

$$
\begin{aligned}
D_{n}=\beta_{C} \sin n \phi_{C} * \delta_{\text {supr }} * \sum_{i=1}^{n} & \cos \left(i \phi_{C}-\frac{1}{2} \phi_{C} \pm \varphi_{m}\right) * \sqrt{\frac{\beta_{m}}{\beta_{C}}}- \\
& -\cos n \phi_{C} * \delta_{\text {supr }} * \sum_{i=1}^{n} \sqrt{\beta_{m} \beta_{C}} * \sin \left(i \phi_{C}-\frac{1}{2} \phi_{C} \pm \varphi_{m}\right)
\end{aligned}
$$

$$
\begin{aligned}
D_{n}=\sqrt{\beta_{m} \beta_{C}} * \sin n \phi_{C} * \delta_{\text {supr }} & * \sum_{i=1}^{n} \cos \left((2 i-1) \frac{\phi_{C}}{2} \pm \varphi_{m}\right)- \\
& -\sqrt{\beta_{m} \beta_{C}} * \delta_{\text {supr }} * \cos n \phi_{C} \sum_{i=1}^{n} \sin \left((2 i-1) \frac{\phi_{C}}{2} \pm \varphi_{m}\right)
\end{aligned}
$$

Remembering the trigonometric gymnastics shown above we get

$$
\begin{aligned}
& D_{n}=\delta_{\text {supr }} * \sqrt{\beta_{m} \beta_{C}} * \sin n \phi_{C} * \sum_{i=1}^{n} \cos \left((2 i-1) \frac{\phi_{C}}{2}\right) * 2 \cos \varphi_{m}- \\
& -\delta_{\text {supr }} * \sqrt{\beta_{m} \beta_{C}} * \cos n \phi_{C} \sum_{i=1}^{n} \sin \left((2 i-1) \frac{\phi_{C}}{2}\right) * 2 \cos \varphi_{m} \\
& D_{n}=2 \delta_{\text {supr }} * \sqrt{\beta_{m} \beta_{C}} * \cos \varphi_{m}\left\{\sum_{i=1}^{n} \cos \left((2 i-1) \frac{\phi_{C}}{2}\right) * \sin \left(n \phi_{C}\right)-\right. \\
& \left.-\sum_{i=1}^{n} \sin \left((2 i-1) \frac{\phi_{C}}{2}\right) * \cos \left(n \phi_{C}\right)\right\} \\
& D_{n}=2 \delta_{\text {supr }} * \sqrt{\beta_{m} \beta_{C}} * \cos \varphi_{m} \sin \left(n \phi_{C}\right) \frac{\sin \frac{n \phi_{C}}{2} * \cos \frac{n \phi_{C}}{2}}{\sin \frac{\phi_{C}}{2}}- \\
& -2 \delta_{\text {supr }} * \sqrt{\beta_{m} \beta_{C}} * \cos \varphi_{m} * \cos \left(n \Phi_{C}\right) * \frac{\sin \frac{n \Phi_{C}}{2} * \sin \frac{n \Phi_{C}}{2}}{\sin \frac{\Phi_{C}}{2}} \\
& D_{n}=\frac{2 \delta_{\text {supr }} * \sqrt{\beta_{m} \beta_{C}} * \cos \varphi_{m}}{\sin \frac{\phi_{C}}{2}}\left\{2 \sin \frac{n \phi_{C}}{2} \cos \frac{n \phi_{C}}{2} * \cos \frac{n \phi_{C}}{2} \sin \frac{n \phi_{C}}{2}-\right. \\
& \left.-\left(\cos ^{2} \frac{n \phi_{C}}{2}-\sin ^{2} \frac{n \phi_{C}}{2}\right) \sin ^{2} \frac{n \phi_{C}}{2}\right\}
\end{aligned}
$$

replace by ...

"after some TLC transformations" ... or ... "after some beer"

Largest storage ring: The Solar System

astronomical unit: average distance earth-sun
$1 \mathrm{AE} \approx 150 * 10^{6} \mathrm{~km}$ Distance Pluto-Sun ≈ 40 AE
©
©
©

$\stackrel{\text { 은 }}{9}$
$\stackrel{\frac{2}{⿺ 辶}}{\stackrel{\circ}{20}} \frac{\stackrel{9}{2}}{\frac{2}{3}}$
E

20
$\frac{20}{515}$

Neptun

Pluto

Luminosity Run of a typical storage ring:

LHC Storage Ring: Protons accelerated and stored for 12 hours distance of particles travelling at about $v \approx c$

$$
L=10^{10}-10^{11} \mathrm{~km}
$$

... several times Sun - Pluto and back S
intensity ($\mathbf{1 0}^{11}$)

\rightarrow guide the particles on a well defined orbit (,,design orbit")
\rightarrow focus the particles to keep each single particle trajectory within the vacuum chamber of the storage ring, i.e. close to the design orbit.

1.) Introduction and Basic Ideas

"... in the end and after all it should be a kind of circular machine"
\rightarrow need transverse deflecting force

Lorentzforce

$$
\vec{F}=q^{*}(\neq \vec{v} \times \vec{B})
$$

typical velocity in high energy machines:

$$
v \approx c \approx 3 * 10^{8} \mathrm{~m} / \mathrm{s}
$$

Example:/

$$
\begin{gathered}
B=1 T \rightarrow F=q * 3 * 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}} * 1 \frac{\mathrm{Vs}}{\mathrm{~m}^{2}} \\
F=q * \underbrace{300 \frac{\mathrm{MV}}{\mathrm{~m}}}_{\text {equivalent el. field } \ldots \mathrm{s})}
\end{gathered}
$$

technical limit for el. field:>

$$
E \leq 1 \frac{M V}{m}
$$

old greek dictum of wisdom:
if you are clever, you use magnetic fields in an accelerator wherever it is possible.

The ideal circular orbit

circular coordinate system
condition for circular orbit:

Lorentz force

$$
F_{L}=e v B
$$

centrifugal force

$$
\begin{aligned}
& \boldsymbol{F}_{\text {centr }}=\frac{\gamma \boldsymbol{m}_{0} \boldsymbol{v}^{2}}{\rho} \\
& \frac{\gamma \boldsymbol{m}_{0} \boldsymbol{v}^{\lambda}}{\rho}=\boldsymbol{e}<\boldsymbol{B}
\end{aligned}
$$

$$
\left\{\begin{array}{l}
\frac{p}{e}=B \rho \\
B \rho=\text { "beam rigidity" }
\end{array}\right\}
$$

2.) The Magnetic Guide Field

Dipole Magnets:
define the ideal orbit
homogeneous field created by two flat pole shoes

Normalise magnetic field to momentum:
convenient units:

$$
\frac{p}{e}=B \rho \quad \longrightarrow \frac{1}{\rho}=\frac{e B}{p} \quad B=[T]=\left[\frac{V s}{m^{2}}\right] \quad p=\left[\frac{G e V}{c}\right]
$$

Example LHC:

$$
\left.\boldsymbol{B}=8.3 \boldsymbol{T} \quad \begin{array}{l}
\boldsymbol{p}=7000 \frac{\boldsymbol{G e V}}{\boldsymbol{c}}
\end{array}\right\} \begin{aligned}
& \frac{1}{\rho}=\boldsymbol{e} \frac{8.3 \mathrm{Vs} / \boldsymbol{m}^{2}}{7000^{*} 10^{9} \boldsymbol{e V} / \boldsymbol{c}}=\frac{8.3 \boldsymbol{s}^{*} 3 * 10^{8} \mathrm{~m} / \mathrm{s}}{7000 * 10^{9} \mathrm{~m}^{2}} \\
& \frac{1}{\rho}=0.333 \frac{8.3}{7000} 1 / \mathrm{m}
\end{aligned}
$$

The Magnetic Guide Field

$$
\begin{aligned}
\rho=2.53 \mathrm{~km} \quad \longrightarrow \quad 2 \pi \rho & =17.6 \mathrm{~km} \\
& \approx 66 \%
\end{aligned}
$$

\qquad
rule of thumb: $\quad \frac{1}{\rho} \approx 0.3 \frac{B[T]}{p[G e V / c]}$

field map of a storage ring dipole magnet

$$
B \approx 1 \ldots 8 T
$$

„normalised bending strength"

