂L

∂qn

]
, (87)

hence the following definition.

The canonical Hamiltonian of the system is the quantity defined hereafter over phase space,
constructed through the Legendre transform of the Lagrange function with respect to the conjugate mo-
menta pn,

H0(q
n, pn) = q̇npn − L(qn, q̇n) [Legendre transform of L], (88)

dH0 = q̇ndpn − dqnṗn
[
+dqn

(
ṗn −

∂L

∂qn

)]
. (89)

Given the above discussion the following point should be emphasized. It may appear odd that in
the definition of the canonical Hamiltonian its dependence is explicitly given to be in terms of the phase
space coordinates, (qn, pn), rather than the velocity phase space ones, (qn, q̇n), since indeed the r.h.s. of
the definition in (88) is a combination of quantities which in the general case are functions of the latter
variables and not the phase space ones. The truth of the matter is that the calculations leading to (87)
show that the quantity defining H0 is indeed a function of phase space, since its differential is expressible
solely in terms of the differentials in dqn and dpn only. This means that any dependence of H0 on q̇n,
even in the case of a singular system for which the relations between the pn’s and the q̇n’s may not all be
inverted, is through the dependence of H0 on pn only and the latter’s dependence on the q̇n’s. Irrespective
of whether the system is regular or singular, the canonical Hamiltonian always reduces to a function defined
over phase space. As we shall see hereafter, the Hamiltonian generates time evolution of the dynamics
in phase space. In the case of a singular systems one has to extend the canonical Hamiltonian in order

55



to induce a time evolution consistent with the constraints (Dirac’s analysis of constraints [1, 3]). In the
case of a regular system, the canonical Hamiltonian suffices. Only the latter case will thus explicitly be
discussed hereafter.

Consequences

1. When one considers classical trajectories which thus obey the Euler–Lagrange equations of motion, the
differential of the quantity which defines the canonical Hamiltonian reads

dH0 = q̇n dpn − ṗn dq
n. (90)

Consequently, by considering separate variations of the canonical Hamiltonian H0(q
n, pn) in either one of

the qn’s or one of the pn’s, one identifies from this relation the Hamiltonian equations of motion of
the system for each of its degrees of freedom labelled by n = 1, 2, . . . , N ,

q̇n(t) =
∂H0(q

n(t), pn(t))

∂pn
, ṗn(t) = −∂H0(q

n(t), pn(t))

∂qn
, n = 1, 2, . . . , N. (91)

Note that these are indeed first order in time differential equations. For each of the degrees of freedom
n = 1, 2, . . . , N , the second order Euler–Lagrange differential equations have been transformed into twice
as many first order Hamiltonian differential equations. These equations have to be supplemented with a
choice of boundary conditions. The number of these boundary conditions thus remains the same in both
cases, namely two boundary conditions per degree of freedom.

2. The inverse Legendre transformation or Hamiltonian reduction of phase space. In the case of
regular systems, the definition of the conjugate momenta, pn(q

n, q̇n) = ∂L(qn, q̇n)/∂q̇n, may be inverted to
express the generalised velocities in terms of the phase space coordinates, q̇n(qn, pn). On the other hand,
we now also have, among the Hamiltonian equations of motion, those for the degrees of freedom qn(t)
given in terms of equations for q̇n(t) in which the r.h.s. is a function of the phase space variables again.
Therefore, one may conversely use the first ensemble of Hamiltonian equations of motion to solve for the
conjugate momenta in terms of the variables (qn, q̇n). Doing so, one is bound to recover the dependence
pn(q

n, q̇n) obtained from the definition of the conjugate momenta,

q̇n(qn, pn) =
∂H0(q

n, pn)

∂pn
←→ pn(q

n, q̇n) =
∂L(qn, q̇)

∂q̇n
. (92)

One may then substitute this expression for the conjugate momenta pn(q
n, q̇n) back into the second

ensemble of Hamiltonian equations of motion, ṗn = −∂H0/∂qn, to obtain again the Euler–Lagrange
equations of motion of the Lagrangian formulation of the dynamics based on the original Lagrange function
L(qn, q̇n). Establishing this fact is straightforward and is left to the reader.

3. From the Hamiltonian point of view, phase space defines the space of states of the system. Indeed,
given initial values for both qn(t) and pn(t), the corresponding solution to the Hamiltonian equations of
motion defines in a unique manner a specific trajectory in phase space along which the system is evolving
in time. Any point on that trajectory then describes the state in which the system is to be found at that
time. By extension, phase space is the ensemble of all possible states in which the system may be found.
In the Lagrangian formulation, configuration space as such is not sufficient to completely characterise the
states of the system, since information either for the velocities or the configurations at different times are
also required because of the second order nature of the equations of motion. This identification of phase
space with the space of states of the system will extend later to the quantum context in terms of a space
of quantum states.
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3.3 Phase space dynamics and Poisson brackets

3.3.1 Poisson brackets

Let us now consider an arbitrary observable defined over phase space, f(qn, pn; t), which may even possess
some explicit time dependence. Most observables are constructed as composite quantities out of the
“elementary”, “fundamental” or “basic” phase space coordinates (qn, pn). As an example think of the
total mechanical energy of some ensemble of particles. Clearly, it could be that such an observable includes
an explicit time dependence (the previous discussion of the particle in a time dependent background field
provides an illustration with as observable the energy), which is the reason why the possibility is allowed
in the discussion hereafter.

The rate of change in time in the value of the observable, in other words its equation of motion, is
readily established,

df

dt
=
∂f

∂t
+

∂f

∂qn
q̇n +

∂f

∂pn
ṗn =

∂f

∂t
+

∂f

∂qn
∂H0

∂pn
− ∂f

∂pn

∂H0

∂qn
. (93)

This results thus justifies the following definition.

The Poisson bracket of two phase space observables f and g is, by definition, the quantity,

{f, g} =
∂f

∂qn
∂g

∂pn
− ∂f

∂pn

∂g

∂qn
. (94)

This definition calls for a series of comments.

Comments

1. As always in these notes unless otherwise specified, whenever indices are repeated in a product, it is
implicitly understood they are summed over their whole range of values. Thus in the above definition, the
indices n appearing in the partial derivatives are summed over the range n = 1, 2, . . . , N .

2. One should also keep in mind that these Poisson brackets are defined purely in terms of the dependence
of the observables on the phase space variables qn and pn, irrespective of their dynamics or whatever
their time dependence. Thus in fact these Poisson brackets are defined “at equal time”, meaning that the
arguments qn and pn of the observables should be considered at an identical time t for both observables.
Even though the notation does not make that explicit, this point has to be kept in mind. In particular, at
the quantum level Poisson brackets are put into correspondence with commutation relations of operators,
and in the same manner, these commutations relations are then defined “at equal time”.

3. In terms of the definition of Poisson brackets, it is clear that the equation of motion for any observable
f(qn, pn; t) may be expressed more compactly as,

df

dt
=
∂f

∂t
+ {f,H0} . (95)

Besides their obvious notational advantage, Poisson brackets embody essential features of dynamics and
the geometry of phase space for dynamical systems, not to mention their central rôle in the programme of
canonical quantisation through the correspondence principle.

As examples of the above general discussion, let us reconsider the Hamiltonian equations of motion
for the “elementary” phase space degrees of freedom. By a direct evaluation of the Poisson brackets using
their definition, one readily finds

q̇n = {qn, H0} =
∂H0

∂pn
, ṗn = {pn, H0} = −∂H0

∂qn
. (96)

These are indeed the correct expressions. Furthermore, let us consider as observable the (canonical)
Hamiltonian itself,

dH0

dt
= {H0, H0} = 0. (97)
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Hence as mentioned previously, having chosen the Lagrange function not to possess any explicit time
dependence, it follows that the Hamiltonian of the system is always a constant of motion and conserved.
When the evolution parameter t coincides with the physical time, the Hamiltonian coincides with the
energy of the system, which is then conserved. The fact that the Hamiltonian coincides with the energy
in such circumstances will be illustrated hereafter.

3.3.2 Algebraic properties of Poisson brackets

A direct evaluation of the Poisson brackets for the “elementary” phase space coordinates finds

{qn1 , qn2} = 0, {qn1 , pn2
} = δn1

n2
,

{pn1
, qn2} = −δn2

n1
, {pn1

, pn2
} = 0. (98)

These brackets are known as canonical brackets, while phase space coordinates obeying such brackets
are known as canonical coordinates.

Given phase space observables f , g and h, and constants c, c1 and c2, it may be shown that Poisson
brackets obey the following properties which are purely of an algebraic character,

a) Antisymmetry: {f, g} = −{g, f}.
b) Neutral element: {f, c} = 0.

c) Linearity: {c1f + c2g, h} = c1 {f, h}+ c2 {g, h}.
d) Leibnitz rule: {fg, h} = {f, h} g + f {g, h}.
e) Jacobi identity: {{f, g} , h}+ {{g, h} , f}+ {{h, f} , g} = 0.

Given these properties and the values (98) of the Poisson brackets for the “elementary” phase space
coordinates qn and pn, the evaluation of Poisson brackets of any two composite observables becomes a
purely algebraic problem, with which one quickly becomes familiar through some solid practice.

Remarks

1. Even though this point will not at all be discussed here, let us only mention that the structure of Poisson
brackets with which phase space comes equipped is in fact directly related to the existence of a symplectic
geometry on phase space. This fundamental property enables a purely geometric and coordinate free
approach to dynamical systems, which has provided profound and important insights into the dynamics of
complicated nonlinear systems, and is an essential tool in the mathematical studies of chaotic dynamical
systems.

2. One may abstract from the above specific context the algebraic properties of Poisson brackets. There
exist other mathematical contexts where identical algebraic properties of a “bracket” arise. In particular,
note that the algebra of commutators of matrices, and more generally of linear operators on a vector space,
share precisely the same properties as those listed above for Poisson brackets. This remark is at the basis
of the correspondence principle between classical and quantum physics, as laid out by P. A. M. Dirac in
1931 in his famous book on quantum mechanics, The Principles of Quantum Mechanics (Oxford University
Press, 1931), which has known many reprintings. Reading its first few chapters is a must, and a jewel
of clarity very much characteristic of most of Dirac’s writings. This very point will also be our starting
point when addressing the canonical quantisation of a system of which the dynamics is defined through
the action principle.

3. There exists a famous theorem due to Darboux, which states that whenever one has a phase space
which thus comes equipped with such a bracket structure, namely a symplectic geometry, one may always
find locally at each point of phase space a system of canonical coordinates, namely a system of coordinates
for which the brackets take the values in (98). In the above discussion starting from the Lagrange function
and introducing conjugate momenta, the pairs of phase space coordinates (qn, pn) for each n = 1, 2, . . . , N
are always canonical.
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3.3.3 The Hamiltonian formulation of dynamical systems

In conclusion, the above discussion has established that the Hamiltonian formulation of any dynamical
system is characterised by three essential data, which will be put in direct correspondence with analogous
data when considering the quantum dynamics of such a system. These data are:

· space of states: phase space: (qn, pn)

· algebraic structure: Poisson brackets: Canonical brackets
(symplectic geometry) {qn1 , pn2

} = δn1
n2

· time evolution: Hamiltonian H : df
dt = ∂f

∂t + {f,H}

In fact, all this information may finally be “encoded” into an action principle but this time defined on
phase space rather than configuration space only, in terms of a first-order action (first-order because it
depends only linearly on the first order time derivatives of the phase space coordinates). Namely, it is
straightforward to check that the Hamiltonian equations of motion for both q̇n and ṗn follow from the
variational principle (in a weak sense again) applied to the following first-order phase space action,

S[qn, pn] =

∫ tf

ti

dt

[
q̇npn − H(qn, pn) +

dF (qn, pn)

dt

]
. (99)

What is remarkable about this action is that all three data listed above play a rôle in its expression. First,
there is the space of states through the coordinates (qn, pn) parametrising that space. Next, the Poisson
bracket structure is directly related1 to the terms linear in the time derivatives of qn or pn (in the above
expression, this is the term in q̇npn). And finally the generator of time evolution through Poisson brackets,
namely the Hamiltonian is explicitly the opposite of the sum of all those terms in the action which do not
involve any time derivatives of either qn or pn.

In the above action, the function F (qn, pn) is arbitrary, and is introduced once again because actions
differing by total time derivatives possess identical equations of motion. By adjusting the choice of that
total time derivative, alternative and sometimes more convenient forms of the action may be considered.
In the case of nontrivial topology in configuration (and phase) space, such redefinitions have physical
consequences at the quantum level. Note also that in contradistinction to the Lagrangian formulation, the
function F (qn, pn) may now be a function of both the qn’s and the pn’s, which allows to specify through
the variational principle in a strong sense larger classes of boundary conditions than is possible with the
Lagrangian action. Finally, let us just mention that the Hamiltonian formulation of a dynamical system is
in a certain sense more “fundamental” than its Lagrangian formulation, especially when singular systems
are being considered.

As an example of a redefinition by a total time derivative, consider the function F (qn, pn) = − 1
2q
npn,

in which case the above action becomes

S2[q
n, pn] =

∫ tf

ti

dt

[
1

2
(q̇npn − qnṗn)−H(qn, pn)

]
. (100)

It is interesting to put this expression in relation to that of the action for a charged nonrelativistic particle
confined to a plane and subjected to a static and homogeneous magnetic field ~B perpendicular to that
plane, namely the system of the “pure Landau problem”,

S[x, y] =

∫ tf

ti

dt

[
1

2
m
(
ẋ2 + ẏ2

)
− 1

2
qB (ẋy − xẏ)

]
, (101)

where (x, y) denote cartesian coordinates in the plane. In this expression the choice of gauge for the vector

potential is such that ~A(~r ) = ~B × ~r/2, in a three dimensional notation, which is known as the circular
or symmetric gauge, since it is covariant under rotations in the plane perpendicular to the magnetic field.

1Proof of this statement is not provided here, but may be found in Ref.[3]. In any case, this fact may be established
without too much difficulty.
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Other choices of gauge, in the form ~A(t, ~r ) = ~B × ~r/2 + ~∇χ(t, ~r ), χ(t, ~r ) being an arbitrary function, are
also possible, and simply correspond to redefining the Lagrange function by a total time derivative term
with F (t, ~r ) = qχ(t, ~r ). In the limit of a vanishing mass m (or a ratio B/m growing infinite), this action
reduces to

lim
m→0

S2[x, y] =

∫ tf

ti

dt

[
−1

2
qB (ẋy − xẏ)

]
. (102)

Compared to the above first-order Hamiltonian action, we see that the system is already in Hamiltonian
form, with a two dimensional phase space which coincides with the original configuration space of the plane,
with canonically conjugate coordinates that may be taken to be, for instance, x and (−qBy), and with an
identically vanishing Hamiltonian (had a potential energy term V (x, y) been introduced in the action (101),
this potential energy would now play the rôle of the Hamiltonian). Consequently, no classical dynamics
survives in this limit (the particle remains pinned to a position, or in actual fact onto the equipotentials of
the potential energy V (x, y) were one to be present), while one has the Poisson bracket {x, y} = −1/qB.
Since when quantising the system these brackets become commutation relations and coordinates become
operators, this system provides the simplest illustration of a noncommutative geometry in two dimensions,
since the cartesian coordinates x and y then do no longer commute.

3.4 Illustrative examples

3.4.1 The nonrelativistic particle

Let us consider the nonrelativistic particle described by the Lagrange function

L =
1

2
m~̇r 2 − V (~r ). (103)

The momentum conjugate to the degrees of freedom ~r is

~p =
∂L

∂~̇r
= m~̇r. (104)

This quantity thus coincides, in this specific case, with the ordinary linear or velocity momentum of a
particle. Clearly, since the velocities may be inverted in terms of the momenta, ~̇r = ~p/m, this is also a
regular system.

From the general discussion, we know at once that the cartesian components of both the position
vector, ~r, namely xi with i = 1, 2, 3, and the conjugate momentum vector, ~p, namely pi, are canonically
conjugated coordinates of the phase space (~r, ~p ) of this system. Hence we have the Poisson brackets (as is
customary, only the nonvanishing Poisson brackets are displayed),

{
xi, pj

}
= δij . (105)

Furthermore, a direct calculation finds that the canonical Hamiltonian of the system is,

H = ~̇r · ~p− L =
1

2m
~p 2 + V (~r ), (106)

which is seen to coincide with the total mechanical energy of the particle. This is as it should be since the
time evolution parameter t is in this case also the physical time. And of course, this energy is a constant
of motion for this conservative system.

Having identified the necessary three data for the Hamiltonian formulation of the dynamics, the
Hamiltonian equations of motion readily follow, with

~̇r = {~r,H} =
1

m
~p, ~̇p = {~p,H} = −~∇V (~r ). (107)

The first of these vector equations may indeed be solved for ~p in terms of ~̇r, ~p = m~̇r, a representation
which when substituted into the second Hamiltonian equation of motion recovers the Newton equation for
this system,

m~̈r = −~∇V (~r ) = ~F (~r ). (108)
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Consequently all the other considerations already developed earlier when this type of system was discussed
follow as well. For what concerns the possible conservation of the linear momentum or the angular-
momentum now in presence of the potential energy V (~r ), one finds

~̇p = −~∇V (~r ) = ~F (~r ), (109)

~̇L =
d

dt
[~r × ~p ] = −~r × ~∇V (~r ) = ~r × ~F (~r ). (110)

Consequently, the linear momentum is conserved only if the particle is free, ~F = ~0, while the angular-
momentum may be conserved even in the presence of a nonvanishing force provided only it is radial, namely
always colinear with the position vector ~r. In either of these two situations leading to a conservation law,
it is a symmetry law of space which is again at work.

3.4.2 The one dimensional harmonic oscillator

Returning to the one dimensional harmonic oscillator, this is but an example of the previous general
discussion particularised to a one degree of freedom system, namely the coordinate x(t) ∈ R, with

L =
1

2
mẋ2 − 1

2
mω2x2. (111)

Consequently, it readily follows that

p = mẋ, ẋ =
1

m
p, {x, p} = 1, H =

1

2m
p2 +

1

2
mω2x2, (112)

leading to the equations of motion,

ẋ = {x,H} =
1

m
p, ṗ = {p,H} = −mω2x. (113)

From the previous discussion of this system, the solutions are of the form

x(t) =
1√

2mω

[
α0e

−iω(t−t0) + α∗
0e
iω(t−t0)

]
, p(t) = −i mω√

2mω

[
α0e

−iω(t−t0) − α∗
0e
iω(t−t0)

]
,

x(t) =
1√

2mω
[α(t) + α∗(t)] , p(t) = −i mω√

2mω
[α(t)− α∗(t)] , (114)

hence

α(t) =

√
mω

2

[
x(t) +

i

mω
p(t)

]
, α∗(t) =

√
mω

2

[
x(t) − i

mω
p(t)

]
. (115)

Clearly, the complex valued integration constant α0 (and its complex conjugate α∗
0) determines in

a unique fashion a trajectory in the phase space of the system. This suggests another point of view on the
space of states and the Poisson bracket structure it comes equipped with. Specifying classical solutions
to the equations of motion is tantamount to choosing the integration constant α0. Equivalently, one may
say that rather than considering phase space as spanned by the two real coordinates x and p, phase
space is spanned by the complex coordinate α which then evolves in time for a specific classical solution
according to the dynamics of the system. Hence let us consider the change of variable determined by the
coordinate α(t) of which the real and imaginary parts are, up to normalisation factors, the configuration
space coordinate x(t) and its conjugate momentum p(t), respectively.

A simple calculation then finds the following Poisson bracket structure,

{α, α∗} = −i, (116)

while the Hamiltonian becomes

H =
1

2
ω [αα∗ + α∗ α] . (117)
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In obtaining this latter expression, care has been exercised not to commute the variables α and α∗, since
at the quantum level they indeed no longer commute, so that we shall be able to directly take over the
above expression for the quantum Hamiltonian of the system.

Given these results, the equation of motion for the complex phase space coordinate is,

α̇ = {α,H} = −iω α, α̇∗ = {α,H} = iω α∗, (118)

of which the solution is obviously,

α(t) = α0 e
−iω(t−t0), α∗(t) = α∗

0 e
iω(t−t0), (119)

α0 being again the necessary integration constant.

3.4.3 The simple pendulum

From a previous discussion, we know the Lagrange function for this system is given as

L =
1

2
mℓ2θ̇2 −mgℓ(1− cos θ), (120)

for a pendulum of mass m, length ℓ, θ being the angular position of the mass with respect to the downward
vertical direction, and also the single degree of freedom of this system. Consequently, we readily obtain,

pθ =
∂L

∂θ̇
= mℓ2θ̇, θ̇ =

1

mℓ2
pθ, {θ, pθ} = 1, H =

1

2mℓ2
p2
θ +mgℓ(1− cos θ). (121)

The Hamiltonian equations of motion are thus

θ̇ = {θ,H} =
1

mℓ2
pθ, ṗθ = {pθ, H} = −mgℓ sin θ. (122)

Reducing the first equation reproduces again the relation pθ = mℓ2θ̇, which upon substitution into the
second of these two equations leads back to the Euler–Lagrange equation of the system, namely

θ̈ +
g

ℓ
sin θ = 0. (123)

3.4.4 The charged nonrelativistic particle in a background electromagnetic field

Using the same notations as in the previous discussion of this system, its Lagrange function is

L =
1

2
m~̇r 2 − qΦ(t, ~r ) + q~̇r · ~A(t, ~r )− V (~r ). (124)

The conjugate momentum vector is thus,

~p =
∂L

∂~̇r
= m~̇r + q ~A(t, ~r ), ~̇r =

1

m

[
~p− q ~A(t, ~r )

]
. (125)

Note that in this system the conjugate, or canonical momentum ~p does not coincide with the ordinary
linear or velocity momentum, m~̇r. This is characteristic of systems in the presence of background fields.
Hence the Poisson brackets are, {

xi, pi
}

= δij , i, j = 1, 2, 3, (126)

where xi and pi stand for the cartesian coordinates of ~r and ~p, respectively.

The determination of the canonical Hamiltonian is straightforward and leads to

H =
1

2m

[
~p− q ~A(t, ~r )

]2
+ qΦ(t, ~r ) + V (~r ). (127)

The Hamiltonian equations of motion are thus

~̇r =
1

m

[
~p− q ~A(t, ~r )

]
, ~̇p =

q

m

[
~p− q ~A(t, ~r )

]j
· ∂

~Aj(t, ~r )

∂~r
− q~∇Φ(t, ~r ) − ~∇V (~r ). (128)
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Once again, it may shown that by using the first of these equations to reduce for the conjugate momentum,
and by substituting then its expression into the second of these equations of motion, the Euler–Lagrange
equations are recovered in terms of the Lorentz force associated to the scalar and vector potentials Φ(t, ~r )

and ~A(t, ~r ), as well as the force associated to the potential energy V (~r ).

Given the explicit time dependence of the Lagrange function, hence also the Hamiltonian, let us
consider the time evolution of the latter,

dH

dt
=
∂H

∂t
+ {H,H} =

∂H

∂t
= − q

m

[
~p− q ~A(t, ~r )

]
· ∂

~A(t, ~r )

∂t
+ q

∂Φ(t, ~r )

∂t
= −q~̇r · ∂t ~A(t, ~r ) + q∂tΦ(t, ~r ).

(129)
Consequently one has for instance,

d

dt

[
1

2
m~̇r 2

]
= q~̇r · ~E(t, ~r ) + ~̇r · ~F (~r ), (130)

which is indeed the equation of motion for the kinetic energy of the particle, the r.h.s. being the sum of
the powers developed by the electric field ~E(t, ~r ), on the one hand, and the mechanical force ~F (~r ), on the
other.

