Introduction to Accelerator Physics Beam Dynamics for "Summer Students" Bernhard Holzer, CERN-LHC The Ideal World I.) Magnetic Fields and Particle Trajectories

$$D_n = \beta_C \sin n\phi_C * \delta_{\text{supr}} * \sum_{i=1}^n \cos\left(i\phi_C - \frac{1}{2}\phi_C \pm \varphi_m\right) * \sqrt{\frac{\beta_m}{\beta_C}} - \cos n\phi_C * \delta_{\text{supr}} * \sum_{i=1}^n \sqrt{\beta_m \beta_C} * \sin\left(i\phi_C - \frac{1}{2}\phi_C \pm \varphi_m\right)$$

$$D_n = \sqrt{\beta_m \beta_C} * \sin n\phi_C * \delta_{\text{supr}} * \sum_{i=1}^n \cos\left((2i-1)\frac{\phi_C}{2} \pm \varphi_m\right) - \sqrt{\beta_m \beta_C} * \delta_{\text{supr}} * \cos n\phi_C \sum_{i=1}^n \sin\left((2i-1)\frac{\phi_C}{2} \pm \varphi_m\right)$$

Remembering the trigonometric gymnastics shown above we get

$$D_n = \delta_{\text{supr}} * \sqrt{\beta_m \beta_C} * \sin n\phi_C * \sum_{i=1}^n \cos\left((2i-1)\frac{\phi_C}{2}\right) * 2\cos\varphi_m - \delta_{\text{supr}} * \sqrt{\beta_m \beta_C} * \cos n\phi_C \sum_{i=1}^n \sin\left((2i-1)\frac{\phi_C}{2}\right) * 2\cos\varphi_m$$

$$D_n = 2\delta_{\text{supr}} * \sqrt{\beta_m \beta_C} * \cos \varphi_m \left\{ \sum_{i=1}^n \cos\left((2i-1)\frac{\phi_C}{2}\right) * \sin(n\phi_C) - \sum_{i=1}^n \sin\left((2i-1)\frac{\phi_C}{2}\right) * \cos(n\phi_C) \right\}$$

$$D_n = 2\delta_{\text{supr}} * \sqrt{\beta_m \beta_C} * \cos \varphi_m \sin(n\phi_C) \frac{\sin \frac{n\phi_C}{2} * \cos \frac{n\phi_C}{2}}{\sin \frac{\phi_C}{2}} - \frac{1}{2} - 2\delta_{\text{supr}} * \sqrt{\beta_m \beta_C} * \cos \varphi_m * \cos(n\Phi_C) * \frac{\sin \frac{n\Phi_C}{2} * \sin \frac{n\Phi_C}{2}}{\sin \frac{\Phi_C}{2}}$$

$$D_n = \frac{2\delta_{\sup r} * \sqrt{\beta_m \beta_C} * \cos \varphi_m}{\sin \frac{\phi_C}{2}} \left\{ 2\sin \frac{n\phi_C}{2} \cos \frac{n\phi_C}{2} * \cos \frac{n\phi_C}{2} \sin \frac{n\phi_C}{2} - \left(\cos^2 \frac{n\phi_C}{2} - \sin^2 \frac{n\phi_C}{2}\right) \sin^2 \frac{n\phi_C}{2} \right\}$$

replace by ...

"after some TLC transformations" ... or ... " after some beer"

Largest storage ring: The Solar System

astronomical unit: average distance earth-sun 1AE ≈ 150 *10⁶ km Distance Pluto-Sun ≈ 40 AE

Luminosity Run of a typical storage ring:

LHC Storage Ring: Protons accelerated and stored for 12 hours distance of particles travelling at about $v \approx c$ $L = 10^{10} - 10^{11} \text{ km}$

... several times Sun - Pluto and back 🌶

intensity (10¹¹)

- → guide the particles on a well defined orbit ("design orbit")
- → focus the particles to keep each single particle trajectory within the vacuum chamber of the storage ring, i.e. close to the design orbit.

1.) Introduction and Basic Ideas

", ... in the end and after all it should be a kind of circular machine" → need transverse deflecting force

Lorentz force
$$\vec{F} = q * (\vec{E} + \vec{v} \times \vec{B})$$

typical velocity in high energy machines: $v \approx c \approx 3 * 10^8 \frac{m}{s}$

Example:♪

$$B = 1T \implies F = q * 3 * 10^8 \frac{m}{s} * 1 \frac{Vs}{m^2}$$

$$F = q * 300 \frac{MV}{m}$$
equivalent el. field ... $\nearrow E$

technical limit for el. field: \triangleright

$$E \le 1 \frac{MV}{m}$$

old greek dictum of wisdom:

if you are clever, you use magnetic fields in an accelerator wherever it is possible.

The ideal circular orbit

circular coordinate system

condition for circular orbit:

2.) The Magnetic Guide Field

Dipole Magnets:

define the ideal orbit homogeneous field created by two flat pole shoes

$$B = \frac{\mu_0 n I}{h}$$

Normalise magnetic field to momentum:

convenient units:

$$\frac{p}{e} = B \rho \qquad \longrightarrow \qquad \frac{1}{\rho} = \frac{e B}{p}$$

$$B = [T] = \left[\frac{Vs}{m^2}\right] \qquad p = \left[\frac{GeV}{c}\right]$$

Example LHC:

$$B = 8.3T$$

$$p = 7000 \frac{GeV}{c}$$

$$\frac{1}{\rho} = e \frac{\frac{8.3 Vs}{m^2}}{7000*10^9 eV/c} = \frac{\frac{8.3 s*3*10^8 m/s}{7000*10^9 m^2}}{\frac{1}{\rho}} = 0.333 \frac{\frac{8.3}{7000}}{\frac{1}{m}}$$

The Magnetic Guide Field

field map of a storage ring dipole magnet

$$\rho = 2.53 \text{ km} \longrightarrow 2\pi\rho = 17.6 \text{ km}$$
$$\approx 66\%$$

$$\boldsymbol{B} \approx 1 \dots 8 \ \boldsymbol{T}$$

rule of thumb:

$$\frac{1}{\rho} \approx 0.3 \frac{B[T]}{p[GeV/c]}$$

"normalised bending strength"

3.) Focusing Properties - Transverse Beam Optics

classical mechanics: pendulum

there is a restoring force, proportional to the elongation x:

general solution: free harmonic oszillation

 $x(t) = A * \cos(\omega t + \varphi)$

Storage Ring: we need a Lorentz force that rises as a function of the distance to?