3.) Focusing Properties - Transverse Beam Optics

classical mechanics: pendulum

there is a restoring force, proportional to the elongation x :

$$
m * \frac{d^{2} x}{d t^{2}}=-c * x
$$

general solution: free harmonic oszillation

$$
x(t)=A^{*} \cos (\omega t+\varphi)
$$

Storage Ring: we need a Lorentz force that rises as a function of the distance to \qquad ?
\qquad the design orbit

$$
F(x)=q^{*} v^{*} B(x)
$$

Quadrupole Magnets:

required: focusing forces to keep trajectories in vicinity of the ideal orbit
linear increasing Lorentz force
linear increasing magnetic field

$$
B_{y}=g \boldsymbol{x} \quad B_{x}=\boldsymbol{g} \boldsymbol{y}
$$

normalised quadrupole field:
\qquad

$$
k=\frac{g}{p / e}
$$

simple rule:

$$
k=0.3 \frac{g(T / m)}{p(G e V / c)}
$$

LHC main quadrupole magnet

$$
g \approx 25 \ldots 220 \mathrm{~T} / \mathrm{m}
$$

what about the vertical plane:
... Maxwell

$$
\vec{\nabla} \times \overrightarrow{\mathrm{B}}=\overrightarrow{\not C}+\frac{\partial \overrightarrow{\mathrm{F}} /}{\partial \mathrm{t}}=0 \quad \Rightarrow \quad \frac{\partial B_{y}}{\partial x}=\frac{\partial B_{x}}{\partial y}=g
$$

Focusing forces and particle trajectories:

normalise magnet fields to momentum
(remember: $\boldsymbol{B} \boldsymbol{*} \boldsymbol{\rho}=\boldsymbol{p} / \boldsymbol{q}$)

Dipole Magnet

$$
\frac{B}{p / q}=\frac{B}{B \rho}=\frac{1}{\rho}
$$

Quadrupole Magnet

$$
k:=\frac{g}{p / q}
$$

4.) The Equation of Motion:

$$
\frac{B(x)}{p / e}=\frac{1}{\rho}+k x+\frac{1}{2!} m x^{2}+\frac{1}{3!} n / x^{3}+\ldots
$$

only terms linear in x, y taken into account dipole fields
quadrupole fields

Separate Function Machines:
Split the magnets and optimise them according to their job:
bending, focusing etc

Example:
heavy ion storage ring TSR

The Equation of Motion:

Equation for the horizontal motion:

$$
x^{\prime \prime}+x\left(\frac{1}{\rho^{2}}+k\right)=0
$$


```
\(x=\) particle amplitude
\(x^{\prime}=\) angle of particle trajectory (wrt ideal path line)
```

Equation for the vertical motion:

$$
\begin{gathered}
\frac{1}{\rho^{2}}=0 \quad \text { no dipoles ... in general } \ldots \\
k \quad-k \quad \text { quadrupole field changes sign } \\
y^{\prime \prime}-k y=0
\end{gathered}
$$

5.) Solution of Trajectory Equations

Define ... hor. plane: $K=1 / \rho^{2}+k$
... vert. Plane: $K=-k$

$$
x^{\prime \prime}+\boldsymbol{K} x=0
$$

Differential Equation of harmonic oscillator ... with spring constant K

$$
\text { Ansatz: } \quad x(s)=a_{1} \cdot \cos (\omega s)+a_{2} \cdot \sin (\omega s)
$$

general solution: linear combination of two independent solutions

$$
\begin{aligned}
& x^{\prime}(s)=-a_{1} \omega \sin (\omega s)+a_{2} \omega \cos (\omega s) \\
& x^{\prime \prime}(s)=-a_{1} \omega^{2} \cos (\omega s)-a_{2} \omega^{2} \sin (\omega s)=-\omega^{2} x(s) \quad \longrightarrow \quad \omega=\sqrt{K}
\end{aligned}
$$

general solution:

$$
x(s)=a_{1} \cos (\sqrt{K} s)+a_{2} \sin (\sqrt{K} s)
$$

determine a_{1}, a_{2} by boundary conditions:

$$
s=0 \quad \longrightarrow \quad\left\{\begin{array}{lll}
x(0)=x_{0} & , & a_{1}=x_{0} \\
x^{\prime}(0)=x_{0}^{\prime} & , & a_{2}=\frac{x_{0}^{\prime}}{\sqrt{K}}
\end{array}\right.
$$

Hor. Focusing Quadrupole $K>0$:

$$
\begin{aligned}
& x(s)=x_{0} \cdot \cos (\sqrt{|K|} s)+x_{0}^{\prime} \cdot \frac{1}{\sqrt{|K|}} \sin (\sqrt{|K|} s) \\
& x^{\prime}(s)=-x_{0} \cdot \sqrt{|K|} \cdot \sin (\sqrt{|K|} s)+x_{0}^{\prime} \cdot \cos (\sqrt{|K|} s)
\end{aligned}
$$

For convenience expressed in matrix formalism:

$$
\begin{gathered}
\binom{x}{x^{\prime}}_{s 1}=M_{f o c} *\binom{x}{x^{\prime}}_{s 0} \\
M_{f o c}=\left(\begin{array}{cc}
\cos (\sqrt{|K|} s) & \frac{1}{\sqrt{|K|}} \sin (\sqrt{|K|} s \\
-\sqrt{|K|} \sin (\sqrt{|K|} s) & \cos (\sqrt{|K|} s)
\end{array}\right)_{0}
\end{gathered}
$$

hor. defocusing quadrupole:

$$
x^{\prime \prime}-\boldsymbol{K} \boldsymbol{x}=0
$$

Remember from school:

$$
\begin{aligned}
& f(s)=\cosh (s), \quad f^{\prime}(s)=\sinh (s) \\
& x(s)=x_{0} \cdot \cosh (\sqrt{|K| s})+x_{0}{ }^{\prime} \cdot \sinh (\sqrt{|K|} s) \quad \quad M_{\text {def oc }}=\left(\begin{array}{cc}
\cosh \sqrt{|K|} l & \frac{1}{\sqrt{|K|}} \sinh \sqrt{|K|} l \\
\sqrt{|K|} \sinh \sqrt{|K|} l & \cosh \sqrt{|K|} l
\end{array}\right) .
\end{aligned}
$$

drift space:

$$
\begin{aligned}
& \boldsymbol{K}=\mathbf{0} \\
& x(s)=x_{0}+x_{0}^{\prime} * s
\end{aligned}
$$

$$
M_{d r i f t}=\left(\begin{array}{ll}
1 & l \\
0 & 1
\end{array}\right)
$$

! with the assumptions made, the motion in the horizontal and vertical planes are independent „,.. the particle motion in x \& y is uncoupled"

Thin Lens Approximation:

matrix of a quadrupole lens

$$
M=\left(\begin{array}{cc}
\cos \sqrt{|k|} l & \frac{1}{\sqrt{|k|}} \sin \sqrt{|k|} l \\
-\sqrt{|k|} \sin \sqrt{|k|} l & \cos \sqrt{|k|} l
\end{array}\right)
$$

in many practical cases we have the situation:

$$
f=\frac{1}{k l_{q}} \gg l_{q} \quad \text {... focal length of the lens is much bigger than the length of the magnet }
$$

limes: $l_{q} \rightarrow 0 \quad$ while keeping $\quad k l_{q}=$ const

$$
M_{x}=\left(\begin{array}{cc}
1 & 0 \\
\frac{1}{f} & 1
\end{array}\right) \quad M_{z}=\left(\begin{array}{cc}
1 & 0 \\
\frac{-1}{f} & 1
\end{array}\right)
$$

... useful for fast (and in large machines still quite accurate) „back on the envelope calculations"... and for the guided studies !

Transformation through a system of lattice elements
combine the single element solutions by multiplication of the matrices

$$
M_{\text {total }}=M_{Q F} * M_{D} * M_{Q D} * M_{\text {Bend }} * M_{D^{*}} .
$$

$$
\binom{x}{x^{\prime}}_{s 2}=M\left(s_{2}, s_{1}\right) *\binom{x}{x^{\prime}}_{s 1}
$$

in each accelerator element the particle trajectory corresponds to the movement of a harmonic oscillator ,,
typical values
in a strong
foc. machine:

6.) Orbit \& Tune:

Tune: number of oscillations per turn
64.31
59.32

Relevant for beam stability:

non integer part

LHC revolution frequency: 11.3 kHz
$0.31 * 11.3=3.5 \mathbf{k H z}$

Question: what will happen, if the particle performs a second turn?
... or a third one or ... 10^{10} turns

II.) The Ideal World:
 Particle Trajectories, Beams \& Bunches

19th century:

Ludwig van Beethoven: „Mondschein Sonate"

Sonate Nr. 14 in cis-Moll (op. 27/II, 1801)

Astronomer Hill:

differential equation for motions with periodic focusing properties „Hill's equation"

Example: particle motion with periodic coefficient
equation of motion: $\quad x^{\prime \prime}(s)-k(s) x(s)=0$
restoring force \neq const,
$k(s)=$ depending on the position s $\boldsymbol{k}(\mathbf{s}+L)=k(s)$, periodic function

we expect a kind of quasi harmonic oscillation: amplitude \& phase will depend on the position sin the ring.