4 Canonical Quantisation

The concept of the action principle is central to the whole discussion and framework within which all
observed properties of the fundamental interactions and the elementary particles are being described
and understood today. Not only does the action embody in one single expression all the complicated
nonlinear equations of motion associated to these dynamical systems, but in fact it also accounts for all
the conservation laws through the existence of symmetry transformations of the configurations of these
systems which leave the action invariant. Indeed, as follows from Noether’s (first) theorem, to be discussed
at a later stage, any continuous symmetry of the action directly implies conservation laws, which at the
quantum level translate into conserved charges. One famous example is of course the conservation of the
electric charge, in fact related to the invariance of the electromagnetic interaction under the local gauge
transformations considered already previously, and which extend also to the quantum context and the
quantum states of matter degrees of freedom.

Lagrangian ←→ Hamiltonian
formulation (Legendre transform) formulation

տ ր
~ l ACTION (Symmetries) l ~

ւ ց
Path/Functional integral Canonical/Operator

quantisation ←→ quantisation

In fact, besides the general framework outlined here, the culmination of all the progress made
throughout the XXth century in fundamental physics may well be considered to be the concept of local
gauge symmetry, a symmetry realised independently at each point of spacetime though in a continuous
fashion. All interactions, whether classical (as still is General Relativity for the gravitational interaction) or
quantum (for all other three fundamental interactions) have their properties governed by a gauge symmetry
principle. Only the origin of (inertial) mass still escapes that formulation, and is indeed one of the main
open problems today for fundamental physics. The Standard Model of the fundamental interactions offers
an answer through the Higgs mechanism, and predicts the existence of at least one more scalar particle
unobserved so far, known as the higgs. But it remains to be seen through the experiments to be started
at the LHC (Large Hadron Collider, CERN, Geneva) whether Nature has not outdone us once again with
some far more clever trick than anyone has yet imagined.

Given the general classical frameworks of the Lagrangian and Hamiltonian formulations of dynamics,
we are now ready to discuss how dynamical systems, whether mechanical systems or field theories, may be
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quantised. The path we shall follow is that of canonical quantisation based on the canonical Hamiltonian
formalism, which introduces the fundamental constant of quantum mechanics, namely the reduced Planck
constant, ~ = h/2π ≃ 1.055 × 10−34 J·s. Nevertheless, it is possible to also set up path or functional
integral representations of quantum matrix elements in which the classical first-order Hamiltonian or even
Lagrangian actions appear again explicitly. Such path integral representations thus provide an alternative
and complementary approach to quantisation, physically equivalent to the canonical operator approach.
Depending on the type of issue to be addressed, one approach is often far more convenient than the other,
while they each speak differently to our mathematical and physical intuitions.

The general discussion will be illustrated mostly with the harmonic oscillator, since a great deal
may be learned already from so simple a system. However, in a perturbative approach, it is in fact also the
harmonic oscillator which lies at the basis of the whole physical interpretation of relativistic quantum field
theories as theories of relativistic quantum point particles as being the quantum states of the fields. This
latter result is, in certain sense, the fourth revolution of XXth century physics, after those of quantum
mechanics, special relativity and General Relativity. Merging together quantum mechanics and special
relativity leads to relativistic quantum field theory as a dual description of relativistic quantum point
particles and relativistic quantum fields.

4.1 The canonical quantisation programme

Hamiltonian dynamics Correspondence Quantum dynamics
principle (Dirac) (~)

Canonical formalism Canonical quantisation

Phase space ←− Space of states −→ “Hilbert” space:
(qn(t), pn(t)) |ψ〉, 〈ψ|χ〉 = 〈χ|ψ〉∗

Representation of

Poisson brackets Algebraic Commutation relations
(Equal time, t = t0)

{A,B} = C ←− structures −→
[
Â, B̂

]
= i~Ĉ

Fundamental brackets Heisenberg algebra: q̂n† = q̂n, p̂†n = p̂n{
qn, qn

′
}

= 0 = {pn, pn′}
[
q̂n, q̂n

′
]

= 0 = [p̂n, p̂n′ ]

{qn, pn′} = δnn′ [q̂n, p̂n′ ] = i~δnn′

Hamiltonian equations ←− Dynamics −→ Schrödinger equation
of motion

i~d|ψ,t〉dt = Ĥ0 |ψ, t〉 [Schrödinger picture]

dA
dt = ∂A

∂t + {A,H0} i~dÂ(t)
dt =

[
Â(t), Ĥ0

]
[Heisenberg picture]

Ĥ0 self-adjoint

Composite observables Composite operators [Noether charges]:
Example ordering ambiguities

qp ←→ q̂p̂, p̂q̂, (q̂p̂+ p̂q̂)/2

As indicated in the above Table, to each of the three structures inherent to the Hamiltonian for-
mulation of any classical dynamical system (namely its phase space as the space of states, its Poisson
brackets with their algebraic properties also shared, as abstract properties, by the algebra of commutators
of linear operators or matrices on a vector space, and finally, its Hamiltonian as the generator of time
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evolution through the Poisson brackets for any observable), there correspond, through the correspon-
dence principle, three analogous structures for the quantised system. Quantising a system amounts to
constructing these three data given their classical counterparts. This requires also the introduction of
Planck’s (reduced) constant, ~ = h/2π. However, there may exist more than a unique quantum system
which, in the classical limit ~→ 0, reproduces a given classical system. It is then a matter of experimental
investigations to determine which quantum realisation Nature is “using” for the system. For instance, a
rotationally invariant system in space may, at the quantum level, be realised in any of an infinite discrete
set of spin values. It is only by measuring the spin value of, say, the electron, that one may determine it
to be 1/2 (in units of ~). Some people see this multiplicities of quantum realisations as an inconvenience
and wish to identify a more restricted quantisation programme leading, given any dynamical system, to
a single and unique quantum counterpart. The author of these notes rather sees this issue of multiple
quantisations as a virtue, as a riches of opportunities of which Nature certainly makes good “use”.

In the quantised system, corresponding to the space of quantum states in which the system may
be found and through which it may evolve in time, one now has to consider some “Hilbert” space H,
namely a vector space over the complex number and equipped with an inner product which is sesquilinear,
hermitian and positive definite. “Hilbert” is here put in between quotation marks for the following reason.
In mathematics a Hilbert space corresponds to a vector space with all these structures but meeting also
a series of further conditions of a more technical character (the Hilbert space of the harmonic oscillator
to be discussed hereafter is the example “par excellence” of a genuine Hilbert space). However in physics
often it is not possible to satisfy exactly and specifically all the properties characteristic of a Hilbert in the
sense of the strict mathematical definition of that word and concept, but physicists proceed nevertheless
and achieve nonetheless most impressive results with which Nature seems to be happy (the anomalous
magnetic moment (g − 2) of the electron has been computed based on QED (Quantum Electrodynamics)
to a precision in eleven decimal places, and agrees within that precision with the measured value set by
Nature). One such example is that of ordinary plane waves in Euclidean space, corresponding to quantum
states of a particle possessing a definite momentum, and the Fourier transformation of (wave) functions.
Strictly speaking such plane waves do not span a Hilbert space since they lack normalisability. Yet they
define “almost” a Hilbert space (through the theory of distributions and nested Hilbert spaces), and
through the use of Dirac’s δ-function most often one is “safe” in pretending that the space of states is a
Hilbert space.

For the inner product on the space of quantum states, Dirac’s “bra-ket” notation is widely used and
most convenient (in fact it is based on the important concept of the dual of a vector space, namely the space
of linear forms or functions over the vector space taking their values in the number field over which the
vector space is constructed, which becomes canonically isomorphic to the vector space itself once the vector
space is equipped with a nondegenerate inner product. In that context, the “bra” corresponds in fact to an
element of the dual space, and the “ket” to an element of the vector space, with the evaluation of the “bra”
vector on the “ket” vector given by the inner product of the two vectors). Let us consider two vectors of
the Hilbert space, |ψ〉 and |χ〉, (“ket” vectors) and denote their inner product by the “braket=bra-ket”,

〈ψ|χ〉 ∈ C (131)

which is thus a complex number. The statement that the inner product is hermitian means that one has
under complex conjugation,

〈ψ|χ〉 = 〈χ|ψ〉∗. (132)

Note that this implies that the bracket of any state with itself is necessarily a real number, 〈ψ|ψ〉 ∈ R. The
statement that the inner product is positive definite means that one has both the following properties,

||ψ||2 ≡ 〈ψ|ψ〉 ≥ 0, 〈ψ|ψ〉 = 0⇔ |ψ〉 = 0. (133)

Finally, by inner product over C one means of course that 〈ψ|χ〉 is a sesquilinear form, namely linear in
the ket vector |χ〉 and antilinear in the bra vector 〈ψ|,

〈
∑

α

cαψα|
∑

β

dβχβ〉 =
∑

α,β

c∗α dβ 〈ψα|χβ〉. (134)

Note that these properties extend to the complex case analogous ones for the ordinary inner product for
a vector space over the real numbers. In the latter case, the inner product must be linear in both its
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vector arguments and symmetric under the exchange of these, and if positive definite it corresponds to a
scalar product. Thus in a Hilbert space over the complex numbers one has, respectively, the properties of
sesquilinearity, hermiticity, and finally positive definiteness.

This much having been said, it does not yet determine how to identify the Hilbert space to be
associated to a given physical system. How is one to choose the space of quantum states? This is where
the second structure comes into action, namely that of the algebraic properties that must be realised
on Hilbert space for the physical observables. In the classical theory observables are functions defined
over phase space for which one may compute Poisson brackets given the Poisson brackets of the phase
space coordinates (qn, pn). In the quantised system, observables are represented by, or associated to linear
operators acting on the quantum states, which therefore no longer commute with one another in the
generic situation. Dirac’s proposal for a specific definition of Bohr’s correspondence principle is to state,
as a correspondence principle indeed, that the commutator of two quantum observables is given by the
operator associated to the Poisson bracket of their classical counterparts, up to a factor involving Planck’s
constant ~. More specifically, given two classical observables A(qn, pn) and B(qn, pn), let us denote their
Poisson bracket as C(qn, pn), C(qn, pn) = {A(qn, pn), B(qn, pn)}. At the quantum level, one ought to
associate to these observables quantum operators acting on the space of quantum states, to be denoted
as2 Â, B̂ and Ĉ, respectively. The correspondence principle then states that one should have for the equal
time commutation relation of the observables Â and B̂,

[
Â, B̂

]
= i~ Ĉ = i~ {̂A,B}. (135)

Planck’s constant thus enters as a normalisation factor, while the imaginary factor “i” is required for
reasons to which we come hereafter. Incidentally, this normalisation in terms of Planck’s constant ~

also implies that from now on the action of the system must have the physical dimension of ~, while
furthermore the absolute numerical normalisation of the action also implies specific physical properties for
the system. This is most readily seen by considering the commutation relations for the elementary phase
space variables.

Thus in particular, associated to the phase space coordinates qn and pn, one now has linear operators
q̂n and p̂n acting on the Hilbert space, which must obey the commutation relations

[q̂n, p̂n′ ] = i~ δnn′ . (136)

Note that in the same way as Poisson brackets are defined at equal time, these commutation relations are
defined at equal time, for which we take a specific reference time t = t0 which is not made explicit in the
above relations but must be kept in mind.

In fact, given that the inner product is hermitian and evaluated over the complex numbers, one
has to specify somewhat further some properties of these quantum observables. At the classical level a
physical observable A(qn, pn) is real under complex conjugation, A∗(qn, pn) = A(qn, pn). This property
should translate at the quantum level into a corresponding property for the linear operator Â representing
that observable, known as a self-adjoint property3. To define this concept, let us first consider an arbitrary
linear operator Â acting on any vector |ψ〉 of its domain of definition, domA, in Hilbert space as,

|ψ〉 ∈ domA : |ψ〉 −→ |ψ′〉 = Â |ψ〉 ≡ |Âψ〉, (137)

where the last form for the transformed vector is for later convenience. Consider then any other vector |χ〉
in Hilbert space and its inner product with the transformed vector |Âψ〉,

〈χ|Âψ〉 ≡ 〈χ|Â|ψ〉. (138)

The adjoint operator Â† of Â is then defined to be the operator acting on all the vectors |χ〉 of its domain
of definition, dom Â†, as Â†|χ〉 ≡ |Â†χ〉 and such that for any vector |ψ〉 ∈ dom Â we have

|ψ〉 ∈ dom Â, |χ〉 ∈ dom Â† : 〈Â†χ|ψ〉 = 〈χ|Âψ〉. (139)

2The “hat” symbol is used to emphasize the fact that one is dealing with quantum operators. However, at a later stage
this notation will be dropped, since the meaning should become obvious from the context.

3Indeed, as is well known, the spectrum of eigenvalues of a self-adjoint operator is real, as are the values of a real classical
observable.
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In the case of a finite dimensional vector space equipped with an orthonormal basis for the inner product,
the operator Â is represented by a matrix (namely the matrix elements of Â in that basis), and the adjoint
Â† of Â is then represented by the adjoint of that matrix, namely the complex conjugate of the transposed
of the matrix representing Â. If n,m = 1, 2, . . . , N are indices labelling the orthonormalised basis vectors
of a finite N dimensional vector space, the matrix elements of Â in that basis are a collection of numbers
Anm defining a matrix, of which the adjoint,

(
A†
)
nm

= A∗
mn, namely A† =

(
AT
)∗

as matrices, gives the

matrix elements of the adjoint operator Â† in that same basis.

Given this concept of the adjoint of an operator, an operator Â is said to be symmetric or hermitian
if Â and Â† coincide on the intersection of their domains of definition,

Â is symmetric or hermitian if Â = Â† on dom Â ∩ dom Â†. (140)

Indeed, it may be that the two domains are not identical, nor that they would coincide with the full Hilbert
space but are only some vector subspaces of the latter. A self-adjoint operator Â is then such that the
domains of definition of both Â and Â† are the full Hilbert space H while Â and Â† coincide,

Â is self-adjoint if Â = Â† and dom Â = H = dom Â†. (141)

Hence in principle one has to identify properly the Hilbert space in such a manner that quantum
observables Â and B̂ (associated to classical real observables) be represented by self-adjoint operators on
H, Â† = Â and B̂† = B̂. On the other hand, given two operators Â and B̂, one finds

[
Â, B̂

]†
= −[Â†, B̂†], (142)

since

[Â, B̂]† =
(
ÂB̂ − B̂Â

)†
= B̂†Â† − Â†B̂† = [B̂†, Â†]. (143)

Consequently, in the case of self-adjoint operators as must be quantum observables, we conclude that

[
Â, B̂

]†
= −[Â, B̂]. (144)

It is this property which explains why it is necessary to include, besides the normalisation factor specified
by Planck’s constant ~, the pure imaginary factor i in the commutation relations (135) and (136).

These concepts having been specified, the correspondence principle thus implies that one should
aim to have for all quantum observables Â, B̂ and Ĉ of which the classical counterparts are such that
{A,B} = C, the following equal time commutation relation,

[Â, B̂] = i~Ĉ, Â† = Â, B̂† = B̂, Ĉ† = Ĉ. (145)

In particular for the elementary phase space variables, one must have a realisation on the Hilbert space H
of the following equal time canonical commutation relations

[q̂n, p̂n′ ] = i~ δnn′, (q̂n)† = q̂n, (p̂n)
† = p̂n, (146)

defining an algebra known as the Heisenberg algebra.

In conclusion, we thus observe that the Hilbert space H of all quantum states of the system is to
be a representation of the algebra of equal commutation relations of the quantum observables, beginning
with the elementary phase space canonical coordinates which must obey a Heisenberg algebra. As is the
case for the concept of classical phase space which combines both a coordinate parametrisation of that
manifold in terms of variables qn and pn and the Poisson bracket structure defined for these and given by
the canonical brackets in the case of canonical phase space coordinates, in the quantum case the notion of
the space of quantum states, namely the Hilbert space of the quantised system, cannot be dissociated from
the algebraic structure of equal time commutation relations that must be realised in that Hilbert space.
Quantising a system consists precisely in the construction of a Hilbert space for which a given algebra of
observables is realised, namely is a representation of that algebra. We shall briefly come back to this issue
hereafter.
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The last information available on the classical side of the discussion and for which the corresponding
structure on the quantum side has not yet been introduced is that pertaining to the dynamics or time
evolution of the system generated through the Hamiltonian. Being an observable, there must correspond
a self-adjoint quantum operator Ĥ to the classical Hamiltonian H(qn, pn), such that Ĥ† = Ĥ . At the
quantum level time dependence is thus to be generated by the quantum Hamiltonian Ĥ . Here there are two
physically equivalent ways in which this time dependence may be represented. The first is by considering
that the quantum state describing the system must evolve in time according to some differential equation
in which the Hamiltonian operator contributes, the latter being defined at the initial time t = t0 at which
the commutation relations are also specified. Consequently, denoting by |ψ, t〉 the evolving quantum state,
its time evolution is governed by the Schrödinger equation in the Schrödinger picture of quantum
physics,

i~
d|ψ, t〉
dt

= Ĥ|ψ, t〉. (147)

By Schrödinger picture, one means that the time dependence of the dynamics of the quantum system
is entirely accounted for through a time dependence of the quantum states only, whereas the quantum
operators and observables are defined at the reference time t = t0 at which their equal time commutation
relations have been specified.

Alternatively, because of a reason to which we shall return hereafter, time dependence of the dynam-
ics of the quantum system may be accounted for by a time dependence of the operators and observables
only, rather than the states, whereas the states are only considered at the reference time t = t0 at which
the equal time commutation relations are specified. This choice of representation of the time dependence
is called the Heisenberg picture of quantum physics. In this picture the time evolution equation of
these quantum observables is obtained directly from the classical Hamiltonian equation of motion of an
observable through the correspondence principle. For an observable Â without any explicit time depen-
dence4, its equal time commutation relation with the Hamiltonian operator Ĥ must equal i~ multiplying
the result of the corresponding classical Poisson bracket... which is the first order time variation of the
observable, hence leading to the Schrödinger equation in the Heisenberg picture of quantum
physics,

i~
dÂ(t)

dt
=
[
Â(t), Ĥ

]
. (148)

Note that no time dependence is displayed for the Hamiltonian Ĥ. Indeed, its equation of motion would
be i~ dĤ/dt = [Ĥ, Ĥ ] = 0, so that this operator has no time dependence and keeps its value defined at the
reference time t0 in any case. Note that when the time evolution parameter t coincides with the physical
time, Ĥ measures the energy values of the quantum system, implying thus that energy is conserved even
at the quantum level. Later on we shall address the resolution of these Schrödinger equations in terms of
the eigenspectrum of the Hamiltonian operator.

This concludes the description of how given a classical dynamics, one may identify a quantum
dynamics associated to it through the correspondence principle. All three structures inherent to the
classical Hamiltonian formalism find their counterparts in the canonical quantisation of the system. The
crucial point of that construction is in fact a construction of the Hilbert space representation of the algebra
of quantum observables.

As a matter of fact, it turns out that it is not possible to assign to all classical observables a self-
adjoint quantum observable while at the same time obeying all the required commutation relations (a
detailed discussion of these difficulties may be found in Ref. [5]). The difficulty is related to the problem
of operator ordering because variables which at the classical level commute with one another no longer
necessarily do so at the quantum level. Take a single degree of freedom system with canonical phase
coordinates q̂ and p̂ hence such that [q̂, p̂] = i~. Consider then the classical observable qp. How is one to
choose a quantum counterpart? Should it be q̂p̂, or p̂q̂, or (q̂p̂+ p̂q̂)/2, or yet some other combination of
the previous choices? Clearly there is a potential ambiguity. However in this case it is resolved by also
requiring that the resulting operator be self-adjoint, and would reduce back to the classical observable
when ~→ 0, namely when q̂ and p̂ would commute again. The unique choice meeting these requirements

4For a classical observable that carries an explicit time dependence, the general quantum equation of motion reads
i~dÂ(t)/dt = i~∂Â(t)/∂t + [Â(t), Ĥ].
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is thus

qp −→ 1

2
[q̂p̂+ p̂q̂] . (149)

However, when it comes to higher order monomials in q̂ and p̂, the ambiguity remains even when requiring
self-adjoint operators, and is even such that if the correspondence principle can be satisfied for the com-
mutation relations for all operators bilinear in the quantities q̂ and p̂, it cannot be satisfied for all trilinear
operators. A specific choice of a subclass of observables for which the correspondence principle remains
satisfied has to be made, based on yet other considerations, such as those of symmetries which need to be
preserved even at the quantum level (as will be discussed later on, conserved charges related to symmetries
are composite observables constructed from the elementary phase space coordinates). However, even the
latter is not guaranteed, and when it turns out that there does not exist a quantisation of a system which
preserves its classical symmetries, one has a so-called quantum anomaly, namely the absence in the
quantum system of a classical symmetry, the quantum breakdown of a symmetry.

4.1.1 Illustration: the one dimensional harmonic oscillator

It is time to illustrate the above general considerations with a simple yet nontrivial example, for which we
shall take the one dimensional harmonic oscillator. We recall that the classical formulation of that system
involves a two dimensional phase space spanned by the canonical and cartesian coordinates (q, p) with the
canonical bracket {q, p} = 1, and a dynamics generated by the Hamiltonian

H(q, p) =
1

2m
p2 +

1

2
mω2q2. (150)

It is also of interest to change variables for the description by combining the two real phase space coordinates
into a single complex coordinate,

α =

√
mω

2

[
q +

i

mω
p

]
, α∗ =

√
mω

2

[
q − i

mω
p

]
, (151)

and conversely

q =
1√

2mω
[α+ α∗] , p = −i mω√

2mω
[α− α∗] . (152)

In terms of this variable and its complex conjugate, the Poisson bracket is

{α, α∗} = −i, (153)

while for the Hamiltonian one finds

H =
1

2
ω [α∗α+ αα∗] , (154)

without ever having commuted the variables α and α∗ with one another in the calculation.

Applying the correspondence principle of canonical quantisation, the quantised harmonic oscillator
is thus determined by the equal time commutation relation of the Heisenberg algebra at the reference time
t = t0,

[q̂, p̂] = i~, q̂† = q̂, p̂† = p̂, (155)

with a dynamics governed by the quantum Hamiltonian which we may choose to be

Ĥ =
1

2m
p̂2 +

1

2
mω2q̂2. (156)

Note that this operator does not suffer an operator ordering ambiguity. The space of quantum states of
this system is thus a representation space of that algebra, which needs still to be constructed or identified.

Equivalently however, we may also consider the canonical quantisation of the system based on its
description in terms of the complex variable α. The correspondence principle then leads to the equal time
commutation relation at the reference time t = t0,

[α̂, α̂†] = i~(−i) = ~, (157)
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as well as the quantum Hamiltonian

Ĥ =
1

2
ω
[
α̂†α̂ + α̂α̂†

]
. (158)

In order to avoid having to carry through all the calculations the ~ factor appearing in the above commu-
tation relation, it is better to absorb it in the normalisation of the operators α̂ and α̂†, by dividing each
of these operators by

√
~. Let us thus introduce the quantum operators

a =

√
mω

2~

[
q̂ +

i

mω
p̂

]
, a† =

√
mω

2~

[
q̂ − i

mω
p̂

]
, (159)

and conversely

q̂ =

√
~

2mω

[
a + a†

]
, p̂ = −imω

√
~

2mω

[
a− a†

]
. (160)

The algebra that the operators a and a† obey is known as the Fock algebra,

[a, a†] = I, (161)

of which the representation in terms of the Fock space is discussed hereafter. In turn, the quantum
Hamiltonian now reads

Ĥ =
1

2
~ω
(
a†a+ aa†

)

=
1

2
~ω
(
a†a+ [a, a†] + a†a

)

=
1

2
~ω
(
2a†a+ 1

)

= ~ω

(
a†a+

1

2

)
. (162)

Note that the contribution in ~ω/2 to this last expression is of a purely quantum origin, following from
the commutator [a, a†] = I. The reason why in this calculation we wished to bring the operator a† to the
left of the operator a will become clear hereafter, when the construction of a representation of the Fock
algebra will have been completed.

