Particle Physics and Fermilab

Young-Kee Kim Fermilab and the University of Chicago

> African School of Physics August 3, 2010

Hello from Chicago

the smallest things in the world interactions (forces) between them the Universe's past, present, and future

Particle Physics: physics where small and big things meet, inner and outer space meet

Tools?

Accelerators

1 eV (electron Volt)1 electron in 1 Volt battery

GeV (billion eV) TeV (trillion eV)

Many generations of particle accelerators: each generation built on the accomplishments of the previous ones raising the level of technology ever higher

Ernest Lawrence (1901 - 1958)

Accelerators are Ultimate Microscopes.

(higher energy beam particle = better resolution / small objects)

What is the world made of?

up quark, down quark, electron 10⁻¹⁸ m nana nano meter

What holds the world together?

because they make particles last seen in the earliest moments of the universe.

neutrinos muons kaons

. . . .

anti particles

The triumphs.....

 The present theory is a remarkable intellectual construction

 Particle experiments done at the laboratory beautifully fits in this framework

and the mysteries

- Why?
- Why?
- Why?
- •

..... and the mysteries

Where did all antimatter go?

..... and the mysteries

• What is dark matter?

..... and the mysteries

Expanding the universe

- Accelerating the universe
- What is dark energy?

Fermilab today

- 1900 employees
- 2300 users (~1/2 from abroad)
- 6800 acres, park-like site

A herd of American bison, symbolizing Fermillab's presence on the frontiers of particle physics and the connection to its prairie origins

Now at Fermilab

Now at Fermilab

Tour of Accelerator Complex at Fermilab

Linac

Booster

Main Injector

Tevatron

Antiproton

<u>Tevatron</u>

CDF and DZero

Energy Frontier Accelerators

Origin of Mass

Proton mass ~ 1 GeV/c² Top quark mass ~ 172 GeV/c² v's from Main Injector

MINOS MINERVA

v's from Booster MiniBooNE

Accelerator-Based Neutrinos

Fermilab → Soudan (735km)
Fermilab → Ash river(810km)

CERN → Gran Sasso (732km)

J-PARC → Kamioka (295km)

Beam for Detector Development

Test Facility for Accelerator Development

Super Conducting RF Technology

Test Facility for Muon Cooling

<u>Proton</u>

SeaQuest

2013

Neutrinos NOvA MINERvA MicroBooNE

Neutrinos neutrinos to DUSEL (proton decay)

Muons muon → electron

Ray Davis's Experiment

Cosmic Frontier: Dark Matter & Dark Energy

Cosmic Frontier: Dark Matter

Underground experiments may detect Dark Matter candidates.

Intensity Frontier

Accelerators can produce dark matter in the laboratory and understand exactly what it is.

Interplay: Energy – Intensity – Cosmic Frontiers

Cosmic Frontier: Dark Energy

Telescopes (ground, space)

Sloan Digital Sky Survey (SDSS)

What are accelerators used for?

Today, 30,000 accelerators are in operation around world

Discovery science

Materials research / manufacturing

National security

- Energy and the environment
- Medical sciences

International Fellow

- Two students from African universities
 - Research at Fermilab
 - Fermilab scientists will supervise them
 - Duration: up to 2 years for each student

 http://www.fnal.gov/pub/forphysicists/fellowships/ international/index.html

Have a wonderful school!

Young-Kee Kim ykkim@fnal.gov