7.) The Beta Function

General solution of Hill's equation:
(i) $\quad x(s)=\sqrt{\varepsilon} \sqrt{\beta(s)} \cdot \cos (\psi(s)+\phi)$
$\varepsilon, \Phi=$ integration constants determined by initial conditions
$\beta(s)$ periodic function given by focusing properties of the lattice \leftrightarrow quadrupoles

$$
\beta(s+L)=\beta(s)
$$

Inserting (i) into the equation of motion ...

$$
\psi(s)=\int_{0}^{s} \frac{d s}{\beta(s)}
$$

$\Psi(s)=$ „phase advance" of the oscillation between point " 0 " and „s" in the lattice. For one complete revolution: number of oscillations per turn „Tune"

$$
Q_{y}=\frac{1}{2 \pi} \oint \frac{d s}{\beta(s)}
$$

8.) The Beta Function

Amplitude of a particle trajectory:

$$
x(s)=\sqrt{\varepsilon} * \sqrt{\beta(s)} * \cos (\psi(s)+\varphi)
$$

Maximum size of a particle amplitude

$$
\hat{x}(s)=\sqrt{\varepsilon} \sqrt{\beta(s)}
$$

β determines the beam size
(... the envelope of all particle trajectories at a given position " s " in the storage ring.

It reflects the periodicity of the magnet structure.

9.) Beam Emittance and Phase Space Ellipse

(1) $\boldsymbol{x}(\boldsymbol{s})=\sqrt{\varepsilon} \sqrt{\beta(\boldsymbol{s})} \cos (\psi(\boldsymbol{s})+\phi)$
(2) $\quad \boldsymbol{x}^{\prime}(\boldsymbol{s})=-\frac{\sqrt{\varepsilon}}{\sqrt{\beta(\boldsymbol{s})}}\{\alpha(\boldsymbol{s}) \cos (\psi(\boldsymbol{s})+\phi)+\sin (\psi(\boldsymbol{s})+\phi)\}$
from (1) we get

$$
\cos (\psi(\boldsymbol{s})+\phi)=\frac{\boldsymbol{x}(\boldsymbol{s})}{\sqrt{\varepsilon} \sqrt{\beta(\boldsymbol{s})}}
$$

$$
\begin{aligned}
& \alpha(s)=\frac{-1}{2} \beta^{\prime}(s) \\
& \gamma(s)=\frac{1+\alpha(s)^{2}}{\beta(s)}
\end{aligned}
$$

Insert into (2) and solve for ε

$$
\varepsilon=\gamma(s) x^{2}(s)+2 \alpha(s) x(s) x^{\prime}(s)+\beta(s) x^{\prime 2}(s)
$$

* ε is a constant of the motion ... it is independent of ,,s" * parametric representation of an ellipse in the $x x^{6}$ space
* shape and orientation of ellipse are given by α, β, γ

Beam Emittance and Phase Space Ellipse

$$
\varepsilon=\gamma(s) * x^{2}(s)+2 \alpha(s) x(s) x^{\prime}(s)+\beta(s) x^{\prime}(s)^{2}
$$

ε beam emittance $=$ woozilycity of the particle ensemble, intrinsic beam parameter, cannot be changed by the foc. properties.
Scientifiquely spoken: area covered in transverse x, x^{\prime} phase space ... and it is constant !!!!

Phase Space Ellipse

particel trajectory: $\quad x(s)=\sqrt{\varepsilon} \sqrt{\beta(s)} \cos \{\psi(s)+\phi\}$
max. Amplitude: $\quad \hat{x}(s)=\sqrt{\varepsilon \beta} \quad \longrightarrow \quad x^{\prime}$ at that position... ?
\ldots...put $\hat{x}(s)$ into $\quad \varepsilon=\gamma(s) x^{2}(s)+2 \alpha(s) x(s) x^{\prime}(s)+\beta(s) x^{\prime 2}(s) \quad$ and solve for x^{\prime}

$$
\begin{aligned}
\varepsilon & =\gamma \cdot \varepsilon \beta+2 \alpha \sqrt{\varepsilon \beta} \cdot x^{\prime}+\beta x^{\prime 2} \\
\longrightarrow \quad x^{\prime} & =-\alpha \cdot \sqrt{\varepsilon / \beta}
\end{aligned}
$$

* A high β-function means a large beam size and a small beam divergence. ... et vice versa !!!
* In the middle of a quadrupole $\beta=$ maximum,

$$
\boldsymbol{\alpha}=\boldsymbol{z e r o} \quad\} \quad x^{\prime}=0
$$

... and the ellipse is flat

Phase Space Ellipse

$$
\varepsilon=\gamma(s) x^{2}(s)+2 \alpha(s) x(s) x^{\prime}(s)+\beta(s) x^{\prime 2}(s)
$$

$$
\begin{aligned}
& \alpha(s)=\frac{-1}{2} \beta^{\prime}(s) \\
& \gamma(s)=\frac{1+\alpha(s)^{2}}{\beta(s)}
\end{aligned}
$$

$$
\longrightarrow \varepsilon=\frac{x^{2}}{\beta}+\frac{\alpha^{2} x^{2}}{\beta}+2 \alpha \cdot x x^{\prime}+\beta \cdot x^{\prime 2}
$$

\ldots solve for $x^{\prime} \quad x_{1,2}^{\prime}=\frac{-\alpha \cdot x \pm \sqrt{\varepsilon \beta-x^{2}}}{\beta}$
... and determine \hat{x}^{\prime} via: $\quad \frac{d x^{\prime}}{d x}=0$

$$
\begin{aligned}
& \longrightarrow \quad \hat{x}^{\prime}=\sqrt{\varepsilon \gamma} \\
& \longrightarrow \quad \hat{x}= \pm \alpha \sqrt{\varepsilon / \gamma}
\end{aligned}
$$

shape and orientation of the phase space ellipse
depend on the Twiss parameters $\beta \alpha \gamma$

Particle Tracking in a Storage Ring

Calculate x, x^{\prime} for each linear accelerator element according to matrix formalism
plot x, x^{\prime} as a function of "s"

... and now the ellipse:
note for each turn x, x^{\prime} at a given position ${ }^{\prime} s_{1}{ }^{\prime \prime}$ and plot in the phase space diagram

Emittance of the Particle Ensemble:

Emittance of the Particle Ensemble:

$$
x(s)=\sqrt{\varepsilon} \sqrt{\beta(s)} \cdot \cos (\Psi(s)+\phi) \quad \hat{x}(s)=\sqrt{\varepsilon} \sqrt{\beta(s)}
$$

single particle trajectories, $N \approx 10{ }^{11}$ per bunch
LHC

$$
\begin{aligned}
& \beta=180 \mathrm{~m} \\
& \varepsilon=5 * 10^{-10} \mathrm{mrad} \\
& \sigma=\sqrt{\varepsilon^{*} \beta}=\sqrt{5^{*} 10^{-10} \mathrm{~m} * 180 \mathrm{~m}}=0.3 \mathrm{~mm}
\end{aligned}
$$

aperture requirements: $r_{0}=12 * \sigma$

Résumé:

beam rigidity: $\quad B \cdot \rho=p / q$
bending strength of a dipole: $\quad \frac{1}{\rho}\left[m^{-1}\right]=\frac{0.2998 \cdot B_{0}(T)}{p(\mathrm{GeV} / \mathrm{c})}$
focusing strength of a quadrupole:

$$
k\left[m^{-2}\right]=\frac{0.2998 \cdot g}{p(G e V / c)}
$$

focal length of a quadrupole:

$$
f=\frac{1}{k \cdot l_{q}}
$$

equation of motion:

$$
x^{\prime \prime}+K x=\frac{1}{\rho} \frac{\Delta p}{p}
$$

matrix of a foc. quadrupole:

$$
x_{s 2}=M \cdot x_{s 1}
$$

$$
M=\left(\begin{array}{cc}
\cos \sqrt{|K|} l & \frac{1}{\sqrt{|K|}} \sin \sqrt{|K|} l \\
-\sqrt{|K|} \sin \sqrt{|K|} l & \cos \sqrt{|K|} l
\end{array}\right), \quad M=\left(\begin{array}{cc}
1 & 0 \\
\frac{1}{f} & 1
\end{array}\right)
$$