4.1.2 Fock space representation

In order to identify a Hilbert space providing a realisation of the Fock space algebra, let us assume there
exists some state called the Fock vacuum or ground state (indeed this state turns out to be the ground
state or lowest energy state of the quantum harmonic oscillator), denoted |0〉, and such that being acted
on with the operator a it is mapped into the null vector of Hilbert space,

a|0〉 = 0. (163)

Furthermore, let us assume at the outset that this state is also normalised, namely 〈0|0〉 = 1.

Since |0〉 is annihilated by the operator a, the only other possible action to be considered is that of
its adjoint operator, a†, on that state, namely

|1〉 ≡ a†|0〉. (164)

The question now is to determine whether this new state is really different from |0〉, more specifically
linearly independent from it and thus defining a new dimension or direction in Hilbert space independent
of that associated to |0〉 as a basis vector, or rather whether the state |1〉 could simply be linearly dependent
of |0〉 with some complex coefficient λ such that

|1〉 = λ |0〉. (165)

In order to establish that this is excluded through a proof by contradiction, let us assume it to be the case,
and consider now the action of a again on the state |1〉. First, independently of the assumption, we have

a |1〉 = a a† |0〉 =
(
aa† − a†a+ a†a

)
|0〉 =

(
[a, a†] + a†a

)
|0〉 =

(
1 + a†a

)
|0〉 = |0〉, (166)
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in which in the last step of this series of little expressions use has been made of the fact that the operator
a annihilates the vacuum |0〉. The result a|1〉 = |0〉 is thus valid under all circumstances. However, if in
addition we were to have also that |1〉 = λ|0〉, it would follow that

a|1〉 = a (λ|0〉) = 0, (167)

since a annihilates the state |0〉. However such a conclusion would be inconsistent with the result a|1〉 = |0〉.
Therefore we are led to conclude that indeed the state |1〉 = a†|0〉 is a state linearly independent from the
vacuum |0〉.

Through a similar discussion in a recursion procedure, it is possible to establish that the state
obtained by acting n times with the operator a† on the state |0〉, (a†)n|0〉, is linearly independent from all
the states (a†)m|0〉 with m = n − 1, n − 2, . . . , 0. Consequently, the whole tower of states constructed in
this manner out from the Fock vacuum defines a basis of the Hilbert space which they generate and which
thus provides a representation of the Fock algebra of the operators a and a†. This space is known as the
Fock space representation of the Fock algebra.

In fact, all these states are not only linearly independent for n = 0, 1, 2, . . . but are mutually
orthogonal or perpendicular. Indeed, this follows from the fact, implicit in the above discussion, that the
constructed Hilbert space is also equipped with an inner product for which the operators a and a† are
adjoint of one another, and such that 〈0|0〉 = 1. For instance, one easily finds

〈0|1〉 = 〈0|a†|0〉 = 〈0|a|0〉∗ = 0. (168)

In order that they be also normalised, one defines the normalisation of the Fock space basis vectors, or
simply Fock states, as

|n〉 =
1√
n!

(
a†
)n |0〉, n = 0, 1, 2, 3, . . . (169)

Given that choice it does not take much of a calculation using the commutator [a, a†] = I repeatedly to
check that one has,

a|0〉 = 0, a|n〉 = √n |n− 1〉, n = 1, 2, . . . ; a†|n〉 =
√
n+ 1 |n+ 1〉, n = 0, 1, 2, . . . , (170)

from which it also follows that
〈n|m〉 = δnm, (171)

showing that indeed the set of Fock states {|n〉, n = 0, 1, 2, . . .} defines an orthonormalised basis of Fock
space. Note that the operators a and a† thus map between successive Fock states. The latter may be
viewed as defining a semi-infinite ladder, with a† moving one step upward on that ladder and a one step
downward. The operators a and a† are thus also known as the ladder operators. However a vocabulary
more largely used is that of the creation (for a†) and annihilation (for a) operators since, as will become
totally clear hereafter, they indeed create of annihilate energy quanta of the system, moving between Fock
states differing in a single quantum of excitation in energy.

The action of the ladder operators on the Fock states having been established, it follows that

a† a |n〉 = a†
√
n|n− 1〉 = n|n〉, aa† |n〉 = a

√
n+ 1|n+ 1〉 = (n+ 1)|n〉, (172)

hence the Fock algebra is indeed obeyed since it is for each of the Fock basis vectors,

[a, a†] |n〉 = |n〉. (173)

Note that these results also establish that the Fock states are already the eigenstates of the operator a†a,
since a†a|n〉 = n|n〉. Furthermore the eigenvalue n for the Fock state at level n measures the number
of times the creation or ladder operator a† has been applied to the Fock vacuum, namely, as shall be
seen later on, the number of quanta present in the system. Hence the operator N = a†a is often called
the number operator. Since the Hamiltonian of the system is also expressed in terms of the number
operator, H = ~ω[N +1/2], it follows that the Fock basis also diagonalises the Hamiltonian of the system,
hence immediately providing the energy spectrum of the quantised one dimensional harmonic oscillator,

H |n〉 = En|n〉, En = ~ω

(
n+

1

2

)
, n = 0, 1, 2, 3, . . . (174)
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Given this result it is useful to represent all these states in a diagram superposed onto the graph of the
potential energy of the system, V (q) = 1

2mω
2q2. Measured from the bottom of the harmonic well, the

lowest energy state or ground state |0〉 possesses an energy ~ω/2 which is purely of a quantum origin since
that contribution originates directly from the Fock algebra commutator [a, a†] = I. This contribution to
the energy is often called the quantum vacuum energy. And as quantum excitations of the system,
one has the whole ladder of Fock states |n〉, of which the energies all differ for successive states by the
quantum ~ω. By adding or removing through some coupling or interaction with the oscillator a certain
number of quanta each of energy ~ω, it is possible to bring the system into any of the Fock states. The
reason why the spectrum is discrete also originates in the Fock algebra commutator. The reason why this
discreteness is infinite is because the harmonic potential well has an infinite height. An algebraic reason is
that the original Heisenberg algebra, namely also the Fock algebra itself, may only be represented on an
infinite dimensional vector space. Indeed, if the representation were to be finite dimensional, taking the
trace of either defining commutation relation would lead to an inconsistency of the type 0 = 1.

We have thus already learned a great deal and acquired some experience with a Hilbert space just
from this simple system. Let us use the opportunity to develop some further considerations. Knowing that
Fock states define a basis of the full space of quantum states, any state in that space may be expressed
as a mixed state of all Fock states |n〉 through a linear combination of which the coefficients are complex
numbers ψn,

|ψ〉 =
∞∑

n=0

|n〉ψn. (175)

Each of the terms |n〉ψn determines the projection of the state |ψ〉 onto the direction in Hilbert space
associated to the Fock state |n〉, ψn ∈ C being the component of the state |ψ〉 with respect to that basis
vector. The basis being orthonormalised, the component itself is obtained by the projection of vectors
defined by the inner product with which the Hilbert space is equipped, namely

〈n|ψ〉 =

∞∑

m=0

〈n|m〉ψm = ψn. (176)

Consequently, we may write

|ψ〉 =
∞∑

n=0

|n〉〈n|ψ〉, (177)

which is a very useful relation already as such. However, bringing it into the form

|ψ〉 =
(

∞∑

n=0

|n〉 〈n|
)
|ψ〉, (178)

one notices that each of the terms in the brackets on the r.h.s. of this identity, namely |n〉〈n|, stands in
fact for an operator which is nothing else but the projection operator Pn = |n〉〈n| onto the direction in
Hilbert space defined by the Fock state |n〉, which has the properties

P
2
n = Pn, P

†
n = Pn. (179)

Indeed, when acting on any state |ψ〉, the projector Pn = |n〉〈n| produces a new vector which is simply
the component of |ψ〉 in the direction of |n〉,

Pn|ψ〉 = |n〉〈n|ψ〉. (180)

It should thus be clear that when summing each of these projectors Pn over all independent directions in
Hilbert space, one then necessarily recovers the identity operator, which is indeed what (178) represents,

I =
∑

n=0

|n〉 〈n|. (181)

Such a representation of the identity operator is called a spectral decomposition (or resolution) of the
identity operator, for a reason which is to become totally clear hereafter. As it turns out such an identity
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is extremely useful. In the form of (178) it shows how it leads directly to the decomposition of any state
in the Fock basis. Likewise for an arbitrary operator Â, we may write directly

Â = I Â I =

(
∞∑

n=0

|n〉〈n|
)
Â

(
∞∑

m=0

|m〉〈m|
)

=
∞∑

n,m=0

|n〉 〈n|Â|m〉 〈m|, (182)

in which the matrix elements Anm = 〈n|Â|m〉 of the (semi-infinite discrete) matrix representing the
abstract operator Â in the Fock basis appear naturally and explicitly. In particular for an operator Λ̂
which is diagonalised in the Fock basis, and for which the matrix representation is thus diagonal with its
eigenvalues {λn, n = 0, 1, 2, . . .} on the diagonal, the above double sum reduces to a single sum, Λnm =
〈n|Λ̂|m〉 = λnδnm, so that

Λ̂ =

∞∑

n=0

|n〉λn 〈n|. (183)

Such a decomposition of a diagonal abstract operator in the basis of its eigenvectors is called the spectral
decomposition (or resolution) of the operator, with the spectrum of its eigenvalues λn indeed appearing
in between the product of the ket, |n〉, and bra, 〈n|, eigenvectors, or multiplying each of the projection
operators Pn = |n〉〈n| associated to these eigenvectors. The case of the identity operator (181) is the par-
ticular situation when all these eigenvalues reduce to unity. As another example, one has the Hamiltonian
operator in the Fock state basis which diagonalises it,

Ĥ =
∞∑

n=0

|n〉En 〈n|, En = ~ω

(
n+

1

2

)
. (184)

The above discussion relied mostly on a purely algebraic and abstract approach, and managed to
identify most straightforwardly the energy spectrum of the harmonic oscillator. However once the Fock
state basis is singled out, abstract operators may also be represented in terms of matrices of which the
entries are the matrix elements of the operator in that basis. This then enables a matrix representation of
quantum physics, which is essentially how Heisenberg first conceived of the rules of quantum mechanics.
As an illustration, knowing how the ladder operators act on the Fock states the values for their matrix
elements are readily identified as follows, in the order of increasing n = 0, 1, 2, . . . values for the Fock states,

a :




0
√

1 0 0 · · ·
0 0

√
2 0 · · ·

0 0 0
√

3 · · ·
...

...
...

...


 , a† :




0 0 0 0 · · ·√
1 0 0 0 · · ·

0
√

2 0 0 · · ·
...

...
...

...


 , (185)

and as a consequence, we also have the matrix representations of the generators q̂ and p̂ of the Heisenberg
algebra,

q̂ :

√
~

2mω




0
√

1 0 0 · · ·√
1 0

√
2 0 · · ·

0
√

2 0
√

3 · · ·
...

...
...

...


 , p̂ : −imω

√
~

2mω




0
√

1 0 0 · · ·
−
√

1 0
√

2 0 · · ·
0 −

√
2 0

√
3 · · ·

...
...

...
...


 .

(186)
Based on these matrices, once again it is possible to check for the commutation relations whether for the
Heisenberg algebra, [q̂, p̂] = i~, or the Fock algebra, [a, a†] = I.

4.2 Quantum evolution

As discussed previously, once the Hilbert space appropriate to a given system has been identified or
constructed as a representation of the algebra of equal time commutation relations, quantum dynamics
is generated by the quantum Hamiltonian through the Schrödinger equation, whether in the Schrödinger
or the Heisenberg picture. Hereafter we first discuss certain considerations in relation to the solution to
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either of these forms of the Schrödinger equation, to be followed by a demonstration that if the spectrum
of the quantum Hamiltonian has been determined, in fact all that there is to know about the dynamics of
the quantum system is available explicitly. Determining the energy spectrum amounts to solving the full
quantum dynamics.

4.2.1 The Schrödinger and Heisenberg pictures

As discussed previously, in the Schrödinger picture time dependence is totally accounted for through the
time dependence of the quantum states, |ψ, t〉, which have to obey the Schrödinger equation

i~
d|ψ, t〉
dt

= Ĥ |ψ, t〉, (187)

whereas operators are time independent and are considered at the reference time t0 at which the quanti-
sation programme based on the equal time commutation relations is being developed. Being first order in
the time derivative, the general solution to this equation requires a single integration constant or boundary
condition, say the value for the state at the reference time t = t0 at which the canonical quantisation and
the equal time commutation relations are specified, |ψ, t0〉. The solution then reads

|ψ, t〉 = U(t, t0) |ψ, t0〉, (188)

where U(t, t0) is the operator defined by

U(t, t0) = e−
i
~
(t−t0)Ĥ . (189)

This operator is known as the quantum evolution operator or also the propagator5 of the quantum
system. Being defined through the exponential of the Hamiltonian operator through the usual power series
expansion,

e−
i
~
(t−t0)Ĥ =

∞∑

n=0

1

n!

(
− i

~
(t− t0)Ĥ

)n
, (190)

there are certain conditions that may have to be met to ensure the convergence of such an expression.
Furthermore, it is crucial that the Hamiltonian Ĥ also be self-adjoint to guarantee unitarity, namely a
time evolution preserving the probabilities of quantum physics. In fact, the quantum evolution operator
must obey two important properties,

Convolution : U(t3, t2)U(t2, t1) = U(t3, t1),

Unitarity : U †(t2, t1) = U−1(t2, t1) (= U(t1, t2)) . (191)

In particular, the property of unitarity of the operatorU(t2, t1) is indeed required to preserve the probability
of a state under time evolution,

〈ψ, t|ψ, t〉 = 〈ψ, t0|U †(t, t0)U(t, t0)|ψ, t0〉 = 〈ψ, t0|ψ, t0〉. (192)

In the Heisenberg picture however, dynamics of the quantum system is totally accounted for through
the time dependence of the quantum operators, which have to obey the Schrödinger equation6

i~
dÂ(t)

dt
=
[
Â(t), Ĥ

]
, (193)

whereas quantum states are time independent and are considered at the reference time t = t0 at which the
canonical quantisation programme is being developed. But since the Schrödinger and Heisenberg pictures
of quantum physics are physically equivalent, how are they related? To answer this, let us for instance
consider the expectation value in a state |ψ, t〉 of a given observable Â(t0) defined in the Schrödinger
picture, 〈ψ, t|Â(t0)|ψ, t〉, the observable being assumed not to carry any explicit time dependence (more
generally one could consider expectation values of products of observables). Using the solution to the

5Not to be confused with the Feynman propagator of quantum field theory.
6In the case of observables that carry no explicit time dependence.
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Schrödinger equation, and assuming the state |ψ, t〉 to have been normalised, 〈ψ, t|ψ, t〉 = 1, we then have
for the expectation value of the observable Â as a function of time t,

〈Â〉(t) ≡ 〈ψ, t|Â(t)|ψ, t〉
〈ψ, t|ψ, t〉 = 〈ψ, t0|U †(t, t0) Â(t0)U(t, t0)|ψ, t0〉 = 〈ψ, t0|Â(t)|ψ, t0〉, (194)

in which we have introduced
Â(t) = U †(t, t0) Â(t0)U(t, t0). (195)

Hence, this definition establishes the relation between the Schrödinger and Heisenberg pictures of quan-
tum physics. In particular, this definition also provides the solution to the Schrödinger equation in the
Heisenberg picture in terms of the quantum evolution operator U(t, t0), the operator Â(t0) then playing
the rôle of an integration constant. Indeed, from the above definition of Â(t) it readily follows that we
have

i~
dÂ(t)

dt
=
[
Â(t), Ĥ

]
, (196)

which is indeed the relevant Schrödinger equation when the quantum observable Â does not possess any
explicit time dependence. The quantum evolution operator is thus central in solving the Schrödinger
equation whatever the picture of quantum physics being used.

4.2.2 Diagonalisation of time evolution

Let us now assume that the eigenspectrum of the Hamiltonian operator Ĥ has been determined (which, in
practice, is an extremely difficult problem for any system with the slightest relevance to physical reality),

Ĥ |Em〉 = Em |Em〉, (197)

where the notation is meant to be schematic. In general the index m stands for a multi-index some of
which components could even take values in a continuous rather than a discrete set. Furthermore we
assume all the eigenstates |Em〉 to have been orthonormalised,

〈Em|Em′〉 = δmm′ . (198)

Consequently, one has the spectral decomposition of the identity operator

I =
∑

m

|Em〉 〈Em|, (199)

with in particular, when applied onto any diagonal operator in the basis |Em〉, a similar spectral decom-
position, such as for instance

Ĥ =
∑

m

|Em〉Em 〈Em|, (200)

U(t2, t1) =
∑

m

|Em〉 e−
i
~
(t2−t1)Em 〈Em|. (201)

Given this last decomposition of the evolution operator, the solution to the Schrödinger equation
whether in the Schrödinger or the Heisenberg pictures is (in the latter case again for an operator that
carries no explicit time dependence),

|ψ, t〉 =
∑

m

|Em〉 e−
i
~
(t−t0)Em 〈Em|ψ, t0〉, (202)

Â(t) =
∑

m,m′

|Em〉 e
i
~
(t−t0)Em 〈Em|Â(t0)|Em′〉 e− i

~
(t−t0)Em′ 〈Em′ |. (203)

Consequently, if the eigenspectrum of the Hamiltonian operator is completely known, the entire dynamical
time evolution of the quantum system is also determined.

75



4.2.3 Illustration: the one dimensional harmonic oscillator

Since the energy spectrum of the harmonic oscillator is

En = ~ω

(
n+

1

2

)
, n = 0, 1, 2, . . . , (204)

the above general discussion translates into the following simple terms. Based on the spectral decomposi-
tion of the unit operator in terms of the Fock states |n〉,

I =

∞∑

n=0

|n〉 〈n|, (205)

one simply obtains for the quantum evolution operator

U(t2, t1) =

∞∑

n=0

|n〉 e− i
~
(t2−t1)~ω(n+1/2) 〈n| = e−

1
2
iω(t2−t1)

∞∑

n=0

|n〉 e−inω(t2−t1) 〈n|. (206)

Based on that spectral decomposition, it follows that for quantum states in the Schrödinger picture one
has for the solutions to the Schrödinger equation,

|ψ, t〉 = U(t, t0) |ψ, t0〉 = e−
1
2
iω(t−t0)

∞∑

n=0

|n〉 e−inω(t−t0) 〈n|ψ, t0〉. (207)

For what concerns the Heisenberg picture, let us consider as observables the ladder operators as
well as q̂ and p̂. Given the definition (195) of the time dependence of operators in the Heisenberg picture,
one needs to use one of the Baker–Campbell–Hausdorff formulae,

eAB e−A = B + [A,B] +
1

2!
[A, [A,B]] + . . .+

1

n!
[A, [A, [· · · , [A, [A,B]] · · · ]] + . . . (208)

Applying this expression to

a(t) = e
i
~
(t−t0)Ĥ a(t0) e

− i
~
(t−t0)Ĥ , (209)

and using the fact that
[
i

~
(t− t0)Ĥ, a(t0)

]
= iω(t− t0)

[
a†a, a

]
= −iω(t− t0), (210)

it follows that
a(t) = a(t0) e

−iω(t−t0), (211)

and thus also
a†(t) = a†(t0) e

iω(t−t0). (212)

Note that these time dependencies are precisely those of the classical solutions as well, in terms of the
coefficients denoted α(t) and α∗(t) as introduced previously but differing from a(t) and a†(t) only by a
normalisation factor of

√
~. Furthermore, the time dependence of the position and conjugate momentum

operators then also follows,

q̂(t) =

√
~

2mω

[
a(t0) e

−iω(t−t0) + a(t0) e
iω(t−t0)

]
, (213)

p̂(t) = −imω
√

~

2mω

[
a(t0) e

−iω(t−t0) − a(t0) e
iω(t−t0)

]
. (214)

Once again these time dependencies coincide with those of the classical solutions to the Hamiltonian equa-
tions of motion. Of course this is as expected given that the Schrödinger equation for a quantum observ-
able in the Heisenberg picture is in correspondence, through canonical quantisation, with the Hamiltonian
equation of motion for the classical counterpart of that observable. In particular, the configuration space
operator q̂(t) in the Heisenberg picture obeys precisely, as an operator now, the original Euler–Lagrange
equation of motion of the system, [

d2

dt2
+ ω2

]
q̂(t) = 0. (215)

This observation serves as a basis for a heuristic argument showing that any theory of relativistic quantum
point particles is necessarily also a theory of relativistic quantum fields [1].
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4.3 Representations of the Heisenberg algebra I

Within the context of the harmonic oscillator, starting from the Heisenberg algebra, [q̂, p̂] = i~, of the
phase space observables, we introduced the creation and annihilation operators a† and a in terms of
which an abstract Hilbert space representation of the Fock algebra was constructed, as well as the Fock
basis identified within it, which enabled directly the diagonalisation of the Hamiltonian of the harmonic
oscillator. Hence the Fock space representation of the Fock algebra already provides in fact an abstract
representation of the Heisenberg algebra as well, through the relations

q̂ =

√
~

2mω

[
a+ a†

]
, p̂ = −imω

√
~

2mω

[
a− a†

]
. (216)

Furthermore, given the Fock basis in that Hilbert space, operators acquire a matrix representation which
obeys the same commutation relations once again. In other words, there also exists a matrix representation,
albeit in terms of semi-infinite matrices, of the same abstract algebraic structure defining the space of
quantum states of the harmonic oscillator. This raises the issue of finding all possible representations
of the Heisenberg algebra, beginning with a single degree of freedom system. For a finite number N of
degrees of freedom, the Heisenberg algebra is the N -fold tensor product of the Heisenberg algebra for a
single degree of freedom, hence so is its representation space. Let us thus restrict to the Heisenberg algebra
for a single degree of freedom.

In the case that the classical phase space (q, p) is simply Euclidean (and thus by extension for any
Euclidean configuration space of any dimension N with cartesian coordinates qn), there exists a famous
result due to von Neumann and Stone stating that up to unitary transformations in Hilbert space (indeed
quantum states are defined up to an arbitrary overall unitary transformation which does not affect physical
observations of the quantum dynamics), there exists a single representation of the Heisenberg algebra (a
derivation of this result may be found for example in Refs. [3,6]). In other words, the two representations
that have already been constructed are but two different realisations of a common underlying abstract
Hilbert space realisation of the Heisenberg algebra.

However, let us just state here that if the configuration space possesses a nontrivial topology such
that there exist noncontractible cycles within it (namely, when its first homotopy group is nontrivial), then
there exists in fact an infinity of unitarily inequivalent representations of the Heisenberg algebra, labelled
by U(1) holonomies around the noncontractible cycles [6]. Furthermore, the discussion presented hereafter
may also be extended to curved configuration space manifolds, but only the case of Euclidean geometry
will be detailed here.