..... the design orbit

$$F(x) = q^* v^* B(x)$$

Quadrupole Magnets:

focusing forces to keep trajectories in vicinity of the ideal orbit required: linear increasing Lorentz force linear increasing magnetic field

normalised quadrupole field:

simple rule:

$$k = 0.3 \frac{g(T/m)}{p(GeV/c)}$$

$$B_{y} = g x \qquad B_{x} = g y$$

LHC main quadrupole magnet

 $g \approx 25 \dots 220 T / m$

what about the vertical plane: ... Maxwell

$$\vec{\nabla} \times \vec{B} = \overleftarrow{\nabla} + \frac{\partial \vec{E}}{\partial t} = 0 \qquad \Rightarrow \qquad \frac{\partial B_y}{\partial x} = \frac{\partial B_x}{\partial y} = g$$

Focusing forces and particle trajectories:

normalise magnet fields to momentum (remember: $B*\rho = p/q$)

Dipole Magnet

Quadrupole Magnet

$$\frac{B}{p/q} = \frac{B}{B\rho} = \frac{1}{\rho}$$

$$k := \frac{g}{p \, / \, q}$$

4.) The Equation of Motion:

$$\frac{B(x)}{p/e} = \frac{1}{\rho} + k x + \frac{1}{2!}m x^2 + \frac{1}{3!}m x^3 + \dots$$

only terms linear in x, y taken into account dipole fields quadrupole fields

Separate Function Machines:

Split the magnets and optimise them according to their job:

bending, focusing etc

Example: heavy ion storage ring TSR

The Equation of Motion:

***** Equation for the horizontal motion:

$$x'' + x \left(\frac{1}{\rho^2} + k\right) = 0$$

x = particle amplitude x'= angle of particle trajectory (wrt ideal path line)

* Equation for the vertical motion:

$$\frac{1}{\rho^2} = 0$$
 no dipoles ... in general ...

$$k \iff -k$$
 quadrupole field changes sign

$$y'' - k y = 0$$

5.) Solution of Trajectory Equations

Define ... hor. plane: $K = 1/\rho^2 + k$... vert. Plane: K = -k

$$\boldsymbol{x}'' + \boldsymbol{K} \boldsymbol{x} = \boldsymbol{0}$$

Differential Equation of harmonic oscillator ... with spring constant K

Ansatz:
$$x(s) = a_1 \cdot \cos(\omega s) + a_2 \cdot \sin(\omega s)$$

general solution: linear combination of two independent solutions

$$x'(s) = -a_1 \omega \sin(\omega s) + a_2 \omega \cos(\omega s)$$
$$x''(s) = -a_1 \omega^2 \cos(\omega s) - a_2 \omega^2 \sin(\omega s) = -\omega^2 x(s) \qquad \longrightarrow \qquad \omega = \sqrt{K}$$

general solution:

$$x(s) = a_1 \cos(\sqrt{K}s) + a_2 \sin(\sqrt{K}s)$$

determine a_1 , a_2 by boundary conditions:

$$s = 0 \qquad \longrightarrow \qquad \begin{cases} x(0) = x_0 &, a_1 = x_0 \\ x'(0) = x'_0 &, a_2 = \frac{x'_0}{\sqrt{K}} \end{cases}$$

Hor. Focusing Quadrupole K > 0:

$$x(s) = x_0 \cdot \cos(\sqrt{|K|}s) + x'_0 \cdot \frac{1}{\sqrt{|K|}} \sin(\sqrt{|K|}s)$$
$$x'(s) = -x_0 \cdot \sqrt{|K|} \cdot \sin(\sqrt{|K|}s) + x'_0 \cdot \cos(\sqrt{|K|}s)$$

For convenience expressed in matrix formalism:

$$\binom{x}{x'}_{s1} = M_{foc} * \binom{x}{x'}_{s0}$$

$$M_{foc} = \begin{pmatrix} \cos(\sqrt{|K|}s) & \frac{1}{\sqrt{|K|}}\sin(\sqrt{|K|}s) \\ -\sqrt{|K|}\sin(\sqrt{|K|}s) & \cos(\sqrt{|K|}s) \end{pmatrix}_0$$

s = 0s = s1hor. defocusing quadrupole: ****** ••••••• $\mathbf{x}'' - \mathbf{K} \mathbf{x} = \mathbf{0}$ *****

Remember from school:

$$f(s) = \cosh(s) \quad , \quad f'(s) = \sinh(s)$$

$$x(s) = x_0 \cdot \cosh(\sqrt{|K|}s) + x_0' \cdot \sinh(\sqrt{|K|}s)$$

$$M_{defoc} = \begin{pmatrix} \cosh\sqrt{|K|}l & \frac{1}{\sqrt{|K|}} \sinh\sqrt{|K|}l \\ \sqrt{|K|} \sinh\sqrt{|K|}l & \cosh\sqrt{|K|}l \end{pmatrix}$$

drift space:

K = 0

***** $M_{drif t} =$ $x(s) = x_0 + x_0' * s$

with the assumptions made, the motion in the horizontal and vertical planes are independent " ... the particle motion in x & y is uncoupled"

Thin Lens Approximation:

matrix of a quadrupole lens
$$M = \begin{pmatrix} \cos \sqrt{|k|}l & \frac{1}{\sqrt{|k|}} \sin \sqrt{|k|}l \\ -\sqrt{|k|} \sin \sqrt{|k|}l & \cos \sqrt{|k|}l \end{pmatrix}$$

in many practical cases we have the situation:

 $f = \frac{1}{kl_q} >> l_q$... focal length of the lens is much bigger than the length of the magnet

limes: $l_q \rightarrow 0$ while keeping $k l_q = const$

$$M_x = \begin{pmatrix} 1 & 0 \\ \frac{1}{f} & 1 \end{pmatrix} \qquad \qquad M_z = \begin{pmatrix} 1 & 0 \\ \frac{-1}{f} & 1 \end{pmatrix}$$

... useful for fast (and in large machines still quite accurate) "back on the envelope calculations" ... and for the guided studies !