10.) Bibliography:

1.) Edmund Wilson: Introd. to Particle Accelerators Oxford Press, 2001
2.) Klaus Wille: Physics of Particle Accelerators and Synchrotron Radiation Facilicties, Teubner, Stuttgart 1992
3.) Peter Schmüser: Basic Course on Accelerator Optics, CERN Acc. School: $5^{\text {th }}$ general acc. phys. course CERN 94-01
4.) Bernhard Holzer: Lattice Design, CERN Acc. School: Interm.Acc.phys course, http://cas.web.cern.ch/cas/ZEUTHEN/lectures-zeuthen.htm
5.) Herni Bruck: Accelerateurs Circulaires des Particules, presse Universitaires de France, Paris 1966 (english / francais)
6.) M.S. Livingston, J.P. Blewett: Particle Accelerators, Mc Graw-Hill, New York, 1962
7.) Frank Hinterberger: Physik der Teilchenbeschleuniger, Springer Verlag 1997
8.) Mathew Sands: The Physics of $e+e$-Storage Rings, SLAC report 121, 1970
9.) D. Edwards, M. Syphers : An Introduction to the Physics of Particle Accelerators, SSC Lab 1990

III.) The „not so ideal" World

Lattice Design in Particle Accelerators

1952: Courant, Livingston, Snyder:
Theory of strong focusing in particle beams

11.) Lattice Design:

„... how to build a storage ring"

$$
B \rho=\boldsymbol{p} / \boldsymbol{q}
$$

Circular Orbit: dipole magnets to define the geometry

$$
\alpha=\frac{d s}{\rho} \approx \frac{d l}{\rho}=\frac{B d l}{B \rho}
$$

The angle run out in one revolution must be 2π, so
... defines the integrated dipole field around the machine.

Nota bene: $\supset \frac{\Delta B}{B} \approx 10^{-4}$ is usually required !!

7000 GeV Proton storage ring dipole magnets $\mathrm{N}=1232$
$\int B d l \approx N \boldsymbol{l} B=2 \pi p / e$

$$
\begin{aligned}
l & =15 \mathrm{~m} \\
\mathrm{q} & =+1 \mathrm{e}
\end{aligned}
$$

$$
\boldsymbol{B} \approx \frac{2 \pi 700010^{9} \mathrm{eV}}{123215 \boldsymbol{m} 310^{8} \frac{\boldsymbol{m}}{\boldsymbol{s}} \boldsymbol{e}}=8.3 \text { Tesla }
$$

Recapitulation: storage ring elements

... the story with the matrices !!!

Equation of Motion:

$$
\begin{array}{rlr}
x^{\prime \prime}+\boldsymbol{K} \boldsymbol{x}=0 & K=1 / \rho^{2}-k & \text {... hor. plane: } \\
K=k \quad \text {... vert. Plane: }
\end{array}
$$

Solution of Trajectory Equations

$$
\binom{\boldsymbol{x}}{\boldsymbol{x}^{\prime}}_{s 1}=\boldsymbol{M}^{*} *\binom{\boldsymbol{x}}{\boldsymbol{x}^{\prime}}_{s 0}
$$

$$
\boldsymbol{M}_{\text {drift }}=\left(\begin{array}{ll}
1 & \boldsymbol{l} \\
0 & 1
\end{array}\right)
$$

$$
\boldsymbol{M}_{f o c}=\left(\begin{array}{cc}
\cos (\sqrt{|\boldsymbol{K}|} l) & \frac{1}{\sqrt{|\boldsymbol{K}|}} \sin (\sqrt{|\boldsymbol{K}|} l) \\
-\sqrt{|\boldsymbol{K}|} \sin (\sqrt{|\boldsymbol{K}|} l) & \cos (\sqrt{|\boldsymbol{K}|} l)
\end{array}\right)
$$

$$
\boldsymbol{M}_{\text {defoc }}=\left(\begin{array}{cc}
\cosh (\sqrt{|\boldsymbol{K}|} \mid) & \frac{1}{\sqrt{\boldsymbol{K} \mid}} \sinh (\sqrt{\mid \boldsymbol{K}} \mid l) \\
\sqrt{|\boldsymbol{K}|} \sinh (\sqrt{\boldsymbol{K} \mid} \mid) & \cosh (\sqrt{\boldsymbol{K} \mid} l)
\end{array}\right)
$$

$$
M_{\text {total }}=M_{Q F} * M_{D} * M_{B} * M_{D} * M_{Q D} * M_{D} * \ldots
$$

12.) Transfer Matrix M ... yes we had the topic already

general solution of Hill's equation

$$
\begin{aligned}
& x(s)=\sqrt{\varepsilon} \sqrt{\beta(s)} \cos \{\psi(s)+\phi\} \\
& x^{\prime}(s)=\frac{-\sqrt{\varepsilon}}{\sqrt{\beta(s)}}[\alpha(s) \cos \{\psi(s)+\phi\}+\sin \{\psi(s)+\phi\}]
\end{aligned}
$$

remember the trigonometrical gymnastics: $\sin (a+b)=\ldots$ etc

$$
\begin{aligned}
& x(s)=\sqrt{\varepsilon} \sqrt{\beta_{s}}\left(\cos \psi_{s} \cos \phi-\sin \psi_{s} \sin \phi\right) \\
& x^{\prime}(s)=\frac{-\sqrt{\varepsilon}}{\sqrt{\beta_{s}}}\left[\alpha_{s} \cos \psi_{s} \cos \phi-\alpha_{s} \sin \psi_{s} \sin \phi+\sin \psi_{s} \cos \phi+\cos \psi_{s} \sin \phi\right]
\end{aligned}
$$

starting at point $s(0)=s_{0}$, where we put $\Psi(0)=0$

$$
\left.\begin{array}{l}
\cos \phi=\frac{x_{0}}{\sqrt{\varepsilon \beta_{0}}}, \\
\sin \phi=-\frac{1}{\sqrt{\varepsilon}}\left(x_{0}^{\prime} \sqrt{\beta_{0}}+\frac{\alpha_{0} x_{0}}{\sqrt{\beta_{0}}}\right)
\end{array}\right\} \quad \text { inserting above } \ldots
$$

$$
\begin{aligned}
& x(s)=\sqrt{\frac{\beta_{s}}{\beta_{0}}}\left\{\cos \psi_{s}+\alpha_{0} \sin \psi_{s}\right\} x_{0}+\left\{\sqrt{\beta_{s} \beta_{0}} \sin \psi_{s}\right\} x_{0}^{\prime} \\
& x^{\prime}(s)=\frac{1}{\sqrt{\beta_{s} \beta_{0}}}\left\{\left(\alpha_{0}-\alpha_{s}\right) \cos \psi_{s}-\left(1+\alpha_{0} \alpha_{s}\right) \sin \psi_{s}\right\} x_{0}+\sqrt{\frac{\beta_{0}}{\beta_{s}}}\left\{\cos \psi_{s}-\alpha_{s} \sin \psi_{s}\right\} x_{0}^{\prime}
\end{aligned}
$$

which can be expressed ... for convenience ... in matrix form

$$
\binom{x}{x^{\prime}}_{s}=M\binom{x}{x^{\prime}}_{0}
$$

$$
M=\left(\begin{array}{cc}
\sqrt{\frac{\beta_{s}}{\beta_{0}}}\left(\cos \psi_{s}+\alpha_{0} \sin \psi_{s}\right) & \sqrt{\beta_{s} \beta_{0}} \sin \psi_{s} \\
\frac{\left(\alpha_{0}-\alpha_{s}\right) \cos \psi_{s}-\left(1+\alpha_{0} \alpha_{s}\right) \sin \psi_{s}}{\sqrt{\beta_{s} \beta_{0}}} & \sqrt{\frac{\beta_{0}}{\beta s}}\left(\cos \psi_{s}-\alpha_{s} \sin \psi_{s}\right)
\end{array}\right)
$$

