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1895

discovery of X rays

Wilhelm Conrad  
Röntgen

1897 
“discovery” of the  

electron

J.J. Thompson

The beginnings of modern physics and of medical physics
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(An accelerator for) Medical imaging

3M. Silari - Medical particle accelerators ASP2010 - Stellenbosh (SA)



1930
Ernest Lawrence invents the 

cyclotron

M. S. Livingston and E. Lawrence
with the 25 inch cyclotron

Tools for (medical) physics: the cyclotron
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James Chadwick
(1891 – 1974)

1932

Discovery of the neutron

The beginnings of modern physics and of medical physics
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Cyclotron + neutrons = first attempt of 
radiation therapy with fast neutrons  at LBL 
(R. Stone and J. Lawrence, 1938)
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1939
Invention of the klystron

William W. Hansen

1947 
first linac for electrons

4.5 MeV and  3 GHz

Tools for (medical) physics: the electron linac
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Sigmur Varian

Russell Varian
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1 GeV electron synchrotron

Frascati - INFN - 1959 

1945:   E. McMillan and  V.J. Veksler

discover the  principle of phase stability

6 GeV  proton synchrotron

Bevatron - Berkeley - 1954 

Tools for (medical) physics: the synchrotron
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Accelerators operational in the world
Three main applications: 
1) Scientific research
2) Medical applications
3) Industrial uses

CATEGORY OF ACCELERATORS NUMBER IN USE (*)

High-energy accelerators (E >1 GeV) ~ 120

Synchrotron radiation sources > 100

Medical radioisotope production ~ 200 ~ 1000

Accelerators for radiation therapy > 7500

Research accelerators including biomedical research ~ 1000

Industrial processing and research ~ 1500

Ion implanters, surface modification > 7000

TOTAL 17500    ~ 18000

10,000

Adapted from “Maciszewski, W. and Scharf, W., Particle accelerators for radiotherapy, 
Present status and future, Physica Medica XX, 137-145 (2004)”

ASP2010 - Stellenbosh (SA)



M. Silari - Medical particle accelerators 9
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energy
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Newton: 2
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SPS / LHC

Einstein:
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not velocity

2mcE }

Relativity

CERN accelerators

Medical cyclotrons 
and synchrotrons
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The betatron

• Magnetic field produced by pulsed coils
• The magnetic flux inside the radius of the vacuum chamber changes with time
• Increasing flux generates an azimuthal electric field which accelerates 

electrons in the chamber
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Schematic diagram of betatron with air gap
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An old 45 MeV betatron for radiation therapy
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The betatron
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MICROTRONE

Racetrack microtron

The microtron
An “electron cyclotron”
• Uniform magnetic field
• Fixed-frequency RF system
• Well-separated orbits
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• Isocronism only if γ ≈ 1
• If γ > 1, Δτ per turn = Δγ
• To have isochronism it must be Δτ

per turn = hτRF

• Required energy gain per passage
o for electrons ΔEe= 511 keV
o for protons ΔEp= 938 MeV Magnet weight ≈ (energy)3

ASP2010 - Stellenbosh (SA)



Three classes of modern medical accelerators

Low-energy cyclotrons for production of 
radionuclides for medical diagnostics

Medium-energy cyclotrons and synchrotrons
for hadron therapy with protons (250 MeV)
or light ion beams (400 MeV/u 12C-ions)

Electron linacs for conventional radiation therapy, including advanced 
modalities: 

•Cyberknife
•IntraOperative RT (IORT)
•Intensity Modulated RT
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e– + target  X-rays

target

Medical linear electron accelerator
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Varian Clinac 1800 installed in the 
S. Anna Hospital in Como (Italy)

Multi-leaf collimator

3 GHz frequency
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Electron acceleration in a wave guide
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Particles initially in 
cell 1 arrive in cell 2 to get 
further accelerating
kick. Frequency must 
match particles 
velocity and cell 
periodicity = ½ λ:



v
f 
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Schematic drawing of a typical therapy head 
for a medical electron accelerator
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 No flattening filter
 Uses circular cones of diameter 0.5 to 6 cm
 Non-Isocentric
 Average dose delivered per session is 12.5 Gy
 6  sessions/day
 Dose rate @ 80 cm = 400 cGy/min

http://www.accuray.com/Products/Cyberknife/index.aspx

CyberKnife (CK) Robotic Surgery System

6 MV Linac mounted on a robotic arm
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An example of intensity 
modulated treatment 
planning with photons. 
Through the addition of 9 
fields it is possible to 
construct a highly 
conformal dose 
distribution with good 
dose sparing in the region 
of the brain stem (courtesy 
of T. Lomax, PSI). 