4.3.1 Configuration and momentum space representations

Let us thus consider as configuration space the real line R, with q ∈ R, and its momentum conjugate p
also spanning that range of values, p ∈ R. Given this configuration and phase space Euclidean geometry,
one may then establish the existence of two representations of the Heisenberg algebra in terms of complex
functions of q in one case and of p in the other case, hence known as configuration and momentum
space wave function representations of the Heisenberg algebra. These two possibilities correspond
to what is usually introduced to define quantum mechanics in a first course on the subject. Here these
considerations follow a discussion of the representation theory of the abstract Heisenberg algebra, which
arises whatever dynamical system is being quantised. Note well that our discussion thus does not assume
implicitly the dynamics of the harmonic oscillator. The discussion to be developed hereafter is totally
independent from any dynamical consideration, but is purely kinematical in character.

a) The configuration space wave function representation

Let us assume there exists in Hilbert space a basis of position eigenstates, namely states |q〉 labelled
by the eigenvalues of the configuration space or position operator q̂ with a spectrum spanning all of R,

q̂ |q〉 = q |q〉, q ∈ R. (217)

Furthermore, let us assume that these states are normalised, while they may be assumed to be orthogonal
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since q̂ is self-adjoint7, q̂† = q̂. Consequently, we have the inner products

〈q|q′〉 = δ(q − q′), (218)

where δ(q − q′) is the Dirac δ-function. The main property of the δ-“function” (strictly speaking it is a
distribution, and its evaluation has to be understood inside an integral where it is multiplied with a test
function for the purpose of evaluating the integral) is that given any function f(x) of a single variable, the
δ-function δ(x− a) is such that ∫ +∞

−∞

dx f(x)δ(x − a) = f(a). (219)

In other words, the δ-function is analogous to the Kronecker δnm symbol in which the set of integers would
have been closed into the set of real numbers by having grown ever more dense on the real line. The
δ-function thus vanishes whenever its argument is nonvanishing, whereas it takes an infinite value when
its argument vanishes but in such a manner that one has a finite value thus normalised to unity when
the δ-function is evaluated inside the following integral8 (again in the same way that when summing the
Kronecker δnm symbol over all the range of values of one of its indices it returns the unit value),

∫ +∞

−∞

dx δ(x − a) = 1. (220)

Given these remarks, it should clear that the condition (218) indeed expresses the orthonormality of the
basis |q〉 of the position eigenstates of q̂.

Given this basis, once again one may consider the sum over all basis vectors of the associated
projection operators |q〉〈q|, which is to reproduce the identity operator,

I =

∫ +∞

−∞

dq |q〉 〈q|. (221)

That this expression is indeed consistent may easily be checked by applying it onto any of the position
eigenstates, |q〉 = I|q〉,

I|q〉 =

∫ +∞

−∞

dq′ |q′〉 〈q′|q〉 =
∫ +∞

−∞

dq′ |q′〉 δ(q − q′) = |q〉, (222)

indeed as it should. Being true for all basis vectors |q〉, by linearity in Hilbert space it is true for any
quantum state, hence (221) does apply.

But then for any quantum state |ψ〉 we have

|ψ〉 = I|ψ〉 =

∫ +∞

−∞

dq |q〉 〈q|ψ〉 =

∫ +∞

−∞

dq |q〉ψ(q). (223)

This identity thus provides the decomposition of the state |ψ〉 in the basis |q〉 in terms of its components
〈q|ψ〉 which define the configuration space wave function of the state |ψ〉,

ψ(q) = 〈q|ψ〉, (224)

indeed a complex valued quantity.

As a consequence, it also becomes possible to determine the representation of the operators q̂ and p̂
acting on any state |ψ〉 through their matrix element in the configuration space basis |q〉. A simple analysis
using the Heisenberg algebra9 then finds

〈q|q̂|ψ〉 = q 〈q|ψ〉 = q ψ(q), 〈q|p̂|ψ〉 = −i~dψ(q)

dq
. (225)

7Indeed, a self-adjoint operator is necessarily diagonalisable and such that its eigenvectors for distinct eigenvalues are
orthogonal. These results are well known for finite dimensional matrices, and extend to operators on a Hilbert space.

8Even though the δ-function is infinite for a vanishing argument, the latter value is a point of zero measure in the integral
so that it remains possible that the integral be finite. One may also introduce different approximations to the δ-function

through a limit procedure, such as in the Gaussian representation δ(x − a) = limǫ→0
1√
2πǫ

e−
1
2ǫ

(x−a)2 .
9See for instance Ref. [3], even though there exist alternative derivations of these results, all of which have as starting

point the Heisenberg algebra commutator.
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In other words, when using the configuration space wave function representation ψ(q) of quantum states,
the action of the quantum operators q̂ and p̂ is through multiplication by q in the first case, and differen-
tiation with respect to q as well as multiplication by (−i~) in the second case, of the wave function ψ(q).
That these operations now acting on functions (which is indeed a set spanning a vector space over the com-
plex numbers) define a representation of the abstract Heisenberg algebra follows from their commutator
as differential operators, [

q,−i~ d

dq

]
= i~. (226)

Furthermore the inner product of quantum states, 〈ψ|χ〉, then also translates into an integral expres-
sion in terms of the associated configuration space wave functions, which indeed defines an inner product
over the space of functions possessing all the required properties for a Hilbert space. Namely, using once
again the spectral decomposition of the identity operator (221), it follows

〈ψ|χ〉 = 〈ψ|I|χ〉 = 〈ψ|
∫ +∞

−∞

dq|q〉〈q|χ〉 =

∫ +∞

−∞

dq 〈ψ|q〉 〈q|χ〉 =

∫ +∞

−∞

dq ψ∗(q)χ(q), (227)

with ψ(q) = 〈q|ψ〉 and χ(q) = 〈q|χ〉. The abstract Hilbert space of the Heisenberg algebra is thereby
represented in terms of the space L2(R, dq) of square integrable configuration space wave functions,

∫ +∞

−∞

dq |ψ(q)|2 < ∞, (228)

so that they may be divided by their finite norm and be of norm unity for the inner product (227), while
the abstract operators q̂ and p̂ are then represented by the functional operators as specified above.

b) The momentum space wave function representation

It should be quite obvious that a story similar to the one above also applies to a momentum space
wave function representation of the Heisenberg algebra. For instance, under the exchange of both operators
q̂ and p̂ and a change of sign in ~ (a “duality” transformation in a certain sense), the Heisenberg algebra
remains invariant. Consequently all the above considerations and results translate into corresponding ones
for a momentum space wave function representation.

For that purpose, let us again assume that, since the operator p̂ is self-adjoint, there exists a basis
of momentum eigenstates |p〉 of which the eigenspectrum is the real line which is also the range of the
classical conjugate momentum variable in phase space,

p̂ |p〉 = p |p〉, p ∈ R. (229)

Even though this leaves open still the phase of the states |p〉, their normalisation may be specified once
again through their inner products, which should be proportional to the Dirac δ-function in momentum
space this time, and for which we choose again a normalisation which is that of an orthonormalised basis,

〈p|p′〉 = δ(p− p′). (230)

Consequently the spectral decomposition of the identity operator reads

I =

∫ +∞

−∞

dp |p〉 〈p|, (231)

as is confirmed by applying this identity onto any of the the momentum eigenstates |p〉 as was discussed
above for the configuration space eigenbasis. In particular, abstract quantum states |ψ〉 are then repre-

sented in terms of a complex wave function over momentum space10, ψ̃(p), which specifies the components
of the state |ψ〉 in the momentum eigenbasis,

|ψ〉 =

∫ +∞

−∞

dp |p〉 〈p|ψ〉 =
∫ +∞

−∞

dp |p〉 ψ̃(p), ψ̃(p) = 〈p|ψ〉. (232)

10The tilde above the wave function symbol in momentum space is included to avoid confusing that wave function with
the configuration space one.
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Furthermore the abstract operators q̂ and p̂ now also acquire realisations in terms of functional
operators acting on the momentum wave function, through

〈p|q̂|ψ〉 = +i~
dψ̃(p)

dp
, 〈p|p̂|ψ〉 = p ψ̃(p). (233)

Namely q̂ is now represented by the derivative of the wave function with respect to p and multiplied by (i~)
while p̂ is realised simply as multiplication of the wave function by p. In particular, one may check that
these two functional operators do indeed obey the Heisenberg algebra on the vector space of momentum
wave functions ψ̃(p), [

i~
d

dp
, p

]
= i~. (234)

The vector space of such wave functions is equipped with an inner product which possesses all the
required properties of sesquilinearity, hermiticity and positive definiteness. By making use once again of
the spectral decomposition of the identity operator in momentum space, the inner product of any two
states |ψ〉 and |χ〉 represented by their momentum wave functions ψ̃(p) and χ̃(p) is simply

〈ψ|χ〉 =

∫ +∞

−∞

dp 〈ψ|p〉 〈p|χ〉 =
∫ +∞

−∞

dp ψ̃∗(p) χ̃(p). (235)

In particular, and to be precise, the actual Hilbert space (in the strict mathematical sense) consists of all
those square integrable wave functions, namely those of finite norm so that the associated states may be
normalised to unity,

||ψ||2 = 〈ψ|ψ〉 =

∫ +∞

−∞

dp|ψ̃(p)|2 <∞. (236)

c) Change of basis

Given the statement that, up to unitary transformations (namely in the case of each of the above
two wave function representations, the fact that the position or momentum eigenstates, hence also the
wave functions are only defined up to local phase factors), there exists a single representation of the
abstract Heisenberg algebra, we know that the Hilbert spaces realised by the above two wave function
representations are in fact identical. In other words, the two bases of vectors, |q〉 and |p〉, that have
been identified provide different bases within the same abstract Hilbert space as a vector space. Since
both are orthonormalised bases, there should exist a unitary transformation relating these two bases and
transforming the two classes of wave function representations for a same abstract quantum state |ψ〉. By
analogy with the situation for an ordinary finite dimensional vector space over the real numbers, it is
clear that knowing the decomposition of one set of basis vectors in terms of the other basis is all that is
required to determine the unitary transformation. But such a decomposition amounts to determining the
projections of one set of basis vectors onto those of the other set, namely in the present case determine
the quantities

〈q|p〉, 〈p|q〉 = 〈q|p〉∗. (237)

For instance, 〈q|p〉 stands for the configuration space wave function of the momentum eigenstate |p〉, namely
a function of q for a fixed value of p. In order to determine this function, let us establish a differential
equation for it by considering the matrix element

〈q|p̂|p〉 = p 〈q|p〉, (238)

which indeed produces the sought for function 〈q|p〉. On the other hand since that matrix element also
defines the realisation of the abstract operator p̂ in the configuration space representation, one has

〈q|p̂|p〉 = −i~d〈q|p〉
dq

. (239)

We have thus established the differential equation

d〈q|p〉
dq

=
i

~
p 〈q|p〉, (240)
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of which the solution is
〈q|p〉 = N e

i
~
qp, (241)

N being some complex normalisation factor. However one should have, for instance,

δ(q − q′) = 〈q|q′〉 =

∫ +∞

−∞

dp 〈q|p〉 〈p|q′〉 = |N |2
∫ +∞

−∞

dp e
i
~
p(q−q′) = 2π~|N |2 δ(q − q′). (242)

In conclusion, up to an arbitrary phase factor set to unity here, we have N = (2π~)−1/2, and finally

〈q|p〉 =
1√
2π~

e
i
~
qp, 〈p|q〉 = 〈q|p〉∗ =

1√
2π~

e−
i
~
qp. (243)

Having established the change of bases for the position and momentum eigenstates, let us turn to
the unitary transformation of the wave functions themselves for an arbitrary state |ψ〉. Using once again
the spectral decompositions of the identity operator, one finds

ψ̃(p) = 〈p|ψ〉 =
∫ +∞

−∞

dq 〈p|q〉 〈q|ψ〉 =

∫ +∞

−∞

dq√
2π~

e−
i
~
qp ψ(q), (244)

ψ(q) = 〈q|ψ〉 =

∫ +∞

−∞

dp 〈q|p〉〈p|ψ〉 =

∫ +∞

−∞

dp√
2π~

e
i
~
qp ψ̃(p). (245)

In these expressions one recognises the Fourier transformation formulae of a complex function. Hence
configuration and momentum wave functions are related through the above Fourier transforms, while this
connection between the two finds its origin in the abstract Heisenberg algebra which underlies the whole
discussion. In the pure imaginary exponential factors for 〈q|p〉 and 〈p|q〉 one also recognises the ordinary
“plane wave” factors, which have to do with the behaviour of quantum states under translations in phase
space in either q or p, namely a symmetry group. We shall thus come back to this point when discussing
symmetries and the (first) Noether theorem.

Remark: The Heisenberg uncertainty relation

As already mentioned, given an operator Â(t0) and a quantum state |ψ, t〉 (both, say, in the
Schrödinger picture), the expectation value of that observable is defined as

〈Â〉(t) =
〈ψ, t|Â(t0)|ψ, t〉
〈ψ, t|ψ, t〉 . (246)

In the case of the Heisenberg operators q̂ and p̂, let us then introduce the following quantities. First the
expectation values or mean values for both the position and the conjugate momentum of the state,

x̄(t) = 〈x̂〉(t), p̄(t) = 〈p̂〉(t), (247)

and next the mean values for the variations from these means,

(∆x)2 (t) = 〈(x̂− x̄)2〉(t), (∆p)2 (t) = 〈(p̂− p̄)2〉(t), (248)

with ∆x(t) > 0 and ∆p(t) > 0. Heisenberg’s uncertainty relation in this case states that one always has

∆x∆p ≥ 1

2
~, (249)

for whatever quantum state |ψ, t〉, the inequality being saturated only for specific types of states. This
inequality is in direct relation with the Heisenberg commutator [q̂, p̂] = i~. Thus any other pair of
canonically conjugated observables with the same commutation relation will also obey that uncertainty
relation, which may also be extended into a more general form given any commutator. As a consequence in
the context of quantum physics canonically conjugated variables may no longer be known both to arbitrarily
good precision, the product of the intrinsic uncertainties inherent to their quantum noncommutativity being
bounded below essentially by Planck’s constant.
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4.3.2 The nonrelativistic quantum particle

Let us apply the previous general discussion now to the nonrelativistic particle of mass m subjected to
conservative forces of total potential energy V (~r ), of which the Lagrange function is

L =
1

2
m~̇r 2 − V (~r ) (250)

(a generalisation to an arbitrary number of distinct particles is straightforward). The Hamiltonian of the
system is

H =
1

2m
~p 2 + V (~r ), (251)

with the canonical phase space variables (~r, ~p ) = (xi, pj) (i, j = 1, 2, 3) of which the Poisson brackets are{
xi, pj

}
= δij .

Hence at the quantum level we simply have the Heisenberg algebra

[
x̂i, p̂j

]
= i~ δij,

(
x̂i
)†

= x̂i, (p̂i)
†

= p̂i, (252)

as well as the quantum Hamiltonian

Ĥ =
1

2m
~̂p 2 + V (~̂r ), (253)

which is in direct correspondence with the classical Hamiltonian and is obviously also self-adjoint if the
position and momentum operators are themselves self-adjoint, Ĥ† = Ĥ .

The Hilbert space of this system is simply the 3-fold tensor product of the Hilbert space of the single
degree of freedom Heisenberg algebra constructed above. Diagonalisation of the Hamiltonian over that
space depends on the choice of the potential energy, namely the forces to which the particle is subjected.
In the case of harmonic forces for which V (~r ) is some given but otherwise arbitrary positive definite
quadratic polynomial of the cartesian coordinates xi, a purely algebraic solution in terms of the Fock
space representation of the Heisenberg algebra is readily established. However in a general case for which
algebraic methods are not available, one approach to solving the eigenvalue problem is by considering the
Schrödinger equation of wave quantum mechanics. Namely, consider the abstract Schrödinger equation in
the Schrödinger picture,

Ĥ |ψ, t〉 = i~
d|ψ, t〉
dt

, (254)

and project it onto the configuration space eigenstates, leading to the Schrödinger equation for the config-
uration space wave function, ψ(t, ~r ) = 〈~r |ψ, t〉, of the quantum particle,

[
− ~2

2m
~∇2 + V (~r )

]
ψ(t, ~r ) = i~

∂ψ(t, ~r )

∂t
, (255)

in which the correspondences ~̂r → ~r and ~̂p → −i~~∇ have been applied. For a given potential energy
this differential equation lends itself to methods of a more analytical or even numerical character. Note
that by considering an expansion of the general state into the energy eigenbasis of which the spectrum
is to be found and which may include components which are both discrete and continuous (such as the
spectrum of the hydrogen atom with its discrete but yet infinite bound state spectrum and its infinite
continuous spectrum of scattering or unbound states), as was done in the Fock basis in the case of the
one dimensional harmonic oscillator, it suffices in fact to consider the energy eigenvalue problem for the
Schrödinger equation, namely the so-called stationary Schrödinger equation,

[
− ~2

2m
~∇ 2 + V (~r )

]
ψE(~r ) = E ψE(~r ). (256)

Corresponding to any of the eigenvalues E of this differential eigenvalue problem, the solution to the
original Schrödinger equation is then, up to an arbitrary constant phase factor both in time and space,

ψE(t, ~r ) = ψE(~r ) e−
i
~
E (t−t0), (257)
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showing that this state is indeed stationary since its only time dependence is through a simple phase factor
linear in time and with as coefficient the energy measured in units of ~, namely an angular frequency. The
general solution to the full original Schrödinger equation is then constructed through the most general
possible linear combination of all stationary states. Indeed given the energy eigenspectrum of the abstract
Hamiltonian operator, Ĥ |Em〉 = Em|Em〉, we had established in the general case that the general solution
to the abstract Schrödinger equation in the Schrödinger picture is of the form,

|ψ, t〉 =
∑

m

|Em〉 e−
i
~
(t−t0)Em 〈Em|ψ, t0〉. (258)

It suffices to project this relation onto the position eigenstates |~r 〉 to obtain the same statement in terms
of the configuration space wave function of the general quantum state of the system,

ψ(t, ~r ) = 〈~r |ψ, t〉 =
∑

m

ψEm
(~r ) e−

i
~
Em(t−t0) 〈Em|ψ, t0〉. (259)

Remark

It is also possible to write the Schrödinger equation in the Schrödinger picture in the momentum space
wave function representation of the Heisenberg algebra. It should be quite clear that this equation reads,

[
1

2m
~p 2 + V

(
i~~∇

)]
ψ̃(t, ~p ) = i~

∂ψ̃(t, ~r )

∂t
. (260)

Depending on the considered system and the issues to be solved, one of these different representations of
the same abstract Schrödinger equation may be more convenient to use than the others.

Application: The free nonrelativistic particle

In the case of the free particle the potential energy is vanishing (or an arbitrary constant, leading to
an arbitrary constant phase redefinition of the quantum states). It is best to consider the Schrödinger
equation (in the Schrödinger picture) in the momentum representation since it is obvious that the energy
eigenstates are then simply the momentum eigenstates, |~p 〉, with

Ĥ |~p 〉 = E(~p ) |~p 〉, E(~p ) =
1

2m
~p 2. (261)

Consequently the stationary solutions to the configuration space Schrödinger equation are

ψ~p(t, ~r ) = 〈~r |~p, t〉 =
1

(2π~)3/2
e

i
~
~r·~p e−

i
~
(t−t0)E(~p ). (262)

It is also possible to consider the Schrödinger equation in the Heisenberg picture. It should be quite
clear that the solution to that equation in the case of the position and momentum operators is of the form

~̂r(t) = ~̂r(t0) +
1

m
~̂p(t0) (t− t0), ~̂p(t) = ~̂p(t0), (263)

which are indeed the operator solutions in direct correspondence with their classical counterparts in the
Hamiltonian formulation of the same system. Once again we notice that when the full quantum dynamics
may be solved, the Heisenberg picture of that dynamics is in direct correspondence with the classical
solutions to the Hamiltonian first order equations of motion for the observables.

4.3.3 The one dimensional harmonic oscillator

In the case of this system the configuration space Schrödinger equation (in the Schrödinger picture) reads,
given the potential energy V (q) = mω2q2/2,

[
− ~2

2m

∂2

∂q2
+

1

2
mω2q2

]
ψ(t, q) = i~

∂ψ(t, q)

∂t
. (264)
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Even the Schrödinger equation for stationary states,
[
− ~2

2m

d2

dq2
+

1

2
mω2 q2

]
ψn(q) = En ψn(q), (265)

where an index n distinguishing energy eigenvalues has already been introduced, is not the most appealing.
Solving this differential eigenvalue problem is not readily achieved, and has produced historically a certain
class of special functions, namely the Hermite polynomials.

However, let us show how the knowledge of the purely algebraic solution based on Fock space
techniques allows a direct resolution of the above differential equation. First, we already know that the
spectrum of energy eigenvalues is given by

En = ~ω

(
n+

1

2

)
, n = 0, 1, 2, . . . (266)

To each of these eigenvalues there thus corresponds an eigen-wave function ψn(q) = 〈q|n〉 for the associated

stationary state ψn(t, q) = e−
i
~
(t−t0)En ψn(q), which is nothing else but the configuration space wave

function of the Fock state |n〉. In other words, solving the problem of determining these eigenfunctions
ψn(q) amounts also to establishing the change of basis between the Fock basis of the abstract Hilbert space
providing the representation (up to unitary equivalence) and the configuration space basis of the position
eigenstates |q〉.

In order to identify the functions ψn(q), let us return to the defining property of the Fock states,
beginning with the Fock vacuum which is annihilated by the operator a, a|0〉 = 0. Hence, projecting that
relation onto a position eigenstate |q〉, we have

〈q|a|0〉 = 0. (267)

However, in terms of the abstract operators we have

a =

√
mω

2~

[
q̂ +

i

mω
p̂

]
, (268)

so that when acting on configuration space wave functions the abstract operator a is realised by the
functional operator

a :

√
mω

2~

[
q +

~

mω

d

dq

]
. (269)

Consequently the above property for the Fock vacuum, 〈q|a|0〉 = 0, translates into the following differential
equation for the configuration space wave function of the ground state, ψ0(q) = 〈q|0〉,

[
q +

~

mω

d

dq

]
ψ0(q) = 0, (270)

of which the solution is
ψ0(q) = N e−

mω
2~

q2 , (271)

N being some complex normalisation constant. The latter is fixed by the normalisation condition of the
Fock vacuum,

1 = 〈0|0〉 =
∫ +∞

−∞

dq 〈0|q〉 〈q|0〉 =
∫ +∞

−∞

dq |〈q|0〉|2 = |N |2
∫ +∞

−∞

dq e−
mω

~
q2 = |N |2

√
π~

mω
. (272)

Hence, up to an arbitrary choice of phase set to unity once again (i.e., up a unitary transformation in
Hilbert space), one has finally the configuration space wave function of the Fock vacuum,

ψ0(q) = 〈q|0〉 =
(mω
π~

)1/4

e−
mω
2~

q2 . (273)

In order to also determine the wave functions for the excited Fock states,

ψn(q) = 〈q|n〉 =
1√
n!
〈q|
(
a†
)n |0〉, (274)
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we now need to consider the functional operator realisation of the abstract creation operator, a†, in the
configuration space representation of the Heisenberg algebra. From the above discussion in the case of the
annihilation operator a, it is clear that we have the correspondence,

a† :

√
mω

2~

[
q − ~

mω

d

dq

]
. (275)

Consequently,

ψn(q) =
1√
n!

(mω
2~

)n/2 [
q − ~

mω

d

dq

]n (mω
π~

)1/4

e−
mω
2~

q2 , (276)

in which the function ψ0(q) = 〈q|0〉 has already been substituted by its solution established previously.
This expression is reminiscent of one possible definition of the Hermite polynomials, namely

Hn(x) = e
1
2
x2

[
x− d

dx

]n
e−

1
2
x2

, n = 0, 1, 2, . . . (277)

Hence, by an appropriate rescaling of the coordinate q, the above expression for ψn(q) may be brought
into the form of this definition of the Hermite polynomials. All factors combine to give the following final
expression for the configuration space wave functions of the energy eigenstates of the harmonic oscillator,

ψn(q) =
(mω
π~

)1/4 1√
2n n!

e−
mω
2~
q2 Hn

(
q

√
mω

~

)
. (278)

As indicated already previously in the general case, from the knowledge of these stationary solutions one
may construct the expression for the general solution to the Schrödinger equation (in the Schrödinger
picture) in the configuration space representation of the Heisenberg algebra. Incidentally, since the Hamil-
tonian is quadratic in both p and q, the solution in the momentum space wave function representation is
again constructed in terms of the Hermite polynomials evaluated for a rescaling of the conjugate momen-
tum variable p. The Fourier transformation of the above products of the Hermite polynomials with the
Gaussian factor included produces again similar products of the same Hermite polynomial with a common
Gaussian factor, but of course now as a function of p rather than q including some appropriate dimensionful
scaling parameters as displayed for instance in the above explicit expression for the configuration space
solutions.