* we can calculate the single particle trajectories between two locations in the ring, if we know the $\alpha \beta \gamma$ at these positions.
* and nothing but the $\alpha \beta \gamma$ at these positions.
*

...!
13.) Periodic Lattices

$$
M=\left(\begin{array}{cc}
\sqrt{\frac{\beta_{s}}{\beta_{0}}}\left(\cos \psi_{s}+\alpha_{0} \sin \psi_{s}\right) & \sqrt{\beta_{s} \beta_{0}} \sin \psi_{s} \\
\frac{\left(\alpha_{0}-\alpha_{s}\right) \cos \psi_{s}-\left(1+\alpha_{0} \alpha_{s}\right) \sin \psi_{s}}{\sqrt{\beta_{s} \beta_{0}}} & \sqrt{\frac{\beta_{0}}{\beta s}}\left(\cos \psi_{s}-\alpha_{s} \sin \psi_{s}\right)
\end{array}\right)
$$

„This rather formidable looking matrix simplifies considerably if we consider one complete revolution ..."
$\boldsymbol{M}(\boldsymbol{s})=\left(\begin{array}{cc}\cos \psi_{\text {turn }}+\alpha_{s} \sin \psi_{\text {turn }} & \beta_{s} \sin \psi_{\text {turn }} \\ -\gamma_{s} \sin \psi_{\text {turn }} & \cos \psi_{\text {turn }}-\alpha_{s} \sin \psi_{\text {turn }}\end{array}\right) \quad \psi_{\text {turn }}=\int_{s}^{s+L} \frac{d s}{\beta(s)} \quad \begin{aligned} & \psi_{\text {turn }}=\text { phase advance } \\ & \text { per period }\end{aligned}$

Tune: Phase advance per turn in units of 2π

$$
Q=\frac{1}{2 \pi} \oint \frac{d s}{\beta(s)}
$$

FoDo-Lattice A magnet structure consisting of focusing and defocusing quadrupole lenses in alternating order with nothing in
(Nothing = elements that can be neglected on first sight: drift, bending magnets,

Starting point for the calculation: in the middle of a focusing quadrupole
Phase advance per cell $\mu=45^{\circ}$,
\rightarrow calculate the twiss parameters for a periodic solution

Periodic solution of a FoDo Cells

Output of the optics program:

$N r$	Type	Length m	Strength 1/m2	$\begin{gathered} \boldsymbol{\beta}_{x} \\ m \end{gathered}$	α_{x}	$\begin{gathered} \psi_{x} \\ 1 / 2 \pi \end{gathered}$	$\begin{gathered} \boldsymbol{\beta}_{y} \\ m \end{gathered}$	α_{y}	$\begin{gathered} \psi_{y} \\ 1 / 2 \pi \end{gathered}$
0	IP	0,000	0,000	11,611	0,000	0,000	5,295	0,000	0,000
1	QFH	0,250	-0,541	11,228	1,514	0,004	5,488	-0,781	0,007
2	QD	3,251	0,541	5,488	-0,781	0,070	11,228	1,514	0,066
3	QFH	6,002	-0,541	11,611	0,000	0,125	5,295	0,000	0,125
4	$I P$	6,002	0,000	11,611	0,000	0,125	5,295	0,000	0,125

$Q_{X}=0,125 \quad Q_{Y}=0,125 \longrightarrow 0.125^{*} 2 \pi=45^{\circ}$

Can we understand, what the optics code is doing?
matrices $\quad \boldsymbol{M}_{\text {foc }}=\left(\begin{array}{cc}\cos \left(\sqrt{|\boldsymbol{K}|} \boldsymbol{l}_{q}\right) & \frac{1}{\sqrt{|\boldsymbol{K}|}} \sin \left(\sqrt{|\boldsymbol{K}|} \boldsymbol{l}_{q}\right) \\ -\sqrt{|\boldsymbol{K}|} \sin \left(\sqrt{|\boldsymbol{K}|} \boldsymbol{l}_{q}\right) & \cos \left(\sqrt{|\boldsymbol{K}|} \boldsymbol{l}_{q}\right)\end{array}\right)$

$$
\boldsymbol{M}_{d r i f t}=\left(\begin{array}{ll}
1 & \boldsymbol{l}_{d} \\
0 & 1
\end{array}\right)
$$

strength and length of the FoDo elements

$$
\begin{aligned}
K & =+/-0.54102 \mathrm{~m}^{-2} \\
l q & =0.5 \mathrm{~m} \\
l d & =2.5 \mathrm{~m}
\end{aligned}
$$

The matrix for the complete cell is obtained by multiplication of the element matrices

$$
M_{F o D o}=M_{q f h} * M_{l d} * M_{q d} * M_{l d} * M_{q f}
$$

Putting the numbers in and multiplying out ...

$$
M_{F o D o}=\left(\begin{array}{cc}
0.707 & 8.206 \\
-0.061 & 0.707
\end{array}\right)
$$

The transfer matrix for one period gives us all the information that we need !

Phase advance per cell

hor $\boldsymbol{\beta}$-function

$$
\beta=\frac{\boldsymbol{M}_{1,2}}{\sin \psi}=11.611 \mathrm{~m}
$$

$$
\alpha=\frac{\boldsymbol{M}_{1,1}-\cos \psi}{\sin \psi}=0
$$

14.) Insertions

β-Function in a Drift:

let's assume we are at a symmetry point in the center of a drift.

β function in the neighborhood of the symmetry point

$$
\beta(s)=\beta_{0}+\frac{s^{2}}{\beta_{0}}
$$

At the end of a long symmetric drift space the beta function reaches its maximum value in the complete lattice.
-> here we get the largest beam dimension.

7 sigma beam size inside a mini beta quadrupole high energy detectors that are

installed in that drift spaces

The Mini- β Insertion:
$R=L^{*} \Sigma_{\text {react }}$
production rate of events is determined by the cross section $\Sigma_{\text {react }}$ and a parameter L that is given by the design of the accelerator: ... the luminosity

$$
L=\frac{1}{4 \pi e^{2} f_{0} \mathrm{~b}} * \frac{I_{1}^{*} I_{2}}{\sigma_{x}^{*} \sigma_{y}^{*}}
$$

15.) Luminosity

Example: Luminosity run at LHC

$$
\begin{array}{ll}
\beta_{x, y}=0.55 m \\
\varepsilon_{x, y}=5 * 10^{-10} \text { rad } \boldsymbol{m} & f_{0}=11.245 \boldsymbol{k H z} \\
\boldsymbol{n}_{b}=2808 & \\
\sigma_{x, y}=17 \mu m
\end{array} \quad \boldsymbol{L}=\frac{1}{4 \pi \boldsymbol{e}^{2} f_{0} n_{b}} * \frac{\boldsymbol{I}_{\boldsymbol{p} 1} \boldsymbol{I}_{\boldsymbol{p} 2}}{\sigma_{x} \sigma_{y}}
$$

$$
I_{p}=584 m \boldsymbol{m}
$$

$$
L=1.0 * 10^{34} 1 / \mathrm{cm}^{2} s
$$

beam sizes in the order of my cat's hair !!

Mini- β Insertions: Betafunctions

A mini- β insertion is always a kind of special symmetric drift space.
\rightarrow greetings from Liouville
the smaller the beam size the larger the bam divergence

Mini- β Insertions: some guide lines)

* calculate the periodic solution in the arc
* introduce the drift space needed for the insertion device (detector ...)
* put a quadrupole doublet (triplet ?) as close as possible
* introduce additional quadrupole lenses to match the beam parameters to the values at the beginning of the arc structure

$$
\alpha_{x}, \beta_{x} \quad D_{x}, D_{x}^{\prime}
$$

parameters to be optimised \& matched to the periodic solution:

$$
\alpha_{y}, \beta_{y}
$$

$$
Q_{x}, Q_{y}
$$

8 individually powered quad magnets are needed to match the insertion (... at least)

IV) ... let's talk about acceleration

crab nebula,
burst of charged particles $E=10^{20} \mathrm{eV}$

16.) Electrostatic Machines

Example for such a „steam engine": 12 MV-Tandem van de Graaff Accelerator at MPI Heidelberg

17.) RF Acceleration

Energy Gain per "Gap":

$$
\boldsymbol{W}=\boldsymbol{q} \boldsymbol{U}_{0} \sin \omega_{\boldsymbol{R} F} \boldsymbol{t}
$$

drift tube structure at a proton linac (GSI Unilac)