Transformation through a system of lattice elements

combine the single element solutions by multiplication of the matrices

in each accelerator element the particle trajectory corresponds to the movement of a harmonic oscillator "

6.) Orbit & Tune:

Tune: number of oscillations per turn

64.31 59.32

LHC revolution frequency: 11.3 kHz

0.31*11.3 = 3.5 kHz

Question: what will happen, if the particle performs a second turn ?

 \dots or a third one or \dots 10¹⁰ turns

II.) The Ideal World:

Particle Trajectories, Beams & Bunches

19th century:

Ludwig van Beethoven: "Mondschein Sonate"

Sonate Nr. 14 in cis-Moll (op. 27/II, 1801)

Astronomer Hill:

differential equation for motions with periodic focusing properties "Hill's equation"

Example: particle motion with periodic coefficient

equation of motion:

$$x''(s) - k(s)x(s) = 0$$

restoring force \neq const, k(s) = depending on the position s k(s+L) = k(s), periodic function we expect a kind of quasi harmonic oscillation: amplitude & phase will depend on the position s in the ring.

7.) The Beta Function

General solution of Hill's equation:

(i) $x(s) = \sqrt{\varepsilon} \sqrt{\beta(s)} \cdot \cos(\psi(s) + \phi)$

 ε , Φ = integration constants determined by initial conditions $\beta(s)$ periodic function given by focusing properties of the lattice \leftrightarrow quadrupoles

 $\beta(s+L) = \beta(s)$

Inserting (i) into the equation of motion ...

$$\psi(s) = \int_0^s \frac{ds}{\beta(s)}$$

 $\Psi(s) = ,, phase advance"$ of the oscillation between point ,, 0" and ,, s" in the lattice. For one complete revolution: number of oscillations per turn ,, Tune"

$$Q_y = \frac{1}{2\pi} \oint \frac{ds}{\beta(s)}$$

8.) The Beta Function

Amplitude of a particle trajectory:

$$x(s) = \sqrt{\varepsilon} * \sqrt{\beta(s)} * \cos(\psi(s) + \varphi)$$

Maximum size of a particle amplitude

$$\hat{x}(s) = \sqrt{\varepsilon} \sqrt{\beta(s)} \quad \checkmark$$

β determines the beam size (... the envelope of all particle trajectories at a given position "s" in the storage ring.

It reflects the periodicity of the magnet structure.

9.) Beam Emittance and Phase Space Ellipse

general solution of Hill equation $\begin{cases}
(1) \quad x(s) = \sqrt{\varepsilon} \sqrt{\beta(s)} \cos(\psi(s) + \phi) \\
(2) \quad x'(s) = -\frac{\sqrt{\varepsilon}}{\sqrt{\beta(s)}} \left\{ \alpha(s) \cos(\psi(s) + \phi) + \sin(\psi(s) + \phi) \right\}
\end{cases}$

from (1) we get

$$\cos(\psi(s) + \phi) = \frac{x(s)}{\sqrt{\varepsilon} \sqrt{\beta(s)}}$$

$$\alpha(s) = \frac{-1}{2}\beta'(s)$$
$$\gamma(s) = \frac{1 + \alpha(s)^2}{\beta(s)}$$

Insert into (2) and solve for ε

$$\varepsilon = \gamma(s) x^2(s) + 2\alpha(s)x(s)x'(s) + \beta(s) x'^2(s)$$

* ε is a constant of the motion ... it is independent of "s" * parametric representation of an ellipse in the x x' space * shape and orientation of ellipse are given by α , β , γ

Beam Emittance and Phase Space Ellipse

\varepsilon beam emittance = woozilycity of the particle ensemble, intrinsic beam parameter, cannot be changed by the foc. properties.
 Scientifiquely spoken: area covered in transverse x, x' phase space ... and it is constant !!!

$$\varepsilon = \gamma(s) * x^2(s) + 2\alpha(s)x(s)x'(s) + \beta(s)x'(s)^2$$

Phase Space Ellipse

particel trajectory:
$$x(s) = \sqrt{\varepsilon} \sqrt{\beta(s)} \cos \{\psi(s) + \phi\}$$

max. Amplitude: $\hat{x}(s) = \sqrt{\varepsilon\beta} \longrightarrow x'$ at that position ...?
... put $\hat{x}(s)$ into $\varepsilon = \gamma(s) x^2(s) + 2\alpha(s)x(s)x'(s) + \beta(s) x'^2(s)$ and solve for x'
 $\varepsilon = \gamma \cdot \varepsilon\beta + 2\alpha\sqrt{\varepsilon\beta} \cdot x' + \beta x'^2$
 $\longrightarrow x' = -\alpha \cdot \sqrt{\varepsilon/\beta}$

* A high β -function means a large beam size and a small beam divergence. ... et vice versa !!!

* In the middle of a quadrupole
$$\beta = maximum$$
,
 $\alpha = zero$
 $x' = 0$
... and the ellipse is flat

!

Phase Space Ellipse

shape and orientation of the phase space ellipse depend on the Twiss parameters $\beta \alpha \gamma$

Particle Tracking in a Storage Ring

Calculate x, x' for each linear accelerator element according to matrix formalism

plot x, x'as a function of "s"

... and now the ellipse:

note for each turn x, x' at a given position $_{n}s_{1}$ " and plot in the phase space diagram

Emittance of the Particle Ensemble:

Emittance of the Particle Ensemble:

single particle trajectories, $N \approx 10^{11}$ per bunch

LHC:
$$\beta = 180 m$$

 $\varepsilon = 5 * 10^{-10} m rad$

Gauß
Particle Distribution:

$$o(\mathbf{x}) = \frac{N \cdot \mathbf{e}}{\sqrt{2\pi}\sigma_x} \cdot \mathbf{e}^{-\frac{1}{2}\frac{\mathbf{x}^2}{\sigma_x^2}}$$

particle at distance 1 σ from centre \leftrightarrow 68.3 % of all beam particles

aperture requirements: $r_0 = 12 * \sigma$

Résumé:

beam rigidity:	$B \cdot \rho = \frac{p}{q}$
bending strength of a dipole:	$\frac{1}{\rho} \left[m^{-1} \right] = \frac{0.2998 \cdot B_0(T)}{p(GeV/c)}$
focusing strength of a quadrupole:	$k\left[m^{-2}\right] = \frac{0.2998 \cdot g}{p(GeV/c)}$
focal length of a quadrupole:	$f = \frac{1}{k \cdot l_q}$
equation of motion:	$x'' + Kx = \frac{1}{\rho} \frac{\Delta p}{p}$
matrix of a foc. quadrupole:	$x_{s2} = M \cdot x_{s1}$

$$M = \begin{pmatrix} \cos\sqrt{|K|}l & \frac{1}{\sqrt{|K|}} \sin\sqrt{|K|}l \\ -\sqrt{|K|} \sin\sqrt{|K|}l & \cos\sqrt{|K|}l \end{pmatrix} , \qquad M = \begin{pmatrix} 1 & 0 \\ \frac{1}{f} & 1 \end{pmatrix}$$