4.4 The path integral representation and quantisation

It is well known that besides the canonical quantisation path, there is another royal avenue towards the
quantisation of a classical system whose dynamics is defined through some action and the variational prin-
ciple, namely the so-called path integral or functional integral formulation of quantum mechanics. Here
we shall discuss how, starting from the canonical quantisation of any such system following the approach
outlined in the previous Sections, it is possible to set up integral representations for matrix elements of
quantum operators, which acquire the interpretation of functional integrals over phase space. When re-
ducing from these integrals the conjugate momentum degrees of freedom, one recovers a functional integral
over configuration space in which the original classical action expressed in terms of the Lagrange function
plays again a central rôle. Further remarks as to quantisation directly through the functional integral are
made at the end of this discussion. It should already be clear that these two approaches are complementary,
each with its own advantages and difficulties both with respect to an intuitive understanding of the physics
that they both encode as well as to the calculational advantages of one compared to the other. However,
when properly implemented, they represent in complementary ways an identical physical content.

The procedure for constructing an integral representation for matrix elements of operators, starting
from canonical quantisation, follows essentially always the same avenue, based on the insertion of complete
sets of states in terms of which the unit operator possess a spectral resolution. Here, we shall illustrate
this feature for the configuration and momentum space representations of the Heisenberg algebra, even
though more general cases may be envisaged as well. In a later Section such an illustration will be
provided in terms of so-called coherent states, to be introduced hereafter. Furthermore, we shall consider
configuration space matrix elements of the evolution operator for a given quantum system, namely the
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propagator 〈qf |U(tf , ti)|qi〉 of the system (in configuration space11). Indeed, the physical meaning of this
quantity is that it measures the overlap with the position eigenstate |qf 〉 of the time evolved position
eigenstate |qi〉 over the time interval (tf − ti), namely the probability amplitude for finding the system,
initially localised at q = qi at time t = ti, at the position q = qf at time t = tf : this is indeed the
probability amplitude for propagating the system in configuration space for a given time interval.

The quantum evolution operator may also be expressed as the product of such operators representing
the evolution of the system through a succession of time slices,

U(tf , ti) = e−
i
~
(tf−ti)Ĥ =

[
e−

i
~
ǫĤ
]N

= lim
N→∞

[
1− i

~
ǫĤ

]N
, (279)

with

ǫ =
tf − ti
N

=
∆t

N
, ∆t = tf − ti, (280)

while N is some arbitrary positive integer specifying an equally spaced slicing of the finite time interval
(tf − ti). In what follows, the n index for the degrees of freedom (qn, pn) is suppressed, to keep expressions
as transparent as possible. Given this time sliced form of the evolution operator, the idea now is to insert
twice the spectral resolution of the unit operator I, once in terms of the position eigenstates, and once in
terms of the momentum eigenstates, and this in between each of the N factors that appear in the above
N factorised form for U(tf , ti), as follows,

I =

∫ +∞

−∞

dpα

∫ +∞

−∞

dqα+1 |qα+1〉〈qα+1|pα〉〈pα|, α = 0, 1, 2, . . . , N − 2. (281)

Setting then qf = qα=N and qi = qα=0, a straightforward substitution into the considered matrix element

leads to the expression (a substitution of the unit operator as I =
∫ +∞

−∞
dp|p〉〈p| is also performed to the

right of the external final state 〈qf |, leading to one more integration over the pα’s than over the qα’s),

〈qf |U(tf , ti)|qi〉 =
∫ +∞

−∞

N−1∏

α=1

dqα

N−1∏

α=0

dpα

N−1∏

α=0

[
〈qα+1|pα〉〈pα|e−

i
~
ǫĤ |qα〉

]
. (282)

Using then the value for the matrix element 〈q|p〉 given previously, this quantity finally reduces to,

〈qf |U(tf , ti)|qi〉 = lim
N→∞

∫ +∞

−∞

N−1∏

α=1

dqα

N−1∏

α=0

dpα
2π~

exp

{
i

~

N−1∑

α=0

ǫ

[
qα+1 − qα

ǫ
pα − hα

]}
, (283)

with the Hamiltonian matrix elements

hα =
〈pα|Ĥ |qα〉
〈pα|qα〉

. (284)

Clearly, the discretised integral representation (283) of the configuration space propagator corresponds to
a specific construction of the otherwise formal expression for the phase space path integral or functional
integral corresponding to that quantity, namely the following integral over the space of functions q(t) and
p(t),

〈qf |U(tf , ti)|qi〉 =
∫ q(tf )=qf

q(ti)=qi

[
Dq Dp

2π~

]
e

i
~
S[q,p], (285)

in which the phase space action is that of the first-order Hamiltonian formulation of the system, namely

S[q, p] =

∫ tf

ti

dt [q̇p−H(q, p)] , (286)

which is that associated to the choice of boundary conditions corresponding to the configuration space
propagator when imposing the variational principle in a strong sense, namely with the induced boundary
terms also required to vanish through the boundary conditions q(ti,f ) = qi,f . Note that contrary to

11It would be an excellent exercise to establish a path integral representation for the momentum space matrix elements of
the same operator.
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what the formal expression (285) may lead one to believe, the integration measure is not quite the phase
space Liouville measure, since in fact there is always one more pα integration than the number of qα
integrations. One should always keep this remark in mind when developing formal arguments based on
the formal expression (285) of the functional integral.

Considering the momentum space matrix elements of the same operator, a similar analysis leads to
an analogous specific discretised expression, namely

〈pf |U(tf , ti)|pi〉 = lim
N→∞

∫ +∞

−∞

N−1∏

α=1

dpα

N−1∏

α=0

dqα
2π~

exp

{
i

~

N−1∑

α=0

ǫ

[
−qα

pα+1 − pα
ǫ

− hα
]}

, (287)

with hα = 〈qα|Ĥ|pα〉/〈qα|pα〉, corresponding to the formal quantity,

〈pf |U(tf , ti)|pi〉 =
∫ p(tf )=pf

p(ti)=pi

[ Dq
2π~
Dp
]
e

i
~
S[q,p], (288)

where the appropriate Hamiltonian first-order action now reads

S[q, p] =

∫ tf

ti

dt [−qṗ−H(q, p)] , (289)

being this time associated to the choice of boundary conditions p(ti,f ) = pi,f as opposed to q(ti,f ) = qi,f
for the propagator in configuration space. Note that the same remark as above concerning the phase space
Liouville measure applies here as well.

In the particular situation that the Hamiltonian is such that the matrix elements hα are quadratic
in the momenta,

hα =
p2
α

2m
+ V (qα), (290)

which is the case when the quantum Hamiltonian is of the form Ĥ = p̂2/2m+ V (q̂), the integration over
momentum space may be completed explicitly in the above discretised expressions12, thereby leading to
the configuration space functional integral representation,

〈qf |U(tf , ti)|qi〉 = lim
N→∞

( m

2iπ~ǫ

)N/2 ∫ +∞

−∞

N−1∏

α=1

dqα exp

{
i

~

N−1∑

α=0

ǫ

[
1

2
m

(
qα+1 − qα

ǫ

)2

− V (qα)

]}
, (291)

or at the formal level,

〈qf |U(tf , ti)|qi〉 =
∫ q(tf )=qf

q(ti)=qi

[Dq] e i
~
S[q], (292)

with

S[q] =

∫ tf

ti

dt L(q, q̇), L(q, q̇) =
1

2
mq̇2 − V (q). (293)

The above explicit discretised representation of this latter formal functional integral coincides exactly with
the explicit construction performed by Feynman when he first developed the path integral quantisation
approach [7].

Hence, we have come back full circle. Starting from the action principle defined within the La-
grangian formulation of dynamics, the canonical Hamiltonian formulation of the same dynamics on phase
space has been constructed, allowing for the canonical operator quantisation of the associated algebraic
and geometric structures, for which operator matrix elements may be given a functional integral repre-
sentation on phase space or configuration space, in which the classical Hamiltonian or Lagrangian action
functionals reappear on equal terms. The concept which is central to this whole construction is that of the
action, through one of the many forms by which it contributes whether for the classical or the quantum
dynamics.

12Using the following Gaussian integral,
R +∞

−∞
dxe−αx

2
=
p

π/α, valid within the complex plane through analytic contin-
uation from the region with Re α > 0.
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Having chosen to follow the operator quantisation path, once a specific choice of operator ordering
has been made, in principle the functional integral representation acquires a totally unambiguous and well
defined discretised expression, which defines in an exact manner otherwise ill defined formal path integral
expressions whose actual meaning always still needs to be specified properly. Nonetheless, as we have
indicated, difficulties lie at the operator level precisely in the choice of operator ordering required so as to
obtain a consistent unitary quantum theory.

Had one taken the functional integral path towards quantisation, whether from the Lagrangian or
Hamiltonian classical actions, the difficulty of a proper construction of the quantised system then lies
hidden in the necessity of giving a precise definition and meaning, through some discretisation procedure
or otherwise, to the formal and thus ill defined functional integrals such as those in (285), (288) and
(292). As a matter of fact, the arbitrariness which exists at this level in the choice of discretisation
procedure and functional integration measure (whether over configuration, momentum or phase space) is
in direct correspondence with the arbitrariness which exists on the operator side of this relationship in
terms of the choice of operator ordering. Taking either path towards quantisation, for appropriate choices
on both sides which are in correspondence, the same dynamical quantum system is being represented
in a complementary manner. It is extremely fruitful to constantly keep in one’s mind these equivalent
representations of a quantum dynamics when properly implemented, in particular in a manner that should
ensure its quantum unitarity.

As a final illustration, consider the free nonrelativistic particle, with V (q) = 0. Given the exact
expression in (291), the remaining Gaussian integrations may then all be completed, leading in fine to the
matrix element,

〈qf |U(tf , ti)|qi〉 =
( m

2iπ~∆t

)1/2

e
i
~

m
2∆t

(qf−qi)
2

=
( m

2iπ~∆t

)1/2

e
i
~
Sc , (294)

with for the classical action Sc,

q(t) = qi +
qf − qi

∆t
(t− ti), q̇(t) =

qf − qi
∆t

, Sc =

∫ tf

ti

dt
1

2
mq̇2 =

m

2∆t
(qf − qi)2 . (295)

As a matter of fact, that the classical action appears as a phase factor in the overall path integral and
this matrix element is no accident, but may be understood through a saddle point evaluation of the path
integral13 which happens to be exact in the present case, and more generally for any Lagrange function
which is quadratic in q and q̇, as is also the case for the harmonic oscillator. That the above expression
for this matrix element is correct may also be checked directly from the wave function representations
of the Heisenberg algebra, and using the momentum representation in which the Hamiltonian, hence the
quantum evolution operator U(tf , ti), is diagonal. This is left as a useful exercise to the reader.

A few more remarks are in order. First, it is straightforward to extend to an arbitrary number
N of degrees of freedom (qn, pn) both the above discretised and the formal expressions for the relevant
path integral representations of matrix elements. Second, by proper consideration of representations
of the Heisenberg algebra on an arbitrary configuration space14, possibly with nontrivial curvature and
when curvilinear coordinates are used, even in the Euclidean case, it is possible to extend the analysis
to such situations as well. When configuration space possesses nontrivial topology, extra features of a
purely quantum character then also come into play, having to do with the first homotopy group of the
configuration manifold and its U(1) holonomy representations [6]. Finally, in spite of appearances from
its formal representation, the precise construction of the path integral over phase space is not invariant
under canonical transformations of phase space—which indeed leave the phase space Liouville measure
invariant—, since the integration measure in the path integral is not exactly the Liouville measure.

13Such a saddle point evaluation is equivalent to the classical limit ~ → 0, which is such that only the classical trajectories,
which extremise the classical action, end up contributing to the path integral. From that point of view, this very fact is a
justification a posteriori for the variational principle of classical dynamics.

14These representations are not being discussed in these notes.
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4.5 Representations of the Heisenberg algebra II: Coherent states

So far for a single degree of freedom system, we have constructed essentially three different though unitarily
equivalent representations of the Heisenberg algebra,

[q̂, p̂] = i~, q̂† = q̂, p̂† = p̂, (296)

namely the configuration space and momentum space wave function representations in terms of square
integrable wave functions on the real line, q, p ∈ R, and in terms of the Fock algebra associated to the
Heisenberg algebra provided a parameter with the physical dimensions of (mω) is available, as is the case
for the harmonic oscillator. Once the Fock space representation is achieved, it is possible to identify yet
another realisation of the Heisenberg algebra, in terms of so-called canonical coherent states. The notion
of coherent state extends much beyond the simple Heisenberg algebra, but retains most of the properties
of the canonical coherent states discussed hereafter. Note also that the discussion will be restricted to a
single degree of freedom, but may readily be extended to many degrees of freedom through a simple tensor
product of Hilbert spaces.

In order to identify a Fock algebra associated to the above Heisenberg algebra, one needs to introduce
an extra real and positive parameter, to be denoted λ > 0 hereafter, having the physical dimensions of a
mass multiplying an angular frequency (after all, this is the situation for the harmonic oscillator, but here
the discussion does not presume a specific dynamics; it remains of a purely kinematical character). Given
such a parameter, consider then the operators,

a =

√
λ

2~

[
q̂ +

i

λ
p̂

]
, a† =

√
λ

2~

[
q̂ − i

λ
p̂

]
, (297)

and their inverse relations,

q̂ =

√
~

2λ

[
a + a†

]
, p̂ = −iλ

√
~

2λ

[
a − a†

]
. (298)

It is clear that the operators (a, a†) span a Fock algebra over the Hilbert space associated to the original
Heisenberg algebra, [

a, a†
]

= I. (299)

Consequently, the associated Fock states span a discrete basis of this Hilbert space. Consider the
Fock vacuum state |Ω〉 associated to the choice of λ, defined by the properties

a|Ω〉 = 0, 〈Ω|Ω〉 = 1, (300)

as well as the Fock states |n〉 (n = 0, 1, 2, . . .),

|n〉 = 1√
n!

(
a†
)n |Ω〉, 〈n|m〉 = δn,m, I =

+∞∑

n=0

|n〉 〈n|. (301)

As we know one has the following actions of the ladder, or creation and annihilation operators,

a|n〉 = √n |n− 1〉, a†|n〉 =
√
n+ 1 |n+ 1〉, N = a†a : N |n〉 = n |n〉. (302)

In particular

|ψ〉 =
+∞∑

n=0

|n〉ψn, ψn = 〈n|ψ〉, (303)

while the change of basis from the Fock state basis to the configuration space eigenbasis, say, is specified
by the matrix elements

〈q|n〉 =

(
λ

π~

)1/4
1√
2nn!

e−
λ
2~
q2 Hn

(
q

√
λ

~

)
, (304)

Hn(x) being the Hermite polynomials of order n ∈ N. These functions thus provide a complete and infinite
discrete basis in L2(R, dx).
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Remark

It is of interest to consider this discussion in the specific case of the harmonic oscillator once again, with

L(q, q̇) =
1

2
mq̇2 − 1

2
mω2q2, H(q, p) =

1

2m
p2 +

1

2
mω2q2. (305)

At the quantum level one then finds

Ĥ =
1

2m
p̂2 +

1

2
mω2q̂2

=
~

2mλ

[
(mω)2 + λ2

] [
a†a+

1

2

]
+

~

4mλ

[
(mω)2 − λ2

] [
a†

2
+ a2

]
. (306)

Hence the choice of Fock algebra which diagonalises the Hamiltonian of the system corresponds to the
value λ = mω, readily leading to the energy spectrum,

Ĥ = ~ω

[
a†a+

1

2

]
, Ĥ |n〉 = En |n〉, En = ~ω

(
n+

1

2

)
. (307)

4.5.1 Phase space or canonical coherent states

Given the Fock algebra constructed as indicated above, the associated phase space or canonical coherent
states are defined according to the following relations. Given any point (q, p) in phase space, namely
any classical state, there corresponds to it a quantum state in Hilbert space parametrised by these two
coordinates and obtained from the exponentiated action of the Heisenberg algebra, or the Fock algebra,
on the Fock vacuum15, |Ω〉,

|q, p〉 = e−
i
~
(qp̂−pq̂) |Ω〉 = e−

1
2
|z|2 eza

† |Ω〉 = |z〉, |z〉 = e−
1
2
|z|2

+∞∑

n=0

zn√
n!
|n〉, (308)

with

z =

√
λ

2~

[
q +

i

λ
p

]
, z̄ =

√
λ

2~

[
q − i

λ
p

]
. (309)

Note how this complex parameter labelling phase space is in direct correspondence with the relations
defining the creation and annihilation operators in terms of the position and momentum operators q̂ and
p̂. It is the very last relation on the r.h.s. of (308) which explains the name given to these states. Indeed,
each of the Fock quantum states |n〉 are involved but with relative phases for the coefficients which define
their combination which are coherent, namely given by the successive powers of the unique and common
complex parameter z. In fact, coherent states play a central rôle in quantum optics, for instance, or any
other field where coherence effects are at play, as is the case for laser physics and the optical coherence
properties of laser beams. Coherent states also play an important rôle in quantum field theory, as models
for the quantum states corresponding to classical fields, such as classical electric and magnetic fields.

The different expressions above for these coherent states follow from applying the following Baker–
Campbell–Hausdorff formula valid for any two operators A and B,

eA eB = eA+B+ 1
2
[A,B]+ 1

12
[A,[A,B]]− 1

12
[B,[A,B]]+···. (310)

In particular if [A,B] commutes with both A and B, this formula reduces to

eA+B = e−
1
2
[A,B] eA eB, (311)

which is the relevant situation in the present case.

A first noteworthy property of these coherent states is that they are eigenstates of the annihilation
operator,

a|z〉 = z |z〉, an|z〉 = zn |z〉. (312)

15In fact, most properties characteristic of coherent states discussed hereafter remain applicable whatever the choice of
normalised “fiducial” quantum state chosen in place of |Ω〉.
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Also, the overlap of any such coherent state with a Fock state is a pure monomial in z, except for a common
Gaussian factor,

〈n|z〉 = 1√
n!
〈Ω|an|z〉 = 1√

n!
e−

1
2
|z|2 zn. (313)

Since it will turn out that coherent states define yet another (overcomplete) basis of Hilbert space, this fact
shows that in that basis Fock states are represented by simple monomials in z, as compared to Hermite
polynomials in configuration (or momentum) space, a much welcome simpler situation.

Even though the above coherent states are normalised, 〈z|z〉 = 1, their general overlaps are nonva-
nishing,

〈z1|z2〉 = e−
1
2
|z1|

2− 1
2
|z2|

2+z̄1z2 , 〈z|z〉 = 1, 〈z1|z2〉 6= 0, (314)

or in terms of the real (q, p) parametrisation,

〈q2, p2|q1, p1〉 = exp

{
− λ

4~

[
(q2 − q1)2 +

1

λ2
(p2 − p1)

2

]
+

i

2~
(q2p1 − q1p2)

}
. (315)

Hence even though coherent states span the entire Hilbert space they are not linearly independent,
namely they provide an overcomplete basis of the space of states. The fact that they generate the whole
space of quantum states follows from the overcompleteness relation, or resolution of the unit operator
in terms of coherent states.

I =

∫

R2

dqdp

2π~
|q, p〉 〈q, p| =

∫

C

dzdz̄

π
|z〉 〈z| [dzdz̄ = dRe z dIm z]. (316)

This relation may be verified by computing explicitly all its matrix elements in the Fock state basis, for
instance. Indeed, this resolution of the unit operator is a nontrivial property of coherent states which is
crucial for the relevance of these states to quantum physics in general.

Given the resolution of the unit operator in terms of coherent states, and as was the case for the
configuration and momentum space wave function representations of quantum states, coherent states lead
to (anti)holomorphic (also called Bargmann) wave function representations of quantum states, namely in
terms of functions of the variable z̄ only, again up to an overall and common Gaussian factor exp (−|z|2/2),

ψ(z) = 〈z|ψ〉 = e−
1
2
|z|2 ϕ(z̄), |ψ〉 =

∫

C

dzdz̄

π
|z〉ψ(z) =

∫

C

dzdz̄

π
e−

1
2
|z|2 |z〉ϕ(z̄). (317)

Consequently, one has the following representations for the annihilation and creation operators,

a : 〈z|a|ψ〉 =

[
∂z̄ +

1

2
z

]
ψ(z) = e−

1
2
|z|2 ∂z̄ϕ(z̄),

a† : 〈z|a†|ψ〉 = z̄ ψ(z) = e−
1
2
|z|2 z̄ ϕ(z̄). (318)

Coherent states still possess other noteworthy properties. For instance the diagonal matrix elements
for both q̂ and p̂ are both sharp in phase space,

q̄ = 〈q, p|q̂|q, p〉 = q, p̄ = 〈q, p|p̂|q, p〉 = p. (319)

In view of Heisenberg’s uncertainty principle, such a property is remarkable indeed. It needs to be em-
phasized though, that it is true only provided the diagonal matrix elements in the coherent state basis
are considered; non diagonal matrix elements of these same two operators do not possess that property.
Nevertheless, when considering the Heisenberg uncertainty relation itself for any coherent state |z〉, one in
fact finds that this relation is exactly saturated whatever the value for z,

(∆q)2 = 〈q, p| (q̂ − q̄)2 |q, p〉 = ~

2λ
, (∆p)2 = 〈q, p| (p̂− p̄)2 |q, p〉 = 1

2
~λ, (320)

∆q∆p =
1

2
~. (321)

Consequently, coherent states are quantum states which are closest to being ordinary classical states,
sharing quite a number of properties of classical states, being in particular eigenstates of a with as eigenvalue
z, and in one-to-one correspondence with classical states in phase space.
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Yet another property characteristic of coherent states in general is that the above canonical coherent
states are stable under time evolution. Consider as time evolution generating Hamiltonian the operator
Ĥ = ~ω(a†a+ 1/2). A straightforward application of the following Baker–Campbell–Hausdorff formula,

eAeBe−A = eB+[A,B]+ 1
2!

[A,[A,B]]+ 1
3!

[A,[A,[A,B]]]+···, (322)

then finds
e−

i
~
Ĥt |z〉 = e−

1
2
iωt |ze−iωt〉. (323)

This remarkable property implies that in the case of the harmonic oscillator, given the one-to-one cor-
respondence between classical states in classical phase space and quantum coherent states in quantum
Hilbert space, the time evolution of the latter in quantum space is in one-to-one correspondence with the
classical trajectory in phase space. Other dynamical systems for which coherent states may be constructed
in a similar manner also share this remarkable property. The canonical coherent states discussed here are
the coherent states associated to the Weyl–Heisenberg group and to the harmonic oscillator.

In fact, having established this time dependence for the coherent states of the harmonic oscillator,
and using the overlap of phase space coherent states as given above, it follows that the phase space
coherent state matrix elements of the quantum evolution operator of the harmonic oscillator are given by,
with ∆t = tf − ti and of course the choice λ = mω,

〈qf , pf | U(tf , ti)|qi, pi〉 = e−
1
2
iω∆t e

i
2~

(qfpi−qipf )e−iω∆t×

× exp
{
−mω4~

[
q2f + q2i − 2qfqie

−iω∆t
]
− 1

4~mω

[
p2
f + p2

i − 2pfpie
−iω∆t

]}
.

(324)

The small time, ∆t→ 0, behaviour of this quantity is thus the basic building block for the construction of a
path integral representation of such phase space coherent state matrix elements, to be described hereafter.