* RF Acceleration: multiple application of the same acceleration voltage; brillant idea to gain higher energies

500 MHz cavities in an electron storage ring

RF Acceleration

Where is the acceleration?
Install an RF accelerating structure in the ring:

B. Salvant
N. Biancacci

18.) The Acceleration for $\Delta p / p \neq 0$
 "Phase Focusing" below transition

ideal particle •
particle with $\Delta p / p>0$ - faster
particle with $\Delta p / p<0$ - slower

Focussing effect in the longitudinal direction keeping the particles close together ... forming a "bunch"
oscillation frequency: $f_{s}=f_{\text {rev }} \sqrt{-\frac{h \alpha_{s}}{2 \pi} * \frac{q U_{0} \cos \phi_{s}}{E_{s}}} \quad \approx$ some Hz
... so sorry, here we need help from Albert:

$$
\gamma=\frac{E_{\text {total }}}{m c^{2}}=\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}} \longrightarrow \frac{v}{c}=\sqrt{1-\frac{m c^{2}}{E^{2}}}
$$

v / c

kinetic energy of a proton

19.) The Acceleration for $\Delta p / p \neq 0$ "Phase Focusing" above transition

ideal particle
particle with $\Delta p / p>0$ - heavier
particle with $\Delta p / p<0 \bullet \quad$ lighter

Focussing effect in the longitudinal direction keeping the particles close together ... forming a"bunch"
... and how do we accelerate now ???

The RF system: IR4

Nb on Cu cavities@4.5 K (=LEP2)
Beam pipe diam. $=300 \mathrm{~mm}$

Bunch length (4)	$n s$	1.06
Energy spread (2б)	10^{-3}	0.22
Synchr. rad. loss/turn	keV	7
Synchr. rad. power	$\boldsymbol{k W}$	3.6
RF frequency	\boldsymbol{M}	400
	Hz	
Harmonic number		35640
RF voltage/beam	MV	16
Energy gain/turn	keV	485
Synchrotron	Hz	23.0
frequency		

RF Buckets \& long. dynamics in phase space

LHC Commissioning: RF

Tek

RF off

RF on, phase optimisation

RF on, phase adjusted,

a proton bunch: focused longitudinal by the RF field

20.) Liouville during Acceleration

$$
\varepsilon=\gamma(s) x^{2}(s)+2 \alpha(s) x(s) x^{\prime}(s)+\beta(s) x^{\prime 2}(s)
$$

Beam Emittance corresponds to the area covered in the x, x^{\prime} Phase Space Ellipse

Liouville: Area in phase space is constant.

But so sorry ... $\varepsilon \neq$ const !

Classical Mechanics:

$$
\begin{gathered}
\begin{array}{c}
\text { phase space }=\text { diagram of the two canonical variables } \\
\text { position \& momentum } \\
\boldsymbol{x} \\
\boldsymbol{p}_{\boldsymbol{x}}
\end{array} \\
p_{j}=\frac{\partial L}{\partial \dot{q}_{j}} \quad ; \quad L=T-V=\text { kin. Energy - pot. Energy }
\end{gathered}
$$

According to Hamiltonian mechanics:
phase space diagram relates the variables q and p

$$
\begin{aligned}
& \boldsymbol{q}=\boldsymbol{p o s i t i o n}=\boldsymbol{x} \\
& \boldsymbol{p}=\boldsymbol{m o m e n t u m}=\gamma \boldsymbol{m} \boldsymbol{v}=\boldsymbol{m} \boldsymbol{c} \gamma \boldsymbol{\boldsymbol { \beta } _ { \boldsymbol { x } }} \quad \gamma=\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}} \quad ; \quad \beta_{x}=\frac{\dot{x}}{c}
\end{aligned}
$$

Liouvilles Theorem: $\quad \int p d q=$ const
for convenience (i.e. because we are lazy bones) we use in accelerator theory:

$$
x^{\prime}=\frac{d x}{d s}=\frac{d x}{d t} \frac{d t}{d s}=\frac{\beta_{x}}{\beta} \quad \text { where } \boldsymbol{\beta}_{x}=v_{x} / c
$$

$$
\begin{aligned}
& \int p d q=m c \int \gamma \beta_{x} d x \\
& \int p d q=m c \gamma \beta \underbrace{\int x^{\prime} d x}_{\varepsilon} \quad \Rightarrow \varepsilon=\int x^{\prime} d x \propto \frac{1}{\beta \gamma} \quad \begin{array}{l}
\text { the beam emittance } \\
\text { shrinks during } \\
\text { acceleration } \varepsilon \sim 1 / \gamma
\end{array}
\end{aligned}
$$

Nota bene:

1.) A proton machine ... or an electron linac ... needs the highest aperture at injection energy !!! as soon as we start to accelerate the beam size shrinks as $\gamma^{-1 / 2}$ in both planes.

$$
\sigma=\sqrt{\varepsilon \beta}
$$

2.) At lowest energy the machine will have the major aperture problems, \rightarrow here we have to minimise $\hat{\beta}$
3.) we need different beam optics adopted to the energy: A Mini Beta concept will only be adequate at flat top.

LHC mini beta optics at 7000 GeV

LHC injection optics at 450 GeV
$\begin{array}{ll}\text { injection energy: } 40 \text { GeV } & \gamma=43 \\ \text { flat top energy: } 920 \mathrm{GeV} & \gamma=980\end{array}$
emittance $\varepsilon(40 \mathrm{GeV})=1.2 * 10^{-7}$
$\varepsilon(920 \mathrm{GeV})=5.1 * 10^{-9}$

Magnet-qr

7σ beam envelope at $E=40 \mathrm{GeV}$
\ldots and at $E=920 \mathrm{GeV}$

The ,, not so ideal world "

21.) The „ $\Delta p / p \neq 0^{\prime \prime}$ Problem

ideal accelerator: all particles will see the same accelerating voltage.

$$
\rightarrow \Delta p / p=0
$$

„nearly ideal" accelerator: Cockroft Walton or van de Graaf

$$
\Delta p / p \approx 10^{-5}
$$

Linear Accelerator

Energy Gain per "Gap":
$\boldsymbol{W}=\boldsymbol{q} \boldsymbol{U}_{0} \sin \omega_{\boldsymbol{R} \boldsymbol{F}} \boldsymbol{t}$
1928, Wideroe schematic Layout:

drift tube structure at a proton linac

500 MHz cavities in an electron storage ring

RF Acceleration-Problem:

 panta rhei !!!(Heraklit: 540-480 v. Chr.)
just a stupid (and nearly wrong) example)

$$
\lambda=75 \mathrm{~cm}
$$

$\sin \left(90^{\circ}\right)=1$
$\sin \left(84^{\circ}\right)=0.994$

$$
\frac{\Delta \boldsymbol{U}}{\boldsymbol{U}}=6.0 \quad 10^{-3}
$$

Bunch length of Electrons $\approx 1 \mathrm{~cm}$

$$
\left.\begin{array}{l}
\boldsymbol{v}=400 \mathrm{MHz} \\
c=\lambda \boldsymbol{v}
\end{array}\right\} \lambda=75 \mathrm{~cm}
$$

typical momentum spread of an electron bunch:

$$
\frac{\Delta \boldsymbol{p}}{\boldsymbol{p}} \approx 1.0 \quad 10^{-3}
$$

22.) Dispersive and Chromatic Effects: $\Delta p / p \neq 0$

Are there any Problems???
Sure there are !!!
font colors due to pedagogical reasons

Dispersion and Chromaticity: Magnet Errors for $\Delta p / p \neq 0$

Influence of external fields on the beam: prop. to magn. field \& prop. zu 1/p
dipole magnet

$$
\alpha=\frac{\int B d l}{p / e}
$$

$$
x_{D}(s)=D(s) \frac{\Delta p}{p}
$$

focusing lens

$$
k=\frac{g}{p / e}
$$

to high energy to low energy ideal energy

Dispersion

Example: homogeneous dipole field

Matrix formalism:

$$
\left.\begin{array}{l}
x(s)=x_{\beta}(s)+D(s) \cdot \frac{\Delta p}{p} \\
x(s)=C(s) \cdot x_{0}+S(s) \cdot x_{0}^{\prime}+D(s) \cdot \frac{\Delta p}{p}
\end{array}\right\} \quad\binom{\boldsymbol{x}}{\boldsymbol{x}^{\prime}}_{s}=\left(\begin{array}{ll}
\boldsymbol{C} & \boldsymbol{S} \\
\boldsymbol{C}^{\prime} & \boldsymbol{S}^{\prime}
\end{array}\right)\binom{\boldsymbol{x}}{\boldsymbol{x}^{\prime}}_{0}+\frac{\Delta \boldsymbol{p}}{\boldsymbol{p}}\binom{\boldsymbol{D}}{\boldsymbol{D}^{\prime}}_{0}
$$

or expressed as 3×3 matrix

$$
\left(\begin{array}{c}
x \\
x^{\prime} \\
\Delta p / p
\end{array}\right)_{s}=\left(\begin{array}{ccc}
C & S & D \\
C^{\prime} & S^{\prime} & D^{\prime} \\
0 & 0 & 1
\end{array}\right) \cdot\left(\begin{array}{c}
x \\
x^{\prime} \\
\Delta p / p
\end{array}\right)_{0}
$$