10.) Bibliography:

- Edmund Wilson: Introd. to Particle Accelerators Oxford Press, 2001
 Klaus Wille: Physics of Particle Accelerators and Synchrotron Radiation Facilicties, Teubner, Stuttgart 1992
 Peter Schmüser: Basic Course on Accelerator Optics, CERN Acc. School: 5th general acc. phys. course CERN 94-01
 Bernhard Holzer: Lattice Design, CERN Acc. School: Interm.Acc.phys course, <u>http://cas.web.cern.ch/cas/ZEUTHEN/lectures-zeuthen.htm</u>
 Herni Bruck: Accelerateurs Circulaires des Particules, presse Universitaires de France, Paris 1966 (english / francais)
 M S Livingston J.P. Blewett: Particle Accelerators
- 6.) M.S. Livingston, J.P. Blewett: Particle Accelerators, Mc Graw-Hill, New York, 1962

7.) Frank Hinterberger: Physik der Teilchenbeschleuniger, Springer Verlag 1997

8.) Mathew Sands: The Physics of e+ e- Storage Rings, SLAC report 121, 1970

9.) D. Edwards, M. Syphers : An Introduction to the Physics of Particle Accelerators, SSC Lab 1990

III.) The "not so ideal" World Lattice Design in Particle Accelerators

1952: Courant, Livingston, Snyder: Theory of strong focusing in particle beams
11.) Lattice Design:

"... how to build a storage ring"

 $\boldsymbol{B} \boldsymbol{\rho} = \boldsymbol{p} / \boldsymbol{q}$

Circular Orbit: dipole magnets to define the geometry

$$\alpha = \frac{ds}{\rho} \approx \frac{dl}{\rho} = \frac{Bdl}{B\rho}$$

field map of a storage ring dipole magnet

The angle run out in one revolution must be 2π , so

... for a full circle
$$\alpha = \frac{\int Bdl}{B\rho} = 2\pi \implies \int Bdl = 2\pi \frac{p}{q}$$

... defines the integrated dipole field around the machine.

Nota bene:
$$\triangleright \frac{\Delta B}{B} \approx 10^{-4}$$
 is usually required !!

7000 GeV Proton storage ring dipole magnets N = 1232l = 15 mq = +1 e

 $\int \boldsymbol{B} \, \boldsymbol{dl} \approx N \, \boldsymbol{l} \, \boldsymbol{B} = 2\pi \, \boldsymbol{p} / \boldsymbol{e}$

$$B \approx \frac{2\pi \ 7000 \ 10^9 eV}{1232 \ 15 \ m} \ 3 \ 10^8 \frac{m}{s} \ e = \frac{8.3 \ Tesla}{1232 \ 15 \ m}$$

Recapitulation: storage ring elements ... the story with the matrices !!!

Equation of Motion:

Solution of Trajectory Equations

$$M_{total} = M_{QF} * M_{D} * M_{B} * M_{D} * M_{QD} * M_{D} * \dots$$

12.) Transfer Matrix M ... yes we had the topic already

general solution
of Hill's equation
$$\begin{cases} x(s) = \sqrt{\varepsilon} \sqrt{\beta(s)} \cos \left\{ \psi(s) + \phi \right\} \\ x'(s) = \frac{-\sqrt{\varepsilon}}{\sqrt{\beta(s)}} \left[\alpha(s) \cos \left\{ \psi(s) + \phi \right\} + \sin \left\{ \psi(s) + \phi \right\} \right] \end{cases}$$

remember the trigonometrical gymnastics: $sin(a + b) = \dots etc$

$$x(s) = \sqrt{\varepsilon} \sqrt{\beta_s} \left(\cos\psi_s \cos\phi - \sin\psi_s \sin\phi \right)$$
$$x'(s) = \frac{-\sqrt{\varepsilon}}{\sqrt{\beta_s}} \left[\alpha_s \cos\psi_s \cos\phi - \alpha_s \sin\psi_s \sin\phi + \sin\psi_s \cos\phi + \cos\psi_s \sin\phi \right]$$

starting at point $s(0) = s_0$, where we put $\Psi(0) = 0$

$$\cos\phi = \frac{x_0}{\sqrt{\varepsilon\beta_0}} ,$$

$$\sin\phi = -\frac{1}{\sqrt{\varepsilon}} (x'_0 \sqrt{\beta_0} + \frac{\alpha_0 x_0}{\sqrt{\beta_0}})$$

inserting above ...

$$x(s) = \sqrt{\frac{\beta_s}{\beta_0}} \left\{ \cos\psi_s + \alpha_0 \sin\psi_s \right\} x_0 + \left\{ \sqrt{\beta_s \beta_0} \sin\psi_s \right\} x_0'$$
$$x'(s) = \frac{1}{\sqrt{\beta_s \beta_0}} \left\{ (\alpha_0 - \alpha_s) \cos\psi_s - (1 + \alpha_0 \alpha_s) \sin\psi_s \right\} x_0 + \sqrt{\frac{\beta_0}{\beta_s}} \left\{ \cos\psi_s - \alpha_s \sin\psi_s \right\} x_0'$$

which can be expressed ... for convenience ... in matrix form

$$\binom{x}{x'}_{s} = M\binom{x}{x'}_{0}$$

$$M = \begin{pmatrix} \sqrt{\frac{\beta_s}{\beta_0}} \left(\cos\psi_s + \alpha_0 \sin\psi_s \right) & \sqrt{\beta_s \beta_0} \sin\psi_s \\ \frac{(\alpha_0 - \alpha_s) \cos\psi_s - (1 + \alpha_0 \alpha_s) \sin\psi_s}{\sqrt{\beta_s \beta_0}} & \sqrt{\frac{\beta_0}{\beta s}} \left(\cos\psi_s - \alpha_s \sin\psi_s \right) \end{pmatrix}$$

* we can calculate the single particle trajectories between two locations in the ring, if we know the α β γ at these positions.
* and nothing but the α β γ at these positions.