E. Pedroni, Europhysics News 
(2000) Vol. 31 No. 6

Intensity Modulated Radiation Therapy (IMRT)

Yet X-rays have a comparatively poor energy deposition as compared to protons 
and carbon ions
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The cyclotron
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Scanditronix MC40
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Motion of a particle in a dipole magnetic field (the 
field is in/out of the plane of this slide)

Bρ = 33.356·p [kG·m] = 3.3356·p [T·m]  (if p is in GeV/c)
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mv
F  where ρ = radius of curvature of the path
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(p = momentum = mv)
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Bρ is called “magnetic rigidity” of the particle and is an index of how 
difficult is to bend the motion of a charged particle by a magnetic field
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The cyclotron
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F = q(E = v x B)

mv2 / ρ = qvB

Rev. frequency f = qB/2πm

Rev. period τ = 1/f is independent of v

Resonant acceleration with fRF = h∙f

Isochronism

Maximum energy/nucleon:

T/A = k (Bρ)2 (Z/A)2

with k = e2 / 2mp

K = k (Bρ)2 is called “bending limit”
K = 48 (Bρ)2 (MeV)
if B is in teslas and m in metres
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The classical (non relativistic) cyclotron

Magnetic fields of uniform-field cyclotron:
(top) Sectional view of cyclotron magnetic poles 
showing shims for optimizing field distribution.
(left) Radial variation of vertical field magnitude 
and field index.
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• Weak focusing
• Decrease of rev. frequency f with r
• Loss of isochronism
 Two solutions to achieve higher energies:

- synchrocyclotron
- AVF cyclotron

B
F
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The AVF (isochronous) cyclotron
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AVF = azimuthally varying field

B(r,θ) = <B(r)> + Mod(r, θ)

o RF constant
o <B> rises with radius r to 

compensate for the 
relativistic increase of the 
particle mass

f = q<B>/2πmγ

Vertical focusing achieved by 
the azimuthal variation of B

A further component of the 
axial focusing force is obtained 
by giving the sectors a spiral 
shape
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“hadrons” are

made of quarks

carbon ion =

6 protons + 6 neutrons

atom

Proton or 

neutron

quark  “u” or “d”

electron “e”

Hadrontherapy: n, p and C-ion beams
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Proton radiation therapy
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Clinical results
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52 -83 %31 – 75 %5 year survival
Soft-tissue 
carcinoma

77 %61 %24-28 %
local control 

rate
Salivary gland 

tumours

100 %23 %
5 year 

survival
Liver tumours

7.8 months6.5 months
av. survival 

time
Pancreatic 
carcinoma 

63 %21 %
local control 

rate
Paranasal sinuses 

tumours

96 % (*)95 %
local control 

rate
Choroid melanoma

16 months12 months
av. survival 

time
Glioblastoma

63 %40 -50 %5 year survival
Nasopharynx

carcinoma

89 %88 %33 %
local control 

rate
Chondrosarcoma

70 %65 %30 – 50 %
local control 

rate
Chordoma 

Results carbon
GSI

Results carbon
HIMAC-NIRS

Results photonsEnd pointIndication

Table by G. Kraft 
2007

Results of C ions
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Cyclotrons and synchrotrons for proton therapy
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Accel-Varian

Hitachi

Loma Linda
(built by FNAL)

IBA

ASP2010 - Stellenbosh (SA)



Proton versus carbon-ion synchrotrons
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G. Coutrakon, Accelerators for Heavy-charged-particle Radiation Therapy, 
Technology in Cancer Research & Treatment, Volume 6, Number 4 Supplement, August 2007

Hitachi proton synchrotron Siemens ion synchrotron
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Hadron-therapy in the world
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C • Carbon ion radiotherapy facilities

C • Carbon ion radiotherapy facilities (in planning stage of under 
construction)

• Proton radiotherapy facilities

Courtesy NIRS
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Loma Linda University Medical Center (LLUMC)

30M. Silari - Medical particle accelerators ASP2010 - Stellenbosh (SA)



Loma Linda University Medical Center (LLUMC)
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A PT facility is not just the accelerator…

A gantry is a massive structure that 
allows directing the beam to the 
tumour from any direction.  It carries
• the final section of the beam line 
• the beam spreading ‘nozzle’
• the proton ‘snout’ which carries 

the aperture and range 
compensator

What it looks like to the patient: 
gantry room at the Midwest Proton 
Radiotherapy Institute (MPRI)
(modified IBA gantry)

Adapted from B. Gottschalk

The IBA proton gantry
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The LLUMC proton synchrotron
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We have already seen the motion of a particle in a 
dipole magnetic field…

Bρ = 33.356·p [kG·m] = 3.3356·p [T·m]  (if p is in GeV/c)
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F  where ρ = radius of curvature of the path
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Bρ is called “magnetic rigidity” of the particle and is an index of how 
difficult is to bend the motion of a charged particle by a magnetic field
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Trajectory of a particle in a bending magnet

Two particles in a dipole field, with same 
momentum but different initial angles 

Unfortunately an accelerator 