Example

$$
\begin{aligned}
& x_{\beta}=1 \ldots 2 \mathrm{~mm} \\
& D(s) \approx 1 \ldots 2 \mathrm{~m} \\
& \Delta p / p^{\approx} \approx 1 \cdot 10^{-3}
\end{aligned}
$$

Amplitude of Orbit oscillation

contribution due to Dispersion \approx beam size \rightarrow Dispersion must vanish at the collision point

Calculate D, D': ... takes a couple of sunny Sunday evenings !

$$
D(s)=S(s) \int_{s 0}^{s 1} \frac{1}{\rho} C(\tilde{s}) d \tilde{s}-C(s) \int_{s 0}^{s 1} \frac{1}{\rho} S(\tilde{s}) d \tilde{s}
$$

23.) Chromaticity:
 A Quadrupole Error for $\Delta p / p \neq 0$

Influence of external fields on the beam: prop. to magn. field \& prop. zu 1/p
focusing lens

to high energy to low energy
... which acts like a quadrupole error in the machine and leads to a tune spread:

$$
\Delta \boldsymbol{Q}=-\frac{1}{4 \pi} \frac{\Delta \boldsymbol{p}}{\boldsymbol{p}_{0}} \boldsymbol{k}_{0} \beta(s) d s
$$

definition of chromaticity:

$$
\Delta Q=Q^{\prime} * \frac{\Delta p}{p}
$$

... what is wrong about Chromaticity:

Problem: chromaticity is generated by the lattice itself !!

Q^{\prime} is a number indicating the size of the tune spot in the working diagram,
Q^{\prime} is always created if the beam is focussed
\rightarrow it is determined by the focusing strength k of all quadrupoles

$$
Q^{\prime}=-\frac{1}{4 \pi} \oint k(s) \beta(s) d s
$$

$k=$ quadrupole strength
$\beta=$ betafunction indicates the beam size ... and even more the sensitivity of the beam to external fields

Example: LHC

$$
\left.\begin{array}{l}
Q^{\prime}=250 \\
\Delta p / p=++0.2 * 10^{-3} \\
\Delta Q=0.256 \ldots 0.36
\end{array}\right\}
$$

\rightarrow Some particles get very close to resonances and are lost
in other words: the tune is not a point it is a pancake

Tune signal for a nearly uncompensated cromaticity ($Q^{\prime} \approx 20$)

Ideal situation: cromaticity well corrected, ($Q^{\prime} \approx 1$)

Tune and Resonances

$$
m * Q_{x}+n * Q_{y}+l * Q_{s}=\text { integer }
$$

Correction of Q':

Need: additional quadrupole strength for each momentum deviation $\Delta p / p$
1.) sort the particles acording to their momentum

$$
x_{D}(s)=D(s) \frac{\Delta p}{p}
$$

... using the dispersion function

2.) apply a magnetic field that rises quadratically with \boldsymbol{x} (sextupole field)

$$
\begin{aligned}
& B_{x}=\tilde{g} x z \\
& B_{z}=\frac{1}{2} \tilde{g}\left(x^{2}-z^{2}\right)
\end{aligned}
$$

$$
\frac{\partial B_{x}}{\partial z}=\frac{\partial B_{z}}{\partial x}=\tilde{g} x
$$

linear rising "gradient":

Correction of Q^{\prime} :

k_{1} normalised quadrupole strength k_{2} normalised sextupole strength

Sextupole Magnets:

$$
\begin{aligned}
& k_{1}(\operatorname{sex} t)=\frac{\tilde{g} x}{p / e}=k_{2} * x \\
& k_{1}(\operatorname{sext})=k_{2} * D * \frac{\Delta p}{p}
\end{aligned}
$$

corrected chromaticity
considering a single cell:
$\boldsymbol{Q}_{\text {cell_ } l_{-}}^{\prime}=-\frac{1}{4 \pi}\left\{\boldsymbol{k}_{q f} \hat{\beta}_{x} \boldsymbol{l}_{q f}-\boldsymbol{k}_{q d} \breve{\beta}_{x} \boldsymbol{l}_{q d}\right\}+\frac{1}{4 \pi} \sum_{f \text { sext }} \boldsymbol{k}_{2}^{F} \boldsymbol{l}_{\text {sext }} \boldsymbol{D}_{x}^{F} \beta_{x}^{F}-\frac{1}{4 \pi} \sum_{\text {Dsext }} \boldsymbol{k}_{2}^{\boldsymbol{D}} \boldsymbol{l}_{\text {sext }} \boldsymbol{D}_{x}^{\boldsymbol{D}} \beta_{x}^{\boldsymbol{D}}$
$\boldsymbol{Q}_{\text {cell_}-y}^{\prime}=-\frac{1}{4 \pi}\left\{-\boldsymbol{k}_{q f} \breve{\beta}_{\boldsymbol{y}} \boldsymbol{l}_{q f}+\boldsymbol{k}_{q d} \hat{\beta}_{y} \boldsymbol{l}_{q d}\right\}+\frac{1}{4 \pi} \sum_{F \text { sext }} \boldsymbol{k}_{2}^{F} \boldsymbol{l}_{\text {sext }} \boldsymbol{D}_{x}^{F} \beta_{x}^{F}-\frac{1}{4 \pi} \sum_{D \text { sext }} \boldsymbol{k}_{2}^{\boldsymbol{D}} \boldsymbol{l}_{\text {sext }} \boldsymbol{D}_{x}^{\boldsymbol{D}} \beta_{x}^{\boldsymbol{D}}$

Are there any Problems ???
 sure there are !!!

Clearly there is another problem ...
... if it were easy everybody could do it

Again: the phase space ellipse for each turn write down - at a given position "s" in the ring - the single partilce amplitude x and the angle $x^{\prime} \ldots$ and plot it. $\binom{x}{x^{\prime}}_{s 1}=M_{\text {turn }} *\binom{x}{x^{\prime}}_{s 0}$

A beam of 4 particles

- each having a slightly different emittance:

Installation of a weak (!!!) sextupole magnet

The good news: sextupole fields in accelerators cannot be treated analytically anymore.
\rightarrow no equatiuons; instead: Computer simulation "particle tracking "

Effect of a strong (!!!) Sextupole ...

$$
\rightarrow \text { Catastrophy! }
$$

„dynamic aperture"

Golden Rule: COURAGE

... somehow and unexpectedly
these machines are running nevertheless.

thank'x for your attention

Accelerator Physics is exciting!