*

13.) Periodic Lattices

$$M = \begin{pmatrix} \sqrt{\frac{\beta_s}{\beta_0}} \left(\cos\psi_s + \alpha_0 \sin\psi_s \right) & \sqrt{\beta_s \beta_0} \sin\psi_s \\ \frac{(\alpha_0 - \alpha_s) \cos\psi_s - (1 + \alpha_0 \alpha_s) \sin\psi_s}{\sqrt{\beta_s \beta_0}} & \sqrt{\frac{\beta_0}{\beta s}} \left(\cos\psi_s - \alpha_s \sin\psi_s \right) \end{pmatrix}$$

ELSA Electron Storage Ring

"This rather formidable looking matrix simplifies considerably if we consider one complete revolution ..."

$$M(s) = \begin{pmatrix} \cos \psi_{turn} + \alpha_s \sin \psi_{turn} & \beta_s \sin \psi_{turn} \\ -\gamma_s \sin \psi_{turn} & \cos \psi_{turn} - \alpha_s \sin \psi_{turn} \end{pmatrix}$$

$$\psi_{turn} = \int_{s}^{s+L} \frac{ds}{\beta(s)}$$

 $\psi_{turn} = phase advance$ per period

Tune: Phase advance per turn in units of 2π

$$Q = \frac{1}{2\pi} \oint \frac{ds}{\beta(s)}$$

FoDo-Lattice

A magnet structure consisting of focusing and defocusing quadrupole lenses in alternating order with nothing in .

(Nothing = elements that can be neglected on first sight: drift, bending magnets, RF structures ... and especially experiments...)

Starting point for the calculation: in the middle of a focusing quadrupole Phase advance per cell $\mu = 45^{\circ}$,

 \rightarrow calculate the twiss parameters for a periodic solution

Periodic solution of a FoDo Cell

Output of the optics program:

0,125

 $Q_Y =$

 $Q_X =$

Nr	Туре	Length	Strength	β_x	α_{x}	ψ_x	β_{y}	α_{y}	ψ_y
		m	1/m2	m		1/2π	m		1/2π
0	IP	0,000	0,000	11,611	0,000	0,000	5,295	0,000	0,000
1	QFH	0,250	-0,541	11,228	1,514	0,004	5,488	-0,781	0,007
2	QD	3,251	0,541	5,488	-0,781	0,070	11,228	1,514	0,066
3	QFH	6,002	-0,541	11,611	0,000	0,125	5,295	0,000	0,125
4	IP	6,002	0,000	11,611	0,000	0,125	5,295	0,000	0,125

 $2\pi = 45^{\circ}$

0,125

Can we understand, what the optics code is doing?

$$matrices \quad M_{foc} = \begin{pmatrix} \cos(\sqrt{|K|}l_q) & \frac{1}{\sqrt{|K|}}\sin(\sqrt{|K|}l_q) \\ -\sqrt{|K|}\sin(\sqrt{|K|}l_q) & \cos(\sqrt{|K|}l_q) \end{pmatrix} \qquad M_{drift} = \begin{pmatrix} 1 & l_d \\ 0 & 1 \end{pmatrix}$$

strength and length of the FoDo elements

 $K = +/- 0.54102 m^{-2}$ lq = 0.5 mld = 2.5 m

The matrix for the complete cell is obtained by multiplication of the element matrices

$$M_{FoDo} = M_{qfh}^* M_{ld}^* M_{qd}^* M_{ld}^* M_{qf}$$

Putting the numbers in and multiplying out ...

$$M_{FoDo} = \begin{pmatrix} 0.707 & 8.206 \\ -0.061 & 0.707 \end{pmatrix}$$

The transfer matrix for one period gives us all the information that we need !

Phase advance per cell

$$M(s) = \begin{pmatrix} \cos \psi + \alpha \sin \psi & \beta \sin \psi \\ -\gamma \sin \psi & \cos \psi - \alpha \sin \psi \end{pmatrix} \rightarrow \begin{aligned} \cos(\psi) &= \frac{1}{2} Trace(M) = 0.707 \\ \psi &= arc \cos(\frac{1}{2} Trace(M)) = 45^{\circ} \end{aligned}$$

hor β -function
$$\beta = \frac{M_{1,2}}{\sin \psi} = \underline{11.611 \ m} \qquad \qquad \alpha = \frac{M_{1,1} - \cos \psi}{\sin \psi} = 0$$

14.) Insertions

β-*Function in a Drift*:

let's assume we are at a symmetry point in the center of a drift.

 β function in the neighborhood of the symmetry point

$$\beta(s) = \beta_0 + \frac{s^2}{\beta_0}$$

At the end of a long symmetric drift space the beta function reaches its maximum value in the complete lattice. -> here we get the largest beam dimension.

-> keep l as small as possible

7 sigma beam size inside a mini beta quadrupole

... clearly there is an

... unfortunately ... in general high energy detectors that are installed in that drift spaces

are a little bit bigger than a few centimeters ...

The Mini-β Insertion:

$$R = L * \Sigma_{react}$$

production rate of events is determined by the cross section Σ_{react} and a parameter L that is given by the design of the accelerator: ... the luminosity

http://atlas.web.cern.ch/Atlas/public/EVTDISPLAY/events.html

Example: Luminosity run at LHC

$$\beta_{x,y} = 0.55 m \qquad f_0 = 11.245 \, kHz$$

$$\varepsilon_{x,y} = 5 * 10^{-10} \, rad \, m \qquad n_b = 2808$$

$$\sigma_{x,y} = 17 \, \mu m \qquad L = \frac{1}{4\pi e^2 f_0 n_b} * \frac{I_{p1} I_{p2}}{\sigma_x \sigma_y}$$

 $I_{p} = 584 \, mA$

$$L = 1.0 * 10^{34} / cm^2 s$$

beam sizes in the order of my cat's hair !!

Mini-β *Insertions*: *Betafunctions*

A mini-\beta insertion is always a kind of special symmetric drift space. \rightarrow greetings from Liouville

Mini- β *Insertions: some guide lines*.