As a final remark, let us consider an application of coherent states to diagonalise the harmonic
oscillator coupled to an external dipole field leading to a shifted vacuum state,

L =
1

2
mq̇2 − 1

2
mω2q2 − αq =

1

2
mQ̇2 − 1

2
mQ2 +

α2

2mω2
, Q(t) = q(t) +

α

mω
. (325)

Here the variable Q(t) is such that it vanishes at the minimum of the total potential energy V (q) =
mω2q2/2+αq. In terms of the annihilation operators associated to Q (i.e., A) and q (i.e., a), which, given
the above definition of Q in terms of q, are related as

A = a+

√
mω

2~

α

mω
= a+

α√
2~mω

, (326)

it obviously follows that the actual ground state of the shifted oscillator is a specific coherent state of the
ground state of the unshifted oscillator, when α = 0, since one has

A|Ωα〉 = 0 =⇒ a|Ωα〉 = −
α√

2~mω
|Ωα〉. (327)

Since coherent states are eigenstates of the annihilation operator a, up to an arbitrary phase factor, the
unique normalised solution to the latter condition is thus given by the following coherent state,

|Ωα〉 = |z(α)〉 = e−
1
2
|z(α)|2 ez(α)a† |Ω〉, z(α) = − α√

2~mω
. (328)

This shows that when α 6= 0, the true vacuum of the system is the vacuum of the original system filled
with a “condensate” of a coherent infinite number of quanta of the original system. When α 6= 0, the point
q = 0 is no longer the minimum of the potential energy but becomes unstable and decays into the true
ground state at Q = 0, which at the quantum level corresponds to the nonperturbative coherent vacuum
state |Ωα〉 = |z(α)〉.
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4.5.2 The coherent state phase space path integral

Given the resolution of the unit operator in terms of the phase space coherent states,

I =

∫

R2

dqdp

2π~
|q, p〉 〈q, p|, (329)

in a manner analogous to the one discussed previously for the construction of path integral representations
of configuration or momentum space matrix elements of the quantum evolution operator, one finds the
following formal coherent state phase space path integral representation of the quantum evolution operator,

〈qf , pf |U(tf , ti)|qi, pi〉 =
∫ (qf ,pf )

(qi,pi)

[DqDp
2π~

]
e

i
~

R tf
ti

dt[ 1
2
(q̇p−qṗ)−H(q,p)], (330)

corresponding to the following exact and explicit construction,

〈qf , pf |U(tf , ti)|qi, pi〉 = limN→∞

∫ +∞

−∞

∏N−1
α=1

dqαdpα

2π~
×

× exp

{
i
~

∑N−1
α=0 ǫ

(
1
2

[
qα+1−qα

ǫ pα − qα
pα+1−pα

ǫ

]
− hα + 1

4 iǫ

[
λ
(
qα+1−qα

ǫ

)2

+ 1
λ

(
pα+1−pα

ǫ

)2
])}

,

(331)
where

hα =
〈qα+1, pα+1|Ĥ |qα, pα〉
〈qα+1, pα+1|qα, pα〉

. (332)

Note that in contradistinction to the previous path integral representations, in the coherent state
phase space one all phase space variables are treated identically; there are as many of the q as of the p type,
all integrated over with the Liouville measure in phase space. Nevertheless, the path integral remains non
invariant under phase space canonical transformations, nor is it invariant under changes of coordinates in
configuration space.

4.6 The nonrelativistic charged particle in a background electromagnetic field

From a previous discussion of that system, we know that the classical Hamiltonian for a charged nonrela-
tivistic particle subjected to an electromagnetic field, described by the scalar and vector gauge potentials
Φ(t, ~r ) and ~A(t, ~r ), as well as to conservative forces of total potential energy V (~r ), is given by

H =
1

2m

[
~p− q ~A(t, ~r )

]2
+ qΦ(t, ~r ) + V (~r ), (333)

the cartesian coordinates of the phase space variables (~r, ~p ) being canonically conjugate with the canonical
Poisson brackets

{
xi, pj

}
= δij (i, j = 1, 2, 3). Here m and q denote of course the mass and charge of the

particle, respectively.

According to the correspondence principle of canonical quantisation, the quantum Hamiltonian of
this system is then

Ĥ =
1

2m

[
~̂p− q ~A(t, ~̂r )

]2
+ qΦ(t, ~̂r ) + V (~̂r ), (334)

in which now the quantum operators ~̂r and ~̂p have the following commutation relations for their cartesian
coordinates, [x̂i, p̂j] = i~δij , it being understood that these are also (preferably) self-adjoint operators on
the space of quantum states, thus defining a 3-fold tensor product (over the cartesian components) of the
Heisenberg algebra over R.

Since the physical space in which the particle is moving is assumed to be the Euclidean space
R3, there exists essentially a unique representation of that algebra, given for instance in terms of the
configuration space wave function representation of states, ψ(t, ~r ) = 〈~r |ψ, t〉, in which case the operators
~̂r and ~̂p have the following functional representations

〈~r |~̂r |ψ, t〉 = ~r ψ(t, ~r ), 〈~r |~̂p |ψ, t〉 = −i~~∇ψ(t, ~r ). (335)
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By direct substitution into the above abstract quantum Hamiltonian, the Schrödinger equation in config-
uration space then reads,

{
− ~2

2m

[
~∇− i q

~
~A(t, ~r )

]2
+ qΦ(t, ~r ) + V (~r )

}
ψ(t, ~r ) = i~

∂ψ(t, ~r )

∂t
. (336)

It is also possible to express the same quantum dynamics in the following form,

{
− ~2

2m

[
~∇− i q

~
~A(t, ~r )

]2
+ V (~r )

}
ψ(t, ~r ) = i~

[
∂

∂t
+ i

q

~
Φ(t, ~r )

]
ψ(t, ~r ). (337)

This form of the Schrödinger equation is most relevant to study the issue of its possible invariance under
the gauge transformations of the electromagnetic potentials,

Φ′(t, ~r ) = Φ(t, ~r )− ∂tχ(t, ~r ), ~A′(t, ~r ) = ~A(t, ~r ) + ~∇χ(t, ~r ), (338)

χ(t, ~r ) being an arbitrary function of time and space. It is clear that since these potentials contribute to
the Schrödinger equation in combination with time or space derivatives, if there is any chance to identify
these transformations also as a symmetry of the Schrödinger equation, the quantum wave function has
to transform accordingly with a phase factor. After but only a little reflection, one quickly comes to the
conclusion that the appropriate transformation of the quantum wave function in configuration space is

ψ′(t, ~r ) = ei
q
~
χ(t,~r ) ψ(t, ~r ). (339)

Indeed, one then finds that each of the terms involving the time or space derivatives and the scalar and
vector gauge potentials transforms as follows,

[
~∇− i q

~
~A′(t, ~r )

]
ψ′(t, ~r ) = ei

q
~
χ(t,~r )

[
~∇− i q

~
~A(t, ~r )

]
ψ(t, ~r ),

[
∂t + i

q

~
Φ′(t, ~r )

]
ψ′(t, ~r ) = ei

q
~
χ(t,~r )

[
∂t + i

q

~
Φ(t, ~r )

]
ψ(t, ~r ). (340)

Consequently, both sides of the Schrödinger equation vary with the same phase factor as the wave function,
thus leaving the equation in fine invariant indeed under the local gauge symmetry of the electromagnetic
interaction.

Note that the actual transformation associated to the symmetry is that through the phase factor.
Indeed, introducing

U(t, ~r ) = ei
q
~
χ(t,~r ), (341)

one may write

ψ′(t, ~r ) = U(t, ~r )ψ(t, ~r ),

Φ′(t, ~r ) = U(t, ~r )Φ(t, ~r )U−1(t, ~r ) − i
~

q
U(t, ~r ) ∂t U

−1(t, ~r ),

~A′(t, ~r ) = U(t, ~r ) ~A(t, ~r )U−1(t, ~r ) + i
~

q
U(t, ~r ) ~∇U−1(t, ~r ), (342)

a form which readily extends to nonabelian symmetries for which U(t, ~r ) then stands for elements of some
nonabelian symmetry group. In the present case the symmetry group is thus that of phase transformations,
or rotations of the unit circle in the complex plane, or simply the group U(1) of 1 × 1 unitary matrices
such that U † = U−1, namely complex numbers of unit norm, thus pure phases. Hence the electromagnetic
interaction is intimately connected the local gauge symmetry based on the group U(1).

In fact in the above expressions (340) lies hidden one of the two secrets necessary to construct in
general Yang-Mills theories of the abelian and nonabelian type. Note that for a constant phase transfor-
mation, χ(t, ~r ) = χ0, the wave function ψ(t, ~r ) and its time and space derivatives transform in a similar
fashion, simply being multiplied by the same phase factor. However when the symmetry is made local,
namely when χ(t, ~r ) becomes an arbitrary function of time and space, the ordinary time and space deriva-
tives of the wave function do no longer transform in the same covariant way under the phase symmetry as
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does the wave function itself. There is always one more contribution,

∂t e
i q

~
χ(t,~r ) ψ(t, ~r ) = ei

q
~
χ(t,~r )

[
∂t ψ(t, ~r ) + i

q

~
∂tχ(t, ~r )ψ(t, ~r )

]
,

~∇ ei q
~
χ(t,~r ) ψ(t, ~r ) = ei

q
~
χ(t,~r )

[
~∇ψ(t, ~r ) + i

q

~
~∇χ(t, ~r )ψ(t, ~r )

]
. (343)

These additional terms are precisely those that are cancelled by the transformation of the gauge potentials
in the combinations [

∂t − i
q

~
Φ(t, ~r )

]
ψ(t, ~r ),

[
~∇+ i

q

~
~A(t, ~r )

]
ψ(t, ~r ). (344)

These types of extended or generalised derivatives are known as covariant derivatives, since when acting
on an object transforming covariantly under a symmetry they produce again a quantity covariant for the
same transformations, in contradistinction to the ordinary derivatives.

Incidentally, there is a difference in sign in the contributions of the electromagnetic gauge potentials
to the time and space covariant derivatives. This difference in sign is directly related to the opposite sign
in the time and space contributions to the spacetime metric, (ct)2−~r 2, of Minkowski spacetime in special
relativity. Indeed, the electromagnetic interaction is also explicitly invariant under the symmetry group
of that geometry, namely the Lorentz and Poincaré groups. Thus the germs of two of the most important
insights of XXth century physics, namely special relativity and the fundamental rôle of the gauge symmetry
principle as governing all fundamental interactions, are already present in the Schrödinger equation of the
nonrelativistic charged particle in a background electromagnetic field.

4.7 The two dimensional spherically symmetric harmonic oscillator

The Lagrange function of the spherically symmetric harmonic oscillator of angular frequency ω and mass
m, in two dimensional Euclidean space, is

L =
1

2
m
(
ẋ2

1 + ẋ2
2

)
− 1

2
mω2

(
x2

1 + x2
2

)
, (345)

x1 and x2 being the cartesian coordinates representing the two degrees of freedom of this dynamics. As
such, this system is literally the sum of two independent one dimensional harmonic oscillators. One may
thus simply take over all the results from previous discussions of the classical and quantum harmonic
oscillator, and add an index α = 1, 2 to the variables, and finally sum over these, which at the quantum
level means taking the ordinary tensor product of the two spaces of quantum states.

Consequently, we know that the Hamiltonian of the system is simply,

H =
1

2m

(
p2
1 + p2

2

)
+

1

2
mω2

(
x2

1 + x2
2

)
, (346)

p1 and p2 being of course the momenta canonically conjugate to the coordinates x1 and x2, respectively.
At the quantum level, one has the two pairs of operators x̂1 and p̂1, on the one hand, and x̂2 and p̂2 on
the other hand, with each pair obeying the Heisenberg algebra, [x̂α, p̂β] = i~δαβ (α, β = 1, 2). Introducing
the associated creation and annihilation operators, we thus have,

a1 =

√
mω

2~

[
x̂1 +

i

mω
p̂1

]
, a†1 =

√
mω

2~

[
x̂1 −

i

mω
p̂1

]
,

a2 =

√
mω

2~

[
x̂2 +

i

mω
p̂2

]
, a†2 =

√
mω

2~

[
x̂2 −

i

mω
p̂2

]
, (347)

obeying the tensor product Fock algebra,

[aα, a
†
β] = δαβI. (348)

Conversely,

x̂1 =

√
~

2mω

[
a1 + a†1

]
, p̂1 = −imω

√
~

2mω

[
a1 − a†1

]
,

x̂2 =

√
~

2mω

[
a2 + a†2

]
, p̂2 = −imω

√
~

2mω

[
a2 − a†2

]
. (349)
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Obviously, the quantum Hamiltonian then reads

Ĥ = ~ω

(
a†1a1 +

1

2

)
+ ~ω

(
a†2a2 +

1

2

)
= ~ω

(
a†1a1 + a†2a2 + 1

)
. (350)

Introducing the orthonormalised Fock state basis

|n1, n2〉 =
1√

n1!n2!

(
a†1

)n1
(
a†2

)n2

|0, 0〉, 〈n1, n2|n′
1, n

′
2〉 = δn1n′

1
δn2n′

2
, (351)

it is clear that these states also diagonalise the Hamiltonian with the following energy spectrum,

Ĥ|n1, n2〉 = E(n1, n2) |n1, n2〉, E(n1, n2) = ~ω (n1 + n2 + 1) . (352)

However, this spectrum is degenerate at each level except for the ground state at (n1, n2) = (0, 0). Indeed,
at a given energy level E(n1, n2) = ~ω(N + 1) with N = 0, 1, 2 . . ., we have as many states as there are
partitions of the natural number N in two natural numbers n1 and n2, namely (N +1) states. There must
exist an actual solid and sound explanation for this fact. It cannot be just a mere numerical coincidence.
The first thought that comes to one’s mind is that of a symmetry.

Certainly, the system is invariant under rotations in the plane, and indeed it possesses a conserved
angular-momentum (perpendicular to the plane),

L3 = x1p2 − x2p1. (353)

At the quantum level and expressed in terms of the creation and annihilation operators, one has the
operator,

L̂3 = −i~
(
a†1a2 − a†2a1

)
. (354)

From this expression, even though the operators Ĥ and L̂3 commute, the Fock space basis |n1, n2〉 does
not diagonalise them both. We need to find another basis of Hilbert space which diagonalises these two
commuting operators.

For this purpose, let us introduce an helicity basis as follows,

a± =
1√
2

[a1 ∓ ia2] , a†± =
1√
2

[
a†1 ± ia†2

]
,

a1 =
1√
2

[a+ + a−] , a†1 =
1√
2

[
a†+ + a†−

]
,

a2 =
i√
2

[a+ − a−] , a†2 = − i√
2

[
a†+ − a†−

]
, (355)

such that
[a±, a

†
±] = I, [a±, a

†
∓] = 0. (356)

These redefinitions in turn imply

x̂1 =
1

2

√
~

mω

[
a+ + a− + a†+ + a†−

]
, p̂1 = −imω

2

√
~

mω

[
a+ + a− − a†+ − a†−

]
,

x̂2 =
i√
2

√
~

mω

[
a+ − a− − a†+ + a†−

]
, p̂2 =

mω

2

√
~

mω

[
a+ − a− + a†+ − a†−

]
, (357)

hence

x̂± = x̂1 ± ix̂2 =

√
~

mω

[
a∓ + a†±

]
, p̂± =

1

2
[p̂1 ∓ ip̂2] = − imω

2

√
~

mω

[
a± − a†∓

]
, (358)

which are such that
[x̂±, p̂±] = i~, [x̂±, p̂∓] = 0. (359)
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One then also finds

Ĥ = ~ω
(
a†+a+ + a†−a− + 1

)
,

L̂3 = ~

(
a†+a+ − a†−a−

)
. (360)

Hence by considering rather the orthonormalised Fock space helicity basis

|n+, n−〉 =
1√

n+!n−!

(
a†+

)n+
(
a†−

)n−

|0, 0〉, 〈n+, n−|n′
+, n

′
−〉 = δn+n′

+
δn−n′

−
, (361)

based on the alternative Fock algebra (a±, a
†
±), one has indeed diagonalised both operators,

Ĥ |n+, n−〉 = E(n+, n−)|n+, n−〉, E(n+, n−) = ~ω(n+ + n− + 1),

L̂3|n+, n−〉 = ~(n+ − n−)|n+, n−〉. (362)

The previously described degeneracy of energy levels is again observed in terms of N = n+ +n−. However
the angular-momentum operator does not map states belonging to a same level into one another. Hence,
the degeneracy cannot be related to that symmetry under SO(2)=U(1) rotations in the plane. A larger

symmetry must be at play. Note that the quanta of the a†+ type carry a unit (+~) of angular-momentum,

whereas those of type a†− carry a unit (−~) of angular-momentum. The combinations of the degrees
of freedom which defined these quantities are indeed associated to the helicities (+1) and (−1) of the
oscillating modes of the system.

Both operators Ĥ and L̂3 may be written in the form,

Ĥ = ~ω
(
a†+ a†−

)( 1 0
0 1

)(
a+

a−

)
+ ~ω, L̂3 = ~

(
a†+ a†−

)( 1 0
0 −1

)(
a+

a−

)
. (363)

From that point of view, it should be quite clear that any SU(2) unitary transformation, namely a 2× 2
matrix U over C which is unitary, U † = U−1, and of unit determinant, detU = 1, and acting on the pair
of annihilation operators as (

a+

a−

)
−→

(
a′+
a′−

)
= U

(
a+

a−

)
, (364)

leaves the Hamiltonian invariant. In other words, there is a larger symmetry present in the system than
simply the SO(2)=U(1) symmetry of rotations which on the pair of annihilation operators act as

U =

(
eiα 0
0 e−iα

)
, (365)

α being a rotation angle. Note that the latter remark also shows that the symmetry SU(2) includes as
a subgroup the SO(2)=U(1) symmetry under rotations in the plane. This larger SU(2) symmetry is an
example of what is called a dynamical symmetry, namely a symmetry of the Hamiltonian formulation
of the system which is not one of its Lagrangian formulation. Such a situation is indeed possible a priori
since the Hamiltonian formulation involves both the configuration space coordinates and their conjugate
momenta which may therefore mix under a symmetry transformation, a situation which is not possible in
the Lagrangian formulation involving the configuration space coordinates only.

Let us see whether we may introduce now, based on the Fock algebra generators a†± and a±, operators
which map states into one another within a same energy level, thus still commuting with the Hamiltonian,
and then determine their algebra. The obvious candidates are,

T+ = a†+a−, T− = a†−a+, T3 =
1

2

(
a†+a+ − a†−a−

)
=

1

2~
L̂3. (366)

It takes but only a little calculation to obtain

[T+, T−] = 2T3, [T3, T±] = ±T±, [Ĥ, T±] = 0, [Ĥ, T3] = 0. (367)
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Introducing now

T1 =
1

2
(T+ + T−) , T2 = − i

2
(T+ − T−) , T± = T1 ± iT2, (368)

the same algebra reads
[Ti, Tj] = iǫijk Tk, i, j, k = 1, 2, 3, (369)

ǫijk being the totally antisymmetric invariant tensor in three dimensions with ǫ123 = +1. The last set of
commutation relations is directly identified with the SU(2) algebra, or also the SO(3) algebra which as
algebras are identical (but not as groups since SO(3)=SU(2)/Z2 as a quotient of groups). One famous
finite dimensional representation of that algebra is given by the 2× 2 Pauli matrices Ti = 1

2σi, with

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (370)

Let us now turn to the action of the operators T± on the Fock basis states |n+, n−〉. Since for a
single harmonic oscillator one has

a|n〉 = √n|n− 1〉, a†|n〉 =
√
n+ 1|n+ 1〉, (371)

it follows that

T+|n+, n−〉 =
√

(n+ + 1)n− |n+ + 1, n− − 1〉,
T−|n+, n−〉 =

√
n+(n− + 1) |n+ − 1, n− + 1〉,

T3|n+, n−〉 =
1

2
(n+ − n−) |n+, n−〉, (372)

showing that indeed it is this algebra of operators which accounts for the degeneracy of the energy levels.
Let us introduce the following representation for the helicity occupation numbers n±,

n+ + n− = N = 2j, n+ − n− = 2m,
1

2
(n+ − n−) = m, (373)

hence
n+ = j +m, n− = j −m, (374)

where j thus takes positive integer or half-integer values according to whether the energy level N is even
or odd, while m takes values between j and (−j) in unit steps, −j ≤ m ≤ j (m thus measures the T3

eigenvalue, or half the angular-momentum eigenvalue L3 in units of ~). The above actions then read

T+|j,m〉 =
√

(j −m)(j +m+ 1) |j,m+ 1〉, T−|j,m〉 =
√

(j +m)(j −m+ 1) |j,m− 1〉, (375)

with |j,m〉 = |n+, n−〉 given the above correspondence between these integer or half-integer variables.

In conclusion, for a given energy level N = 0, 1, 2, . . ., one obtains a certain SU(2) representation
as a finite N + 1 = 2j + 1 dimensional subspace of the complete Hilbert space of quantum states of this
system. This representation is characterised by the single integer or half-integer number j, known as the
spin of that representation, whereas the states within that representation of given spin j are distinguished
by their T3 eigenvalue m lying between (−j) and j in integer steps, with the above matrix elements for
the action of the two other operators T± of the SU(2) algebra. As a matter of fact, we have in this manner
recovered all finite dimensional representations of the symmetry algebra SU(2), which is also the algebra
of the symmetry group SO(3) of rotations in three dimensional Euclidean space. The above formula for the
action of T± and T3 in a given spin j representation are valid as such in full generality, independently of the
system in which these symmetries may be realised. Any rotationally invariant system in three dimensions
will find its quantum states organised according to these spin representations of SU(2). But it is matter of
experiment to determine which spin values are realised for a specific physical system. For example, that
the electron has spin 1/2 may only be determined experimentally.

As an illustration, consider the value N = 1 or j = 1/2, namely the first excited state of the present
system. It is thus doubly degenerated, with

T3

∣∣∣∣j =
1

2
,m =

1

2

〉
=

1

2

∣∣∣∣j =
1

2
,m =

1

2

〉
, T3

∣∣∣∣j =
1

2
,m = −1

2

〉
= −1

2

∣∣∣∣j =
1

2
,m = −1

2

〉
, (376)
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T+

∣∣∣∣j =
1

2
,m =

1

2

〉
= 0, T+

∣∣∣∣j =
1

2
,m = −1

2

〉
=

∣∣∣∣j =
1

2
,m =

1

2

〉
, (377)

T−

∣∣∣∣j =
1

2
,m =

1

2

〉
=

∣∣∣∣j =
1

2
,m = −1

2

〉
, T−

∣∣∣∣j =
1

2
,m = −1

2

〉
= 0, (378)

and the associations
∣∣j = 1

2 ,m = 1
2

〉
= |n+ = 1, n− = 0〉,

∣∣j = 1
2 ,m = − 1

2

〉
= |n+ = 0, n− = 1〉. In other

words, in this two dimensional basis, the matrix representation of the operators T3 and T± is given precisely
by the Pauli matrices. Clearly, the ground state of the system, |j = 0,m = 0〉 = |n+ = 0, n− = 0〉,
corresponds to a trivial representation of the SU(2) algebra for which T3 = 0 and T± = 0.