- We already know a lot, but many open issues

Equation of Motion:

Consider local segment of a particle trajectory ... and remember the old days:
(Goldstein page 27)

radial acceleration:

$$
a_{r}=\frac{d^{2} \rho}{d t^{2}}-\rho\left(\frac{d \theta}{d t}\right)^{2}
$$

Ideal orbit: $\quad \rho=$ const,$\quad \frac{d \rho}{d t}=0$

$$
\text { Force: } \begin{aligned}
F & =m \rho\left(\frac{d \theta}{d t}\right)^{2}=m \rho \omega^{2} \\
F & =m v^{2} / \rho
\end{aligned}
$$

general trajectory: $\rho \rightarrow \rho+x$

$$
F=m \frac{d^{2}}{d t^{2}}(x+\rho)-\frac{m v^{2}}{x+\rho}=e B_{y} v
$$

$$
\boldsymbol{F}=\boldsymbol{m} \frac{\boldsymbol{d}^{2}}{\boldsymbol{d} \boldsymbol{t}^{2}}(\boldsymbol{x}+\rho)-\frac{\boldsymbol{m} \boldsymbol{v}^{2}}{\boldsymbol{x}+\rho}=\boldsymbol{e} \boldsymbol{B}_{\boldsymbol{y}} \boldsymbol{v}
$$

S
(1) $\frac{d^{2}}{d t^{2}}(x+\rho)=\frac{d^{2}}{d t^{2}} x \quad$ _..as $\rho=$ cons
(2) remember: $x \approx m m, \rho \approx m \ldots \rightarrow$ develop for small x

$$
\begin{gathered}
\frac{1}{x+\rho} \approx \frac{1}{\rho}\left(1-\frac{x}{\rho}\right) \\
\boldsymbol{f}(x)=\boldsymbol{f}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)}{1!} f^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2!} f^{\prime \prime}\left(x_{0}\right)+ \\
m \frac{d^{2} \boldsymbol{x}}{d^{2}}-\frac{\boldsymbol{m} v^{2}}{\rho}\left(1-\frac{x}{\rho}\right)=\boldsymbol{e} \boldsymbol{B}_{y} v
\end{gathered}
$$

guide field in linear approx.

$$
\begin{array}{cl}
\boldsymbol{B}_{y}=\boldsymbol{B}_{0}+\boldsymbol{x} \frac{\partial \boldsymbol{B}_{y}}{\partial \boldsymbol{x}} & \left.\boldsymbol{m} \frac{d^{2} \boldsymbol{x}}{d t^{2}}-\frac{\boldsymbol{m} v^{2}}{\rho}\left(1-\frac{\boldsymbol{x}}{\rho}\right)=\boldsymbol{e v}\left\{\boldsymbol{B}_{0}+\boldsymbol{x} \frac{\partial \boldsymbol{B}_{y}}{\partial \boldsymbol{x}}\right\} \quad \right\rvert\,: m \\
\frac{d^{2} \boldsymbol{x}}{d t^{2}}-\frac{v^{2}}{\rho}\left(1-\frac{x}{\rho}\right)=\frac{\boldsymbol{e} v \boldsymbol{B}_{0}}{m}+\frac{\boldsymbol{e} v \boldsymbol{x} \boldsymbol{g}}{m}
\end{array}
$$

independent variable: $t \rightarrow s$

$$
\begin{aligned}
& \frac{d x}{d t}=\frac{d x}{d s} \frac{d s}{d t} \\
& \frac{d^{2} x}{d t^{2}}=\frac{d}{d t}\left(\frac{d x}{d s} \frac{d s}{d t}\right)=\frac{d}{d s} \underbrace{\left(\frac{d x}{d s}\right.}_{x^{\prime}} \underbrace{\left.\frac{d s}{d t}\right)}_{v} \frac{d s}{d t} \\
& \frac{d^{2} x}{d t^{2}}=x^{\prime \prime} v^{2}+\frac{d x}{d s} d v \\
& d s
\end{aligned}
$$

$$
x^{\prime \prime} v^{2}-\frac{v^{2}}{\rho}\left(1-\frac{x}{\rho}\right)=\frac{e v B_{0}}{m}+\frac{e v x g}{m}
$$

$$
x^{\prime \prime}-\frac{1}{\rho}\left(1-\frac{x}{\rho}\right)=\frac{e B_{0}}{m v}+\frac{e x g}{m v}
$$

$$
m v=p
$$

$x^{\prime \prime}-\frac{1}{\rho}+\frac{x}{\rho^{2}}=\frac{\boldsymbol{B}_{0}}{p / e}+\frac{x g}{p / e}$
$x^{\prime \prime}-\frac{1}{\rho}+\frac{x}{\rho^{2}}=-\frac{1}{\rho}+\boldsymbol{k} x$

$$
x^{\prime \prime}+x\left(\frac{1}{\rho^{2}}-k\right)=0
$$

* Equation for the vertical motion:

$$
\begin{array}{cc}
\frac{1}{\rho^{2}}=0 & \text { no dipoles ... in general ... } \\
k \leftrightarrow-k & \text { quadrupole field changes sign } \\
\boldsymbol{y}^{\prime \prime}+\boldsymbol{k} y=0
\end{array}
$$

normalize to momentum of particle

$$
\begin{aligned}
& \frac{B_{0}}{p / e}=-\frac{1}{\rho} \\
& \frac{g}{p / e}=k
\end{aligned}
$$

16.) Dispersion: trajectories for $\Delta p / p \neq 0$

Question: do you remember last session, page 12?... sure you do

Force acting on the particle

$$
F=\boldsymbol{m} \frac{d^{2}}{d t^{2}}(x+\rho)-\frac{\boldsymbol{m} v^{2}}{x+\rho}=\boldsymbol{e} B_{y} v
$$

S
remember: $x \approx m m, \rho \approx m \ldots \rightarrow$ develop for small x

$$
\boldsymbol{m} \frac{d^{2} x}{d t^{2}}-\frac{\boldsymbol{m} v^{2}}{\rho}\left(1-\frac{x}{\rho}\right)=\boldsymbol{e} \boldsymbol{B}_{y} v
$$

consider only linear fields, and change independent variable: $t \rightarrow s$

$$
\boldsymbol{B}_{y}=\boldsymbol{B}_{0}+\boldsymbol{x} \frac{\partial \boldsymbol{B}_{y}}{\partial \boldsymbol{x}}
$$

$$
x^{\prime \prime}-\frac{1}{\rho}\left(1-\frac{x}{\rho}\right)=\underbrace{e B_{0}}+\frac{e^{e x} \boldsymbol{x} \boldsymbol{g}}{m v}
$$

... but now take a small momentum error into account !!!

Dispersion:
develop for small momentum error

$$
\Delta p \ll p_{0} \Longrightarrow \frac{1}{p_{0}+\Delta p} \approx \frac{1}{p_{0}}-\frac{\Delta p}{p_{0}^{2}}
$$

$$
\boldsymbol{x}^{\prime \prime}-\frac{1}{\rho}+\frac{\boldsymbol{x}}{\rho^{2}} \approx \underbrace{\frac{\boldsymbol{e} \boldsymbol{B}_{0}}{\boldsymbol{p}_{0}}}_{-\frac{1}{\rho}}-\frac{\Delta \boldsymbol{p}}{\boldsymbol{p}_{0}^{2}} \boldsymbol{e} \boldsymbol{B}_{0}+\underbrace{\frac{\boldsymbol{x e g}}{\boldsymbol{p}_{0}}}_{k * x}-\boldsymbol{x e g} \underbrace{\boldsymbol{\operatorname { s e p }} \frac{\Delta \boldsymbol{p}}{\boldsymbol{p}_{0}^{2}}}_{\approx 0}
$$

$$
x^{\prime \prime}+\frac{x}{\rho^{2}} \approx \frac{\Delta p}{p_{0}} * \frac{\left(-e B_{0}\right)}{p_{0}}+k^{* x}=\frac{\Delta \boldsymbol{p}}{p_{0}} * \frac{1}{\rho}+k^{*} x
$$

$$
x^{\prime \prime}+\frac{\boldsymbol{x}}{\rho^{2}}-k x=\frac{\Delta p}{p_{0}} \frac{1}{\rho} \quad \longrightarrow \quad x^{\prime \prime}+x\left(\frac{1}{\rho^{2}}-k\right)=\frac{\Delta p}{p_{0}} \frac{1}{\rho}
$$

Momentum spread of the beam adds a term on the r.h.s. of the equation of motion.
\rightarrow inhomogeneous differential equation.

Dispersion:

$$
x^{\prime \prime}+x\left(\frac{1}{\rho^{2}}-k\right)=\frac{\Delta p}{p} \cdot \frac{1}{\rho}
$$

general solution:

$$
x(s)=x_{h}(s)+x_{i}(s)
$$

$$
\left\{\begin{array}{l}
x_{h}^{\prime \prime}(s)+K(s) \cdot x_{h}(s)=0 \\
x_{i}^{\prime \prime}(s)+K(s) \cdot x_{i}(s)=\frac{1}{\rho} \cdot \frac{\Delta p}{p}
\end{array}\right.
$$

Normalise with respect to $\Delta p / p$:

$$
D(s)=\frac{x_{i}(s)}{\Delta p / p}
$$

Dispersion function $D(s)$

* is that special orbit, an ideal particle would have for $\Delta p / p=1$
* the orbit of any particle is the sum of the well known x_{β} and the dispersion
* as $D(s)$ is just another orbit it will be subject to the focusing properties of the lattice