* calculate the periodic solution in the arc

* *introduce the drift space needed for the insertion device (detector ...)*

* put a quadrupole doublet (triplet ?) as close as possible

* introduce additional quadrupole lenses to match the beam parameters to the values at the beginning of the arc structure

 $\alpha_x, \beta_x \qquad D_x, D_x'$

8 individually powered quad magnets are needed to match the insertion (... at least)

IV) ... let's talk about acceleration

crab nebula,

burst of charged particles $E = 10^{20} eV$

16.) Electrostatic Machines

Example for such a "steam engine": 12 MV-Tandem van de Graaff Accelerator at MPI Heidelberg

17.) RF Acceleration

Energy Gain per "Gap":

$$\boldsymbol{W} = \boldsymbol{q} \, \boldsymbol{U}_0 \, \sin \omega_{\boldsymbol{R}\boldsymbol{F}} \boldsymbol{t}$$

1928, Wideroe

drift tube structure at a proton linac (GSI Unilac)

* **RF Acceleration:** multiple application of the same acceleration voltage; brillant idea to gain higher energies

500 MHz cavities in an electron storage ring

RF Acceleration

Where is the acceleration? Install an RF accelerating structure in the ring:

B. Salvant N. Biancacci

18.) The Acceleration for Δp/p≠0 "Phase Focusing" below transition

ideal particle • particle with $\Delta p/p > 0$ • faster particle with $\Delta p/p < 0$ • slower

Focussing effect in the longitudinal direction keeping the particles close together ... forming a "bunch"

... so sorry, here we need help from Albert:

... some when the particles do not get faster anymore

.... but heavier !

kinetic energy of a proton

19.) The Acceleration for Δp/p≠0 "Phase Focusing" above transition

Focussing effect in the longitudinal direction keeping the particles close together ... forming a "bunch"

... and how do we accelerate now ??? with the dipole magnets !

The RF system: IR4

Nb on Cu cavities @4.5 K (=LEP2) Beam pipe diam.=300mm

Bunch length (40)	ns	<i>1.06</i>
Energy spread (2σ)	<i>10</i> -3	0.22
Synchr. rad. loss/turn	keV	7
Synchr. rad. power	kW	3.6
RF frequency	M	400
	Hz	
Harmonic number		35640
RF voltage/beam	MV	<i>16</i>
Energy gain/turn	keV	485
Synchrotron	Hz	23.0
frequency		

RF Buckets & long. dynamics in phase space

20.) Liouville during Acceleration

$$\varepsilon = \gamma(s) x^{2}(s) + 2\alpha(s)x(s)x'(s) + \beta(s) x'^{2}(s)$$

Beam Emittance corresponds to the area covered in the x, x' Phase Space Ellipse

Liouville: Area in phase space is constant.

But so sorry ... $\varepsilon \neq const$!

Classical Mechanics:

x

phase space = diagram of the two canonical variables
position & momentum

 p_x

$$p_j = \frac{\partial L}{\partial \dot{q}_j}$$
; $L = T - V = kin. Energy - pot. Energy$

According to Hamiltonian mechanics: phase space diagram relates the variables q and p

> q = position = x $p = momentum = \gamma mv = mc\gamma \beta_x$

Liouvilles Theorem: $\int p \, dq = const$

for convenience (i.e. because we are lazy bones) we use in accelerator theory:

$$x' = \frac{dx}{ds} = \frac{dx}{dt}\frac{dt}{ds} = \frac{\beta_x}{\beta}$$
 where $\beta_x = v_x/c$

$$\int p \, dq = mc \int \gamma \beta_x \, dx$$

$$\int p \, dq = mc \gamma \beta \int x' \, dx$$

$$\Rightarrow \quad \varepsilon = \int x' \, dx \propto \frac{1}{\beta \gamma}$$

the beam emittance shrinks during acceleration $\varepsilon \sim 1/\gamma$

Nota bene:

1.) A proton machine ... or an electron linac ... needs the highest aperture at injection energy !!! as soon as we start to accelerate the beam size shrinks as γ^{-1/2} in both planes.

LHC injection

optics at 450 GeV

 $\sigma = \sqrt{\varepsilon\beta}$

- 2.) At lowest energy the machine will have the major aperture problems, \rightarrow here we have to minimise $\hat{\beta}$
- 3.) we need different beam optics adopted to the energy: A Mini Beta concept will only be adequate at flat top.

LHC mini beta optics at 7000 GeV

Example: HERA proton ring

injection energy: 40 GeV $\gamma = 43$ flat top energy: 920 GeV $\gamma = 980$

emittance ε (40GeV) = 1.2 * 10⁻⁷ ε (920GeV) = 5.1 * 10⁻⁹

7 σ beam envelope at $E = 40 \ GeV$

... and at *E* = 920 *GeV*

The "not so ideal world"

21.) The $\Delta p / p \neq 0$ " Problem

ideal accelerator: all particles will see the same accelerating voltage. $\rightarrow \Delta p / p = 0$

"nearly ideal" accelerator: Cockroft Walton or van de Graaf

 $\Delta p / p \approx 10^{-5}$

Vivitron, Straßbourg, inner structure of the acc. section

MP Tandem van de Graaf Accelerator at MPI for Nucl. Phys. Heidelberg

Linear Accelerator

Energy Gain per "Gap":

$$W = q U_0 \sin \omega_{RF} t$$

schematic Layout:

drift tube structure at a proton linac

* **RF Acceleration:** multiple application of the same acceleration voltage; brillant idea to gain higher energies

500 MHz cavities in an electron storage ring

RF Acceleration-Problem: panta rhei !!! (Heraklit: 540-480 v. Chr.)

just a stupid (and nearly wrong) example)

Bunch length of Electrons ≈ 1 cm

$$\lambda = 75 \ cm$$

 $\frac{\sin(90^{\circ}) = 1}{\sin(84^{\circ}) = 0.994} \qquad \frac{\Delta U}{U} = 6.0 \ 10^{-3}$

typical momentum spread of an electron bunch:

$$\frac{\Delta p}{p} \approx 1.0 \ 10^{-3}$$

22.) Dispersive and Chromatic Effects: $\Delta p/p \neq 0$

Are there any Problems ??? Sure there are !!!

font colors due to pedagogical reasons
Dispersion and Chromaticity: Magnet Errors for $\Delta p/p \neq 0$