5 Symmetries and the First Noether Theorem

5.1 Motivation

Symmetries play a central rôle nowadays in fundamental and more applied physics, not only as means for
solving otherwise analytically intractable problems but more importantly, as providing profound insight
into properties of interactions and of conservation laws. Indeed, when it comes to a continuous symmetry
associated to the notion of a Lie group, Noether’s first theorem establishes a direct relation between
the existence of such continuous symmetries and that of conserved quantities, often also called Noether
charges. Furthermore within the Hamiltonian formulation the algebra of Poisson brackets of these Noether
charges proves to be identical to the abstract algebra of the Lie symmetry group of which the charges are
then the generators. In other words the abstract algebra of the Lie symmetry group is then realised on the
phase space of the system through the conserved quantities and their Poisson brackets. When canonical
quantisation may proceed in a manner consistent with the Lie algebra of symmetries, the associated
quantum operators then generate, as linear transformations, the symmetry algebra on the quantum space
of states. Consequently, the latter Hilbert space then provides a linear representation of the Lie algebra.
It is here that the whole of Lie algebra representation theory becomes most relevant, with in particular
a classification of the possible quantum representations of a given classical symmetry. As an example,
if a system is invariant under SO(3) rotations in three Euclidean space dimensions, the Noether charges
correspond to the total angular-momentum vector of that system, of which the Poisson brackets are
isomorphic to the Lie algebra so(3) of that Lie group. When quantised, one then is able to classify the
quantum space of states in terms of representations of so(3), namely also su(2), since the algebras of
SO(3) and SU(2) are identical. The representations of SU(2) are labelled in terms of the spin value j
taking an integer or half-integer positive value (these representations were introduced in the context of
the two dimensional spherically symmetric harmonic oscillator in the previous Section). This fundamental
result based on Noether’s first theorem is especially important when the symmetry group is a compact
Lie group, since all finite dimensional and unitary representations of all compact Lie groups have been
classified, one of the towering achievements of pure algebra in XXth century mathematics. But this is not
the purpose of the present notes.

The situation just described is also the generic one, when it comes to continuous Lie symmetries,
namely a group of transformations defined in terms of a collection of continuous parameters. A system
may also be invariant under a discrete symmetry of which the group elements depend on a collection
of parameters taking only a discrete set of values. As an example, consider a square in the plane. Its
symmetry group is a specific subgroup of O(2) or SO(2), namely those rotations by ±π/2 radians modulo
a reflection in the origin of one of the coordinate axes. There are no conserved quantities, or Noether
charges associated to a discrete symmetry, even though such a symmetry does impose some restrictions or
relations between physical quantities, of relevance especially when it comes to the quantum world. Famous
symmetries of that type are those of space parity, P , time reversal, T , and charge conjugation, C, the
latter corresponding to the exchange of particles with their antiparticles.

In these notes we shall not discuss discrete symmetries, but focus only on Noether’s first theorem.
There exist still one or two more Noether theorems, in relation with gauge symmetries. As was illustrated
through the example of the electromagnetic interaction in previous Sections, a gauge symmetry is a contin-
uous Lie symmetry of which the continuous parameters themselves may be continuous functions of time or
even spacetime (the latter in a field theory context). As such, when as a particular case one takes for these
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function parameters just constant values, one has what is also often called a global symmetry. This
is the situation addressed above, corresponding to Noether’s first theorem, leading to conserved Noether
charges. However, in the eventuality of a local or gauged symmetry, Noether’s second and third theorems
imply even further restrictions on the Noether charges and other quantities that are involved in the gauge
symmetry transformations, which are of relevance to the quantisation of gauge invariant systems. In par-
ticular, Noether’s second theorem implies that for configurations of the system which are “physical” in
the sense of being indeed gauge invariant, the Noether charges of the gauge symmetries have to vanish
altogether. Given the previous remark that Noether charges are the generators of the symmetries of which
they are the conserved quantities, indeed they would need to vanish in the case of gauge invariant config-
urations. In these notes we shall not discuss Noether’s second and third theorem (for those interested, a
discussion may be found in Ref. [3]).

This much having been said, it is necessary to specify what is exactly meant by a symmetry. Clearly
it must consist in a transformation of the configuration space variables, qn, of the system, and possibly
even in combination with a transformation in the time variable16, t, of the form

t′ = t′(t), qn′(t′) = qn′ (qn, t) . (379)

In the case of a discrete symmetry the functions t′(t) and qn′ (qn, t) would depend on a collection of
parameters taking values in a discrete set (viz., the example of the symmetries of the square). In the case
of a continuous symmetry forming a Lie group, the symmetry parameters take their values in a continuous
set. For instance, the two or three dimensional spherically symmetric harmonic oscillator is invariant under
all space rotations. These form the Lie groups SO(2) or SO(3), respectively, and their elements may be
characterised in terms of angular variables, the rotation angle in the plane in the first case, or the three
Euler angles in the second case, each of these angular variables taking values in continuous albeit finite
intervals. So far these precisions only concern the transformation, but when does it qualify as a symmetry?

Contrary may be to everyday’s usage of the word which is taken to mean that something is symmetric
under a transformation if it is left invariant under that transformation (such as the square of the above
example), in the context of physics and the dynamics of systems, what one means by the concept of
symmetry is not that a particular configuration of the system is left invariant by the transformation (say,
only when a set of particles occupies a preselected collection of points in space does there exist a particular
symmetry), but rather that the space of solutions to its equations of motion is left invariant
under the symmetry transformation. In other words, a symmetry is a transformation which maps any
given solution to the equations of motion into another solution to the same equations of motion. Often, one
says that a symmetry leaves the equations of motion form invariant. This means that when expressing the
equations of motion in terms of the not-yet-transformed variables or the transformed ones, the functional
relations between these variables in each case are identical, i.e., that they have the same form. Given the
above representation of such a transformation, this means that when expressed in terms of the variables
carrying a prime, t′ and qn′, the equations they obey are the same as those for the variables not carrying
that prime, namely t and qn. One may easily imagine examples for oneself’s, and a few will be discussed
hereafter.

Since our discussion is rooted in the variational principle, how then does the action of a system
transform under a symmetry? Since the equations of motion are form invariant, necessarily under a
symmetry the action may only change by a total time derivative. Indeed as is well known actions that
differ only by a total time derivative share identical equations of motion. Hence when transformations of
the above class define a symmetry of a dynamics, the action of the system must transform according to

S[qn′] =

∫
dt′ L

(
qn′,

dqn′

dt′

)
=

∫
dt

[
L

(
qn,

dqn

dt

)
+
dΛ(qn, t)

dt

]
, (380)

where Λ(qn, t) is some function implicitly defined through the transformation of the action under the
symmetry. In particular, it depends on the parameters of the symmetry group, say the rotation angles in
the case of a rotational symmetry in space. Using then the composition law for differentials,

dt′ = dt
dt′

dt
, (381)

16Why not for instance redefine time by an arbitrary shift of t0?
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a system is invariant under a symmetry transformation if its Lagrange function changes according to

dt′

dt
L

(
qn′,

dt

dt′
dqn′

dt

)
= L

(
qn,

dqn

dt

)
+
dΛ (qn, t)

dt
. (382)

Note that in the case of a field theory where the action is given as the spacetime integral of the Lagrangian
density L, the above total time derivative may be replaced by a total surface term, namely a total spacetime
divergence. In the presence of nontrivial topology in space such contributions may be physically relevant
for some symmetries, leading at the quantum level to quantisation rules on some parameters. A noteworthy
example of this are supersymmetric field theories; under a supersymmetry transformation, which exchanges
bosons and fermions (states of integer and half-integer spin), the Lagrangian density varies precisely always
by a total surface term.

The discussion so far, including the property (382), applies whether the symmetry is a continuous
or a discrete one. Let us now restrict to a set of transformations forming a Lie group, namely a continuous
symmetry.

5.2 Linearisation of a Lie symmetry group

In the case of a continuous group of symmetry transformations, at least for the component of the group
connected to the identity transformation, one may consider infinitesimal transformations, namely trans-
formations in a linearised form, simply by linearising the transformations in the parameters of the group.
Hence let us now consider transformations of the following form,

t′ = t+ δt(t), qn′ = qn + δqn (qn, t) , Λ = δΛ (qn, t) , (383)

with δt(t) and δqn(qn, t) some infinitesimal (or linearised) variations of the variables t and qn possessing
the indicated dependencies on t and qn. Since in the absence of a transformation no total time derivative
term is induced in the action, the function Λ(qn, t) has no zeroth order contribution, while the function
δΛ(qn, t) is determined from the knowledge of Λ(qn, t) and its dependence on the group parameters, given
a symmetry.

All that is required now is to substitute these variations in the variables in the fundamental identity
(382), and expand the latter to first order in the quantities δt, δqn and δΛ. It takes only a little calculation
detailed hereafter to establish that for linearised continuous symmetries one has the following fundamental
Noether identity,

[δqn − δt q̇n]
[
∂L

∂qn
− d

dt

∂L

∂q̇n

]
+

d

dt

[
δt

(
L− q̇n ∂L

∂q̇n

)
+ δqn

∂L

∂q̇n
− δΛ

]
= 0, (384)

where once again the implicit summation rule over repeated indices is to be understood.

In order to establish this result, let us first note that we have, to first order in the variation δt(t),

t′ = t+ δt(t), t = t′ − δt(t), dt′

dt
= 1 +

dδt(t)

dt
,

dt

dt′
= 1− dδt(t)

dt
. (385)

Consequently, again to first order the identity (382) reads
[
1 +

dδt(t)

dt

]
L

(
qn + δqn,

(
1− dδt(t)

dt

)(
dqn

dt
+
dδqn

dt

))
− L

(
qn,

dqn

dt

)
=
dδΛ

dt
. (386)

Expanded to first order we thus have

dδt(t)

dt
L(qn, q̇n) + δqn

∂L

∂qn
+

[
dδqn

dt
− dδt

dt
q̇n
]
∂L

∂q̇n
− dδΛ

dt
= 0. (387)

Let us now bring as many terms as possible in the form of a total time derivative,

d

dt

[
δtL+ δqn

∂L

∂q̇n
− δt q̇n ∂L

∂q̇n
− δΛ

]

−δtdL
dt

+ δqn
∂L

∂qn
− δqn d

dt

∂L

∂q̇n
+ δt

d

dt

[
q̇n

∂L

∂q̇n

]
= 0. (388)
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Making explicit the contributions of the last line one finds

−δt q̇n ∂L
∂qn
− δt q̈n ∂L

∂q̇n
+ δqn

∂L

∂qn
− δqn d

dt

∂L

∂q̇n
+ δt q̈n

∂L

∂q̇n
+ δt q̇n

d

dt

∂L

∂q̇n
, (389)

in which some terms cancel explicitly. As a consequence, the fundamental identity (384) is established.

What is truly remarkable about this result is that the Euler–Lagrange equations of motion appear
explicitly in it, whereas all remaining terms contribute only through a total time derivative. Thus in
particular, this implies that given any solution to the equations of motion there exists a quantity con-
structed out of the degrees of freedom of the system and their generalised velocities of which the total
time derivative vanishes identically. In other words, as a consequence of the property (382) expressing the
existence of a symmetry, in the case of a continuous symmetry there exist quantities which are conserved
or constants of motion for any solution to the equations of motion of the system. In itself this is quite
a remarkable result. However the identity (384) states something even stronger, namely that there exist
specific combinations of the Euler–Lagrange equations of motion which reduce to total time derivatives.
Let us make these remarks more specific by introducing now the collection of parameters of such Lie group
symmetries.

5.3 The first Noether theorem: global Lie symmetry group

Let us now make explicit the parameters17 αa of the Lie group of which the transformations acting on the
configurations qn of the system and the time variable t define a symmetry of its dynamics in the sense of
(382),

δt(t) = αa χ
a(t), δqn (qn, t) = αa φ

an (qn, t) , δΛ (qn, t) = αa Λa (qn, t) . (390)

Here χa(t), φan(qn, t) and Λa(qn, t) are specific functions of the indicated variables, obtained from the
functions t′(t), qn′(qn, t) and Λ(qn, t) by expanding these to first order in the group parameters αa.

A direct substitution of these expansions in terms of the group parameters αa into the fundamental
Noether identity (384) clearly leads to the First Noether identity,

dγa

dt
= [φan − χa q̇n]

[
d

dt

∂L

∂q̇n
− ∂L

∂qn

]
, (391)

in which the Noether charges are given by

γa = φan
∂L

∂q̇n
− χa

(
q̇n

∂L

∂q̇n
− L

)
− Λa. (392)

These identities, one for each independent value of the index a, namely each independent Lie group
parameter hence generator, thus provide the statement of the first Noether theorem. If the Lie group
G is of dimension NG, there exist NG independent linear combinations of the Euler–Lagrange equations
of motion which are total time derivatives. As a corollary, it also follows that given any solution to the
equations of motion there exist NG quantities which are conserved, namely constants of motion of the
system.

This conclusion is remarkable indeed. Lie symmetries are statements of a purely algebraic and
geometric character, yet when they apply to the dynamics of a system they imply restrictions so powerful
that independently of the explicit knowledge of any solution in analytic form (which is often indeed
impossible), one nevertheless knows it to be true for a fact that there exists a collection of conserved
quantities in direct correspondence with each of the independent symmetry generators of the Lie group.
To each of the Lie group generated symmetries, parametrised by the variable αa, there corresponds a
conserved charge, γa, the Noether charge. This fundamental result gives a profound insight into the very
reason for the possibility of conserved quantities. Furthermore as is discussed hereafter, the expressions for
the Noether charges γa readily extend to phase space and the Hamiltonian formulation of the dynamics.
Within that framework, it turns out that the Noether charges possess an algebra of Poisson brackets such

17Again, in the case of a rotational symmetry in space, say, these parameters would correspond to the angles parametrising
any such rotation.
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that, on the one hand this algebra is isomorphic to the abstract algebra of Lie brackets of the Lie symmetry
group G of which they are the conserved charges, and on the other hand, the Noether charges generate
through their Poisson brackets with phase space observables the infinitesimal (or linearised) symmetry
transformations of the phase space coordinates and observables under the (connected component of the)
Lie symmetry group G. From that point of view, and as already mentioned earlier, when a quantisation
of the system preserves the structure of the algebra of Noether charges the same conclusions extend to
the Hilbert space of quantum states, with in particular conservation of the Noether charges. Quantum
states may then be classified in terms of linear representations of the symmetry group G. Their eigenvalues
for a maximal abelian subgroup of G (namely, a subset of which all Noether charges commute with one
another and may thus be diagonalised simultaneously) then define conserved quantum numbers for the
quantised system. As an example the conservation of the electric charge immediately comes to mind.
Indeed in that case the electric charge is but the Noether charge associated to the U(1) phase symmetry
of the electromagnetic interaction. As we know this symmetry is not only a global one, hence leading to a
Noether charge which is the electric charge that matter degrees of freedom carry when they couple to the
electromagnetic field, but is also a local gauged symmetry with further consequences.

As mentioned already in the case of a local Lie symmetry group, further statements following from
the fundamental identity (382) imply two more Noether theorems. One of the consequences of these
additional theorems is then that given any solution to the Euler–Lagrange equations of motion, some of
which are actually constraint equations rather than genuine dynamical equations of motion, the Noether
charges γa are not only conserved but vanish identically, γa = 0. Indeed any such solution should thus
also be gauge invariant, namely not transform at all under the symmetry, which is possible only provided
these charges all vanish. Such configurations, within the context of gauge invariant dynamics, are called
physical configurations or physical states. In the case of the electromagnetic interaction, this condition
would translate in an identically vanishing total electric charge of a physical system interacting with the
electromagnetic field, thus including also the latter which extends through all of space and time.

5.4 The Noether charge algebra

Given the expression for the Noether charges,

γa = φan
∂L

∂q̇n
− χa

(
q̇n

∂L

∂q̇n
− L

)
− Λa, (393)

it is clear that these quantities are readily defined over phase space as the following observables,

γa(qn, pn) = φan(qn, t)pn − χa(t)H0(q
n, pn) − Λa(qn, t), (394)

where H0(q
n, pn) = q̇n pn − L(qn, q̇n) is the canonical Hamiltonian. Note that even though for a given

solution to the equations of motion (whether in Lagrangian or Hamiltonian form) these quantities are
conserved with a time independent value, their kinematical expression as phase space observables may
carry an explicit time dependence through the functions χa(t), φan(qn, t) and Λa(qn, t), depending on the
Lie symmetry group G under consideration.

Given this observation, the immediate question which arises is to determine the algebra of Poisson
brackets of the Noether charges over phase space. It is indeed possible to give an explicit answer to that
question through a careful analysis of the consequences following from the fundamental identity (382)
within the Hamiltonian framework. The details of the argument are not discussed in these notes.

In order to describe the result for the algebra of Poisson brackets of the Noether charges, let us
first consider the abstract Lie symmetry group G and the algebra of its abstract generators T a. Being a
continuous Lie group of transformations, any of its elements in the component connected to the identity
transformation may be written as

g[α] = eiαa T
a

, (395)

αa being the coordinate parameters of the Lie group as a differential manifold, and T a the abstract
generators of the Lie algebra associated to the Lie group G. The presence of the factor i is a physicist’s
convention, since within a quantum context one needs such transformations to be also unitary ones in order
to preserve quantum probabilities of quantum states under the symmetry transformations, hence one needs
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self-adjoint generators T a if that factor i is included, T a† = T a. Now, given the group composition rules
for group elements g[α] and g[β], it follows that for the linearised or infinitesimal form of these group
transformations, the algebra of generators T a must possess Lie brackets of the form18

[T a, T b] = iCabc T
c, (396)

where the constant coefficients Cabc (the summation convention is again implicit) are known as the
structure constants or structure coefficients of the Lie algebra of the Lie group G. In the case of
a compact Lie group G, such as SU(2) or more generally the unitary groups SU(N), these structure
coefficients are real numbers. Note that they are also antisymmetric in their first two indices. Again in
the case of compact simple semi-simple compact Lie groups, by introducing the positive definite Killing
form on the algebra which then defines an hermitian metric on that vector space, it becomes possible to
raise and lower the indices a, b, c (which transform in the adjoint representation of the algebra and group),
in which case the structure coefficients Cabc or Cabc are totally antisymmetric in all three indices.

As an illustration, consider the group19 SO(3) of all orientation preserving rotations in three di-
mensional Euclidean space. Rather than using for instance the Euler angle parametrisation of that group,
it should be clear that any element of G =SO(3) may be obtained through the composition of the three
independent rotations around the three cartesian coordinate axes xi (i = 1, 2, 3) with an arbitrary angle
θi in the range 0 ≤ θi ≤ 2π. Any such transformation thus corresponds to an element of the form

gi[θi] = eiθi T
i

[no summation over the index i] (397)

with a generator T i (the index i is not summed over in this expression). In order to identify the algebra
of SO(3), let us use the defining representation of SO(3) in terms of 3 × 3 orthogonal matrices of unit
determinant acting on three component vectors. It is well known how the matrix representations of each
of the above elements gi[θi] are expressed, for example for the rotation of angle θ3 around the third axis
i = 3,

g3[θ3] :




cos θ3 sin θ3 0
− sin θ3 cos θ3 0

0 0 1



 . (398)

Expanding such expressions to first order in the angles θi, the matrix representations of the generators T i

are readily identified through gi[θi] = I + iθiT
i + · · · , leading to the following matrix elements

(
T i
)j
k

= −iǫijk, i, j, k = 1, 2, 3, (399)

ǫijk being the usual totally antisymmetric invariant tensor in three dimensional Euclidean space, with
ǫ123 = +1. Simple matrix multiplication then finds that the algebra of commutators of these SO(3)
generators, defining the Lie brackets of the abstract Lie algebra so(3) of the finite compact Lie group
SO(3), is [

T i, T j
]

= i ǫijk T k, (400)

where the summation of the repeated index k is implicit and to be understood. Hence the structure
constants of the Lie algebra so(3) are indeed real and totally antisymmetric structure coefficients, given by
the antisymmetric tensor ǫijk. It is left as an exercise for the reader to repeat the analysis for the compact
Lie group SU(2) of unitary 2× 2 matrices of unit determinant over the complex numbers, to discover that
the algebra su(2) of that Lie group in fact coincides with that of so(3), su(2) = so(3). Incidentally, this is
precisely what has been observed when finding the symmetry reason behind the degeneracies of the energy
spectrum of the two dimensional spherically symmetric harmonic oscillator. This equivalence between a
unitary group Lie algebra, su(2), and an orthogonal group Lie algebra, so(3), is specific to this particular
case.

18A Lie algebra is defined in terms of a Lie bracket, in a manner similar to that in which a phase space is defined in terms
of Poisson brackets. For all practical purposes in these notes one may think of the Lie bracket as the ordinary commutator of
abstract operators, or even matrices, since one is implicitly interested in Hilbert space realisations of the abstract Lie group
symmetry and its algebra.

19The reader is invited to consider the case of rotations in the two dimensional plane with symmetry group SO(2), and
derive the same considerations, to conclude that the algebra is that of the group U(1) of phase transformations in the complex
plane, with a single generator hence an abelian algebra and thus a vanishing structure constant.
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Having thus introduced the concepts of generators and structure constants of the Lie algebra associ-
ated to a Lie symmetry group, let us consider the issue of the Poisson brackets of the Noether charges γa.
First, in the case that no total time derivative term Λ(qn, t) is induced in the action through the symmetry
transformation, it may be shown that the algebra of these Poisson brackets is always given as

{
γa, γb

}
= Cabc γ

c (401)

(the summation convention is implicit), precisely in terms of the structure constants Cabc of the Lie algebra
of the symmetry group G. Except for a factor i which may easily be introduced by considering the Poisson
brackets of the pure imaginary quantities iγa, this algebra of Poisson brackets thus coincides with the Lie
bracket of the abstract Lie algebra of G. Note that at the quantum level, through the correspondence
principle, the Noether charge operators γ̂a should then obey the algebra of commutation relations

[
γ̂a, γ̂b

]
= i~Cabc γ̂

c, (γ̂a)
†

= γ̂a, (402)

if the symmetry is to be realised in the quantised system as well (operator ordering issues are at play here
and one has to identify a quantisation which preserves these commutation relations while also producing
self-adjoint Noether charges γ̂a). Except for the factor ~ which is easily absorbed through a rescaling of
the Noether charges, γ̂a/~, one then has identically the algebra of the abstract Lie algebra, realised in
terms of the quantum observables γ̂a/~ on the Hilbert space of the quantised system. In particular, this
implies that finite Lie symmetry group transformations are realised on the Hilbert space of quantum states
by the unitary operators

e
i
~
αaγ̂

a

, (403)

defined in terms of the properly normalised Noether charge operators 1
~
γ̂a.

These results thus establish that indeed the Noether charges, as conserved quantities the existence
of which follows from the symmetries, are also the generators of these symmetries, either on phase space
through their Poisson brackets with the phase space coordinates and other observables in the classical
context, or on Hilbert space through their action on quantum states as quantum operators. Conserved
charges are the generators of the symmetries of which they are the Noether charges. In particular at the
quantum level, selecting a maximal subset of Noether charges which all commute with one another, namely
a maximal abelian subalgebra, all these operators may be diagonalised simultaneously, thereby leading to
a basis of states of Hilbert space each of which element carries specific conserved quantum charges under
the symmetry, namely the associated eigenvalues under the symmetries of one of its maximal abelian
subgroups. For instance returning to the example of SO(3), any maximal abelian subalgebra of so(3)
is one dimensional. Taking for instance the subalgebra generated by T 3, namely rotations around the
axis i = 3, quantum states are then classified in terms of their charge under T 3, namely their angular-
momentum component along the axis i = 3 in units of ~. Because of the structure of representations of
so(3) = su(2) labelled by the integer or half-integer spin value j as already discussed in the context of the
two dimensional spherically symmetric harmonic oscillator, these components of angular-momentum for
an arbitrary system are quantised in the range −j ≤ m ≤ j in integer steps for the eigenvalues m of T 3.