Influence of external fields on the beam: prop. to magn. field & prop. zu 1/p

Dispersion

Example: homogeneous dipole field

Matrix formalism:

$$x(s) = x_{\beta}(s) + D(s) \cdot \frac{\Delta p}{p}$$

$$x(s) = C(s) \cdot x_{0} + S(s) \cdot x_{0}' + D(s) \cdot \frac{\Delta p}{p}$$

$$\begin{cases} x \\ x' \\ y \end{cases} = \begin{pmatrix} C & S \\ C' & S' \end{pmatrix} \begin{pmatrix} x \\ x' \\ y \end{pmatrix} + \frac{\Delta p}{p} \begin{pmatrix} D \\ D \\ D \end{pmatrix}$$

$$x_{\beta} = 1 \dots 2 mm$$

$$D(s) \approx 1 \dots 2 m$$

$$\Delta p / p \approx 1 \cdot 10^{-3}$$

Amplitude of Orbit oscillationcontribution due to Dispersion ≈ beam size→ Dispersion must vanish at the collision point

Calculate D, D': ... takes a couple of sunny Sunday evenings !

$$D(s) = S(s) \int_{s_0}^{s_1} \frac{1}{\rho} C(\tilde{s}) d\tilde{s} - C(s) \int_{s_0}^{s_1} \frac{1}{\rho} S(\tilde{s}) d\tilde{s}$$

23.) Chromaticity: A Quadrupole Error for $\Delta p/p \neq 0$

Influence of external fields on the beam: prop. to magn. field & prop. zu 1/p

... which acts like a quadrupole error in the machine and leads to a tune spread:

$$\Delta \boldsymbol{Q} = -\frac{1}{4\pi} \frac{\Delta \boldsymbol{p}}{\boldsymbol{p}_0} \boldsymbol{k}_0 \boldsymbol{\beta}(\boldsymbol{s}) \boldsymbol{ds}$$

definition of chromaticity:

$$\Delta Q = Q' * \frac{\Delta p}{p}$$

... what is wrong about Chromaticity:

Problem: chromaticity is generated by the lattice itself !!

Q' is a number indicating the size of the tune spot in the working diagram, Q' is always created if the beam is focussed

 \rightarrow it is determined by the focusing strength k of all quadrupoles

 $Q' = -\frac{1}{4\pi} \oint k(s)\beta(s)ds$

k = quadrupole strength $\beta = beta function indicates the beam size ... and even more the sensitivity of the beam to external fields$

Example: LHC

Q' = 250 $\Delta p/p = +/- 0.2 *10^{-3}$ $\Delta Q = 0.256 \dots 0.36$

→Some particles get very close to resonances and are lost

in other words: the tune is not a point it is a pancake

Tune signal for a nearly uncompensated cromaticity (Q' ≈ 20)

Ideal situation: cromaticity well corrected, ($Q' \approx 1$)

Tune and Resonances

 $m * Q_x + n * Q_y + l * Q_s = integer$

Correction of Q':

Need: additional quadrupole strength for each momentum deviation $\Delta p/p$

1.) sort the particles acording to their momentum

... using the dispersion function

2.) apply a magnetic field that rises quadratically with x (sextupole field)

$$B_{x} = \tilde{g}xz$$

$$B_{z} = \frac{1}{2}\tilde{g}(x^{2} - z^{2})$$

$$\frac{\partial B_{x}}{\partial z} = \frac{\partial B_{z}}{\partial x} = \tilde{g}x$$
linear rising "gradient":

Correction of Q':

Sextupole Magnets:

k₁ normalised quadrupole strength k₂ normalised sextupole strength

$$k_{1}(sext) = \frac{\widetilde{g} x}{p/e} = k_{2} * x$$
$$k_{1}(sext) = k_{2} * D * \frac{\Delta p}{p}$$

corrected chromaticity

considering a single cell:

$$\boldsymbol{Q'}_{cell_x} = -\frac{1}{4\pi} \left\{ \boldsymbol{k}_{qf} \hat{\boldsymbol{\beta}}_x \boldsymbol{l}_{qf} - \boldsymbol{k}_{qd} \tilde{\boldsymbol{\beta}}_x \boldsymbol{l}_{qd} \right\} + \frac{1}{4\pi} \sum_{F sext} \boldsymbol{k}_2^F \boldsymbol{l}_{sext} \boldsymbol{D}_x^F \boldsymbol{\beta}_x^F - \frac{1}{4\pi} \sum_{D sext} \boldsymbol{k}_2^D \boldsymbol{l}_{sext} \boldsymbol{D}_x^D \boldsymbol{\beta}_x^D$$

$$\boldsymbol{Q'}_{cell_y} = -\frac{1}{4\pi} \left\{ -k_{qf} \boldsymbol{\tilde{\beta}}_y \boldsymbol{l}_{qf} + k_{qd} \boldsymbol{\hat{\beta}}_y \boldsymbol{l}_{qd} \right\} + \frac{1}{4\pi} \sum_{F sext} k_2^F \boldsymbol{l}_{sext} \boldsymbol{D}_x^F \boldsymbol{\beta}_x^F - \frac{1}{4\pi} \sum_{D sext} k_2^D \boldsymbol{l}_{sext} \boldsymbol{D}_x^D \boldsymbol{\beta}_x^D \boldsymbol{$$

Clearly there is another problem if it were easy everybody could do it

Again: the phase space ellipse

for each turn write down - at a given position "s" in the ring - the single partilce amplitude xand the angle x'... and plot it. $\begin{pmatrix} x \\ x' \end{pmatrix}_{s_1} = M_{turn} * \begin{pmatrix} x \\ x' \end{pmatrix}_{s_1}$

Installation of a weak (!!!) sextupole magnet

The good news: sextupole fields in accelerators cannot be treated analytically anymore. → no equatiuons; instead: Computer simulation " particle tracking "

Golden Rule: COURAGE

... somehow and unexpectedly these machines are running nevertheless.

thank'x for your attention

Accelerator Physics is exciting!

We already know a lot, but many open issues

Equation of Motion:

Consider local segment of a particle trajectory ... and remember the old days: (Goldstein page 27)

radial acceleration:

$$a_r = \frac{d^2 \rho}{dt^2} - \rho \left(\frac{d\theta}{dt}\right)^2$$

Ideal orbit: $\rho = const, \quad \frac{d\rho}{dt} = 0$

Force:
$$F = m\rho \left(\frac{d\theta}{dt}\right)^2 = m\rho\omega^2$$

 $F = mv^2 / \rho$

general trajectory: $\rho \rightarrow \rho + x$

$$F = m \frac{d^2}{dt^2} (x + \rho) - \frac{mv^2}{x + \rho} = e B_y v$$

2 remember:
$$x \approx mm$$
, $\rho \approx m$... \rightarrow develop for small x

$$\frac{1}{x+\rho} \approx \frac{1}{\rho} (1-\frac{x}{\rho})$$

Taylor Expansion
$$f(x) = f(x_0) + \frac{(x - x_0)}{1!} f'(x_0) + \frac{(x - x_0)^2}{2!} f''(x_0) + \dots$$

$$m\frac{d^2x}{dt^2} - \frac{mv^2}{\rho}(1 - \frac{x}{\rho}) = eB_y v$$

guide field in linear approx.

$$B_{y} = B_{0} + x \frac{\partial B_{y}}{\partial x} \qquad m \frac{d^{2}x}{dt^{2}} - \frac{mv^{2}}{\rho} (1 - \frac{x}{\rho}) = ev \left\{ B_{0} + x \frac{\partial B_{y}}{\partial x} \right\} \qquad : m$$
$$\frac{d^{2}x}{dt^{2}} - \frac{v^{2}}{\rho} (1 - \frac{x}{\rho}) = \frac{ev B_{0}}{m} + \frac{ev x g}{m}$$

independent variable: $t \rightarrow s$

$$\frac{dx}{dt} = \frac{dx}{ds} \frac{ds}{dt}$$

$$\frac{d^2x}{dt^2} = \frac{d}{dt} \left(\frac{dx}{ds} \frac{ds}{dt} \right) = \frac{d}{ds} \left(\frac{dx}{ds} \frac{ds}{dt} \right) \frac{ds}{dt}$$

$$\frac{d^2x}{dt^2} = x'' v^2 + \frac{dx}{ds} \frac{dv}{ds} v$$

$$x'' v^2 - \frac{v^2}{\rho} (1 - \frac{x}{\rho}) = \frac{e v B_0}{m} + \frac{e v x g}{m}$$

$$: v^2$$

$$\mathbf{x}'' - \frac{1}{\rho} (1 - \frac{\mathbf{x}}{\rho}) = \frac{\mathbf{e} \ \mathbf{B}_0}{\mathbf{m}\mathbf{v}} + \frac{\mathbf{e} \ \mathbf{x} \mathbf{g}}{\mathbf{m}\mathbf{v}}$$

$$x'' - \frac{1}{\rho} + \frac{x}{\rho^2} = \frac{B_0}{p/e} + \frac{xg}{p/e}$$

$$x'' - \frac{1}{\rho} + \frac{x}{\rho^2} = -\frac{1}{\rho} + k x$$

$$\boldsymbol{x}'' + \boldsymbol{x}\left(\frac{1}{\rho^2} - \boldsymbol{k}\right) = 0$$

m v = p

normalize to momentum of particle

$$\frac{B_0}{p/e} = -\frac{1}{\rho}$$
$$\frac{g}{p/e} = k$$

***** Equation for the vertical motion:

$$\frac{1}{\rho^2} = 0$$
 no dipoles ... in general ...

$$k \iff -k$$
 quadrupole field changes sign

$$y'' + k y = 0$$

16.) Dispersion: trajectories for $\Delta p / p \neq 0$

Question: do you remember last session, page 12 ? ... sure you do

Force acting on the particle

$$F = m \frac{d^2}{dt^2} (x + \rho) - \frac{mv^2}{x + \rho} = e B_y v$$

remember: $x \approx mm$, $\rho \approx m \dots \rightarrow$ develop for small x

$$m\frac{d^2x}{dt^2} - \frac{mv^2}{\rho}(1 - \frac{x}{\rho}) = eB_y v$$

consider only linear fields, and change independent variable: $t \rightarrow s$

$$\boldsymbol{B}_{y} = \boldsymbol{B}_{0} + \boldsymbol{x} \frac{\partial \boldsymbol{B}_{y}}{\partial \boldsymbol{x}}$$

$$x'' - \frac{1}{\rho}(1 - \frac{x}{\rho}) = \underbrace{e \ B_0}_{mv} + \underbrace{e \ x \ g}_{mv}$$

$$p = p_0 + \Delta p$$

... but now take a small momentum error into account !!!

Dispersion:

develop for small momentum error

$$\Delta \boldsymbol{p} << \boldsymbol{p}_0 \Longrightarrow \frac{1}{\boldsymbol{p}_0 + \Delta \boldsymbol{p}} \approx \frac{1}{\boldsymbol{p}_0} - \frac{\Delta \boldsymbol{p}}{\boldsymbol{p}_0^2}$$

$$x'' + \frac{x}{\rho^{2}} \approx \frac{\Delta p}{p_{0}} * \frac{(-eB_{0})}{p_{0}} + k * x = \frac{\Delta p}{p_{0}} * \frac{1}{\rho} + k * x$$

$$\frac{1}{\rho}$$

$$x'' + \frac{x}{\rho^{2}} - kx = \frac{\Delta p}{p_{0}} \frac{1}{\rho} \longrightarrow \qquad x'' + x(\frac{1}{\rho^{2}} - k) = \frac{\Delta p}{p_{0}} \frac{1}{\rho}$$

Momentum spread of the beam adds a term on the r.h.s. of the equation of motion. \rightarrow *inhomogeneous differential equation.*

Dispersion:

$$x'' + x(\frac{1}{\rho^2} - k) = \frac{\Delta p}{p} \cdot \frac{1}{\rho}$$

general solution:

$$x(s) = x_h(s) + x_i(s)$$

$$\begin{cases} x_h''(s) + K(s) \cdot x_h(s) = 0\\ x_i''(s) + K(s) \cdot x_i(s) = \frac{1}{\rho} \cdot \frac{\Delta p}{p} \end{cases}$$

Normalise with respect to $\Delta p/p$:

$$D(s) = \frac{x_i(s)}{\frac{\Delta p}{p}}$$

Dispersion function D(s)

* is that special orbit, an ideal particle would have for $\Delta p/p = 1$

* the orbit of any particle is the sum of the well known x_{B} and the dispersion

* as **D**(s) is just another orbit it will be subject to the focusing properties of the lattice