Since there are examples of symmetries of physical relevance which induce a total time derivative
in the action, let us now describe the general result. Though not necessarily always the case, it may then
happen that the algebra of Poisson brackets of the Noether charges is no longer of the form (401) but
acquires an extra contribution through one extra term independent of time and the phase space variables,
a so-called central extension of the Lie algebra of G since this extra contribution has vanishing Poisson
brackets or quantum commutation relations with all elements of the algebra of observables of the system,
whether classical or quantised. Namely one has in general the expression

{
γa, γb

}
= Cabc γ

c + Cab, (404)

where the antisymmetric constant coefficients Cab are obtained as follows. Under the group composition
law, one has a certain composition law for the group parameters αa, namely,

g[α] g[β] = g[η(α, β)]. (405)

As a matter of fact, the structure coefficients of the Lie algebra of G are given as follows from the functions
ηa(α, β),

∂2

∂αa∂βb
[ηc(α, β) − ηc(β, α)]|α=0=β

= Cabc. (406)
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By considering then how the Lagrange function transforms under such a composition of symmetry trans-
formations it may be shown that one has necessarily,

Λ (qn, t; γ(α, β)) − Λ
(
qn′(qn, t;β), t′(t;β);α

)
− Λ (qn, t;β) = C (α, β) , (407)

where C(α, β) are thus specific functions of the group parameters, in fact associated to cocycle properties
of the symmetry group encoded through the function Λ(qn, t;α). The quantities Cab appearing in the
above general Poisson brackets of the Noether charges are then given as

Cab =
∂2

∂αa∂βb
[C(α, β) − C(β, α)]|α=0=β

. (408)

Incidentally, it may easily be checked that a redefinition of the Lagrange function by a total time derivative,
thus leaving the equations of motion invariant, does not modify these central extension coefficients Cab.

What is interesting about this result is that central extensions are often believed to arise only at the
quantum level, and to correspond then to an explicit breakdown of the classical symmetry generated by the
Noether charges, a phenomenon called a quantum anomaly. Here we see that classical extensions are
also possible, provided the action varies under a symmetry with a total time derivative which itself must
possess some nontrivial cocycle property, as a consequence of some nontrivial topology properties in the
configuration space of the system. Examples are described hereafter. At the quantum level, the symmetry
is then realised not through a faithful representation of the symmetry group (the type of representation
encountered so far in terms simply of the action of exp ( i

~
αγ̂a)), but in terms of what is called a projective

representation of the abstract Lie symmetry group such that symmetry transformations of quantum
states are obtained not only through the action of the unitary operators e

i
~
αaγ̂

a

but also some further
phase factor which is function of the group parameters αa and in direct correspondence with the total time
derivative contribution Λ(qn, t;α) (as may heuristically be understood from the path integral representation
of quantum physics). Even though we shall not make use later on of such features specific to certain classes
of Lie group symmetries, it is important to know about the existence of such particular situations and the
possibility of classical central extensions of Lie algebras in the classical Poisson bracket algebra of Noether
charges.

Remark

One final remark concerning symmetries and their Noether charges may be made in order to conclude
this discussion. The result (392) gives the general expression for these charges in terms of the functions
parametrising the linearised variations of t, qn and the induced total time derivative term Λ under the
symmetry group G. However, in practice and in almost all cases (except for field theories of supergravity
to the best of this author’s knowledge) one may rather easily identify the Noether charges through the
following little trick. In the case that the symmetry parameters αa are constant, the action is invariant up
to a total time derivative term,

S[qn′] = S[qn] +

∫
dt t.t.d., (409)

where “t.t.d.” stands for some unspecified total time derivative contribution. In the case of a linearised or
infinitesimal symmetry transformation, one thus has

δS[qn] =

∫
dt t.t.d. . (410)

Imagine now for the sake of the argument that the symmetry transformation is considered for parameters
αa(t) which are arbitrary functions of time. Except when in fact the symmetry is a local gauge symmetry,
the action may then no longer change just by a total time derivative, since it is then no longer invariant
up to such a term. Rather in general it is expected then not to be invariant up to such terms, but to vary
by terms involving the first order time derivative of the symmetry parameters αa(t) since the Lagrange
function is function of both qn(t) and q̇n(t). Hence we should expect a linearised variation of the form

δS[qn] =

∫
dt

[
dαa
dt

Qa + t.t.d.

]
, (411)
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where Qa(qn, q̇n, t) are some quantities which could a priori be functions of the generalised coordinates
and their velocities as well as time. Clearly when the parameters αa(t) are constants one recovers the
symmetry property of the action. In the latter form one may now integrate by parts and bring that
variation of the action into the form

δS[qn] =

∫
dt

[
−αa

dQa

dt
+ t.t.d.

]
. (412)

However, since when the parameters αa(t) are constants the action may only change by a total time
derivative, one must conclude that the quantities Qa must be conserved quantities, dQa/dt = 0. In other
words, possibly up to an overal sign, necessarily the quantities Qa(qn, q̇n, t) must coincide with the Noether
charges γa(qn, q̇n, t) associated to the symmetry leaving the action invariant up to total time derivatives,
which are in fact readily defined over the phase space of the system. This method is quite generally
sufficient in order to readily identify the Noether charges given a symmetry of the action, rather than
going through the identification of the functions χa(t), φan(qn, t) and Λa(qn, t) introduced in the above
general discussion of Noether’s first theorem.

5.5 Illustrations

5.5.1 Time translation invariance

As an illustration of the general discussion of Noether’s first theorem, let us begin by considering any
dynamical system described by an action of the type we have been using ever since the beginning of these
notes,

S[qn] =

∫
dt L(qn, q̇n). (413)

Having excluded from the outset any explicit time dependence of the Lagrange function, it is quite ob-
vious that this dynamics is invariant under arbitrary constant translations in the time variable t. Any
transformation of the form

t′ = t+ t0, qn′(t′) = qn(t), (414)

defines an invariance of the action, with no total time derivative term being induced, Λ(qn, t) = 0, simply
because we have all along assumed the Lagrange function not to possess any explicit time dependence. This
group of symmetries is a one dimensional Lie group with as continuous parameter the constant quantity
t0 defining the translation in time. There thus exists a conserved charged associated to time translation
invariance in the evolution parameter t used to parametrise the dynamics of the system.

For what concerns then linearised or infinitesimal transformations, the index a of the variables αa
of the general discussion takes only a single value in the present case, a = 1. Furthermore, one readily
identifies

χa(t) = 1, φan(qn, t) = 0, Λa(qn, t) = 0. (415)

By direct substitution into the definition (392) of the Noether charges, one finds that the Noether charge
associated to this symmetry is

γa = −
[
q̇n

∂L

∂q̇n
− L

]
= −H0(q

n, pn). (416)

Hence in full generality, whenever a system is invariant under translations in its time evolution parameter,
its canonical Hamiltonian is a conserved quantity, a constant of motion which coincides with the Noether
charge for that symmetry. Furthermore, this Noether charge indeed does generate infinitesimal translations
in the time evolution parameter, namely it is the generator of the time dependence of the system through
the Poisson brackets. This latter fact is an explicit illustration of the general result that Noether charges
are the generators of the symmetries of which they are the conserved quantities.

This conclusion applies likewise at the quantum level as may easily be seen. Let us consider an
orthonormalised basis of Hilbert space consisting of the energy eigenstates |Em〉 where, in keeping with
our previous generic notation, in general m stands for a multi-index some of which components could even
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take values in a continuous range. As we know the exponentiated action of the quantum Hamiltonian on
quantum states generates their time evolution,

|ψ, t〉 = e−
i
~
(t−t0)Ĥ |ψ, t0〉 =

∑

m

|Em〉 e−
i
~
(t−t0)Em 〈Em|ψ, t0〉, (417)

which shows indeed that the quantum Hamiltonian is the generator of constant translations in time, in

the present case by the value (t− t0) for the quantum evolution operator U(t, t0) = e−
i
~
(t−t0)Ĥ .

Note that the time evolution parameter does not, in general, necessarily coincide with the physical
time, when one considers parametrised systems such as the relativistic particle, string theory and general
relativity. However, when the time evolution parameter coincides with the physical time, the above con-
servation law shows that in direct correspondence with the invariance of a dynamics under arbitrary time
translations its total energy is a conserved quantity, namely the Noether charge generating that symmetry.

5.5.2 Nonrelativistic particles

In order to display other examples of direct relevance even to nonrelativistic Newton dynamics, we now
consider systems of nonrelativistic particles in interaction through some conservative forces in different
situations, and then identify each of the conservation laws of mechanical energy, momentum and angular-
momentum. Consider a system ofN particles of massesmα (α = 1, 2, . . . , N), of position vectors ~rα(t) with
respect to some inertial frame, and subjected to conservative forces of total potential energy V (~rα − ~rβ),
namely some function of pairwise differences of the position vectors. As is well known the Lagrange
function for such a system is

L(~rα, ~̇rα) =

N∑

α=1

1

2
mα~̇rα

2 − V (~rα − ~rβ). (418)

For later purposes, the cartesian coordinates of the particles will be denoted xiα with i = 1, 2, 3 in three
dimensional Euclidean space. These are the configuration space degrees of freedom of the system, the
index n of the general discussion standing here for the double index (i, α) taking 3N values.

Time translation invariance

From the previous example in the general case, at once we know that the canonical Hamiltonian
of this system is the Noether charge for time translation invariance of this system, since the Lagrange
function does not possess any explicit time dependence (this would thus no longer be the case had the

particles been coupled to a time dependent background electromagnetic field ~E(t, ~r ) and ~B(t, ~r ), as was
already established explicitly earlier in these notes). Since the time evolution parameter t of the system is
also the physical time, we conclude that the total mechanical energy of the system, namely its canonical
Hamiltonian,

H0 =

N∑

α=1

1

2mα
~pα

2 + V (~rα − ~rβ), (419)

is the conserved Noether charge generating infinitesimal time translations.

Space translation invariance

Given that the total potential energy is taken to be function only of the pairwise differences in the
position vectors of the particles, the system is also invariant under arbitrary constant translations in space,
namely

t′ = t, ~r ′
α(t′) = ~rα(t) + ~r0. (420)

These transformations do not induce any total time derivative term in the action, Λ(~rα, t) = 0. The
continuous parameters of this Lie symmetry group are the three cartesian components of the translation
vector, ~r0 = (r0,a), distinguished by the label a = 1, 2, 3 in order to use the notations of the general
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discussion and avoid any confusion with the cartesian index i of the coordinates xiα. When linearised in
the parameters r0,a, the above transformations imply

χa(t) = 0, φaiα (~rα, t) = δai, Λa(~rα, t) = 0. (421)

Consequently, using the general definition (392), the Noether charges generating the space translation
invariance of the system are

γa =

N∑

α=1

3∑

i=1

φaiα pα,i =

N∑

α=1

paα, (422)

where paα = mẋaα are the conjugate momenta of the coordinates xaα, namely the cartesian components of
the momentum of particle α.

In conclusion, the Noether charges related to invariance under translations in space are the compo-
nents of the total momentum vector of the system of particles,

~γ =

N∑

α=1

~pα = ~P . (423)

Again this is a most general result valid for any system invariant under space translations.

This conclusion remains also valid at the quantum level. For the sake of pointing this out explicitly,
let us restrict to a single degree of freedom system of cartesian coordinate x(t) with p(t) as its conjugate
momentum. At the quantum level the operators x̂ and p̂ obey the Heisenberg algebra, [x̂, p̂] = i~. Con-
sidering for instance the configuration space representation in terms of configuration space wave functions
ψ(x) = 〈x|ψ〉, |x〉 being the normalised position eigenstates, we know that the momentum operator is
represented as,

p̂ : −i~ d

dx
ψ(x). (424)

In other words, we have,
i

~
p̂ :

d

dx
ψ(x). (425)

That this differential operator is indeed the generator for infinitesimal translations in space follows from
the Taylor series expansion

ψ(x+ a) = ψ(x) + a
dψ(x)

dx
+

1

2!
a2 d

2ψ(x)

dx2
+ · · · =

∞∑

n=0

1

n!
an
dnψ(x)

dxn
= ea

d
dx ψ(x) = e

i
~
ap̂ ψ(x). (426)

An alternative way of seeing this result without relying on the wave function representation is by considering
the following action of the exponentiated operator p̂,

e−
i
~
a p̂ |x〉. (427)

In order to identify which quantum state is obtained, let us act on it with the position operator x̂ and use
one of the Baker–Campbell–Hausdorff formulae,

x̂ e−
i
~
ap̂ |x〉 = e−

i
~
ap̂ e

i
~
ap̂ x̂ e−

i
~
ap̂|x〉

= e−
i
~
ap̂

(
x̂+

[
i

~
ap̂, x̂

])
|x〉

= e−
i
~
ap̂ (x+ a) |x〉

= (x+ a) e−
i
~
ap̂ |x〉. (428)

In other words, the state obtained by the action of e−
i
~
ap̂ on |x〉 is necessarily proportional to the position

eigenstate |x + a〉. In order to identify the corresponding coefficient or component, we need only project
it onto any of the position eigenstate basis vectors |x′〉,

〈x′|e− i
~
ap̂|x〉 =

∫ +∞

−∞

dp 〈x′|e− i
~
ap̂|p〉〈p|x〉

=

∫ +∞

−∞

dp

2π~
e

i
~
(x′−x−a)p

= δ (x′ − (x+ a)) . (429)
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In other words, we have

e−
i
~
a p̂ |x〉 = |x+ a〉. (430)

From this it also follows that we have for any state |ψ〉,

〈x|e i
~
a p̂|ψ〉 = 〈x+ a|ψ〉 = ψ(x + a). (431)

Hence indeed the exponentiation e
i
~
ap̂ of the conjugate momentum operator p̂ generates a finite translation

by the value a in the configuration space coordinate x, while i
~
p̂ is the generator of infinitesimal translations

in x. Incidentally, the very last of these relations may also be used as a starting point to establish the
functional representations of the quantum operators x̂ and p̂ in the configuration space wave function
representation of the Hilbert space realising the Heisenberg algebra.

Space rotation invariance

In order to address the consequences of invariance under space rotations, let us now furthermore
assume that the total potential energy is function only of the pairwise distances |~rα − ~rβ | between the
particles, V (|~rα−~rβ |). Clearly in such a situation the action is invariant under arbitrary constant rotations
of the position vectors, namely with

t′ = t, ~r ′
α(t) = R · ~rα(t), Λ(~rα, t) = 0, (432)

where R stands for the rotation matrix acting on the components of each of the position vectors ~rα. The
parameters of the corresponding Lie symmetry group are three independent and continuous rotation angles.
Using the previous discussion for such transformations with as generators those that generate rotations of
angle θa around the axis a = 1, 2, 3, namely the matrices (T a)jk = −iǫajk constructed above, the linearised
form of these symmetry transformations is

δt(t) = 0, δxiα = iθa(T
a)
i
j x

j
α, δΛ(~rα, t) = 0. (433)

Consequently we identify

χa(t) = 0, φaiα (~rα, t) = ǫaij xjα, Λa(~rα, t) = 0. (434)

By substitution into (392) the associated Noether charges are

γa =

N∑

α=1

3∑

i=1

ǫaij xiα pα,j . (435)

In other words, the Noether charges which generate space rotation invariance are the components of the
total angular-momentum vector of the system,

~γ =

N∑

α=1

~rα × ~pα = ~L. (436)

Once again this result is most general and applies to any system invariant under constant rotations in
space.

It thus is quite remarkable that symmetry properties of space and time, in the present case the
symmetries of three and one dimensional Euclidean space and time, when also shared by the dynamics of
a system, imply the existence of conserved quantities whatever the configuration of the system solving its
equations of motion. These conserved quantities are also the generators of these symmetries on phase space
through the Poisson brackets of these conserved quantities with any phase space observable, beginning with
the phase space coordinates. Indeed, within the Hamiltonian framework it readily follows that the above
Noether charges do generate the corresponding infinitesimal symmetry transformations of the configuration
space coordinates, while their Poisson brackets are isomorphic to the Lie algebra of the Lie symmetry group
of which they are the Noether charges. In particular the Poisson brackets of the total momentum ~P and
angular-momentum ~L components with the generator of time translations are

{
H,P i

}
= 0,

{
H,Li

}
= 0, (437)
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indeed expressing the conservation of these quantities, whereas among themselves they possess the Poisson
brackets,

{
P i, P j

}
= 0,

{
Li, P j

}
= ǫijk P k,

{
Li, Lj

}
= ǫijk Lk (438)

(summation over repeated indices is implicit). This algebra is recognised to be that of the Euclidean
group E(3) in three dimensional Euclidean space. The first set of brackets represents the fact that any
two translations commute with one another, whereas the last two sets of brackets represent the fact that
under space rotations the vector generator of translations transforms as a vector quantity, and likewise for
the vector generator of space rotations. Note also that the algebra of the angular-momentum coincides
with the abstract so(3) algebra constructed previously. This also implies that at the quantum level, this
algebra will be realised in the space of quantum states in terms of their spin values in the manner already
discussed.

5.5.3 The free nonrelativistic particle

Now as an illustration of a symmetry leading to a central extension in the algebra of Poisson brackets of
its Noether charges, consider a single free nonrelativistic particle in Euclidean space,

L =
1

2
m~̇q 2, H0 =

1

2m
~p 2. (439)

Besides the symmetries discussed above, Newton’s mechanics is known to be invariant under Galilei boosts,
namely a six dimensional Lie symmetry group, with

t′ = t, ~q ′(t′) = ~q(t) + ~a + ~V t, (440)

L′ = L+m ~V · ~̇q +
1

2
m~V 2, Λ

(
~q, t;~a, ~V

)
= m ~V · ~q +

1

2
m ~V 2 t. (441)

Hence even though the simplest of systems, a total time derivative is induced in the action under Galilei
boosts, namely space translations which are no longer constant but linear in time, or of constant velocity,
bringing the system from one inertial frame to another with the relative velocity ~V .

Then, with indices a, b in correspondence with the continuous Lie group parameters through a, b↔(
~a, ~V

)
=
(
ai, V i

)
and i = 1, 2, 3 labelling vector components, it readily follows that the coefficients C(α, β)

of the general discussion as well as the central extension constants Cab are given as,

C
(
~a1, ~V1;~a2, ~V2

)
= −m ~V1 · ~a2, Cab =

(
0 mI

−mI 0

)
. (442)

Identifying then all the relevant quantities which enter the definition (392), the Noether charges are
found to be

γa =
(
pi, γi

)
, pi = mq̇i, γi = pi t − mqi, (443)

with the Noether algebra

{
pi, pj

}
= 0,

{
pi, γj

}
= mδij ,

{
γi, pj

}
= −mδij ,

{
γi, γj

}
= 0, (444)

namely {
γa, γb

}
= Cab. (445)

Hence indeed, the generators ~γ = ~p t −m~q of Galilei boosts have a Poisson algebra with a central extension
term which is the mass of the particle. Such a parameter does not appear in the abstract algebra of the
Galilei group, simply because no such physical parameter is then available. But in the present system this
symmetry is realised even though with a central extension determined by the unique physical parameter
available, the mass m of the free nonrelativistic particle.
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Note than in spite of the explicit time dependence appearing in the definition of the vector Noether
charge generating Galilei boosts, this quantity is conserved nonetheless. Indeed, the Hamiltonian equations
of motion for the above Noether charges are

dpi

dt
=
{
pi, H0

}
= 0,

dγi

dt
=
∂γi

∂t
+
{
γi, H0

}
= pi − pi = 0, (446)

yet {
γi, H0

}
= −pi 6= 0 (447)

since ∂γi/∂t = pi 6= 0. At the quantum level within the Heisenberg picture of quantum physics, the

Schrödinger equation for the quantum operator ~̂γ generating Galilei boosts has to be adapted accordingly,
to account for the explicit time dependence of that operator,

γ̂(t) = p̂(t0) t−m~̂q(t). (448)

For an arbitrary quantum operator Â which may have in a likewise manner an explicit time dependence,
this extension of the Schrödinger equation in the Heisenberg picture reads,

i~
dÂ

dt
= i~

∂Â

∂t
+
[
Â, Ĥ0

]
. (449)

5.5.4 The free extended Landau problem

As a final illustration of interest, let us consider a charged particle confined to the two dimensional
Euclidean plane and subjected to static and homogeneous magnetic and electric fields, ~B and ~E, the
former perpendicular to the plane and the latter lying within it. In the symmetric gauge this system is
described by the Lagrange function

L =
1

2
mδij ẋ

iẋj − 1

2
qB ǫij ẋ

ixj + q xiEi, ǫ12 = ǫ12 = +1, i, j = 1, 2. (450)

Clearly such a system is invariant under arbitrary translations in the plane, forming a two parameter
abelian Lie group of symmetries. Yet, the action is not invariant, but transforms by a total time derivative,

t′ = t, x′
i
(t′) = xi(t) + ai, (451)

L′ = L− 1

2
qB ǫij ẋ

iaj + q aiEi, Λ (~x, t;~a) = −1

2
qB ǫij x

iaj + q aiEi t. (452)

The associated cocycle function C(α, β) of the general discussion is then found to be

C
(
~a,~b

)
= −1

2
qB ǫij a

ibj , (453)

leading to the central extension coefficients

Cij = −qB ǫij . (454)

The Noether charges that follow read

γi = pi − 1

2
qB ǫijxj − qEi t, (455)

with the algebra {
γi, γj

}
= −qB ǫij = Cij , (456)

and indeed generate translations in the plane as may checked by computing their Poisson brackets with
the phase space coordinates xi and pi.

Given the canonical Hamiltonian

H0 =
1

2m

[
pi +

1

2
qB ǫij xj

]2
− q xiEi, (457)
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the Hamiltonian equations of motion of these generators of space translations are

dγi

dt
=
∂γi

∂t
+
{
γi, H0

}
= 0, (458)

thus indeed these charges are conserved. Nevertheless, they possess an explicit time dependence,

{
γi, H0

}
= −∂γ

i

∂t
= q Ei 6= 0 (459)

Remark

It is possible to consider the motion of the magnetic center defined as

~C = ~x +
m

q| ~B |
~̇x× ~B, (460)

namely the instantaneous rotation center of the particle. Using the Lorentz force equation of motion,

m~̈x = q ~E + q ~̇x× ~B, (461)

one finds
~̇C =

1

| ~B |
~E × ~B. (462)

Hence when the electric field ~E is present the magnetic center follows a trajectory of constant velocity in
a direction perpendicular to the electric field and given by the vector product ~E × ~B.

6 Conclusions

The main purpose of the present notes has been two-fold. On the one hand, to introduce to the basic
concepts and formalism of quantum physics in a language which probably emphasizes more the algebraic
and mathematical aspects of that general physics framework than what is usually found in most textbooks
or introductory notes on the subject. On the other hand, at the same time to highlight the fundamental
rôle of symmetries in physics, and in particular quantum physics, in relation both to Noether’s (first)
theorem and to the representation theory of symmetry groups. All throughout, the general discussion
put within the context of mechanical systems rather than field theories, has been illustrated with rather
familiar examples, and yet, examples which already provide very useful insight into what lies in store
beyond the contents of these notes. For instance, it has been indicated how among symmetries those that
are local, namely the realisation of the principle of gauge invariance, do play a fundamental rôle in the
modern theories of the fundamental interactions, be they classical or quantum.

And as a matter of fact the ambition of these notes has been to bring the reader onto the thresh-
old from where he/she may now embark on his/her own into the study of quantum field theories, their
relativistic quantum particle interpretation and the perturbative description of their interactions. By ex-
tending to the relativistic context the methods and concepts developed in these notes, one quickly comes to
the conclusion that relativistic quantum field theories and relativistic quantum particles are just two dual
aspects of a common underlying physical reality, that of quantum interactions in a relativistic spacetime of
unified matter and radiation phenomena. How this is indeed achieved is discussed in quite many textbooks
on Quantum Field Theory, such as in Ref. [4], leading then to the remarkable achievements of perturbative
renormalisation theory. However, an introductory exposition to that subject in the spirit of the present
notes, and which builds on its contents, may also be found in lectures notes available from other Volumes
in the present Proceedings Series [1, 2].

Simply, by having interwoven the mathematics and the physics of quantum physics in the present
introductory discussion of the concepts of the quantum world, it is hoped that both our more mathematics
or more physics inclined readers will find sufficient inspiration from these notes to launch their own line of
study and research into this world of physics at the frontiers of today in both mathematics and physics,
in search of a fundamental unification of the conceptual representation of the physical Universe.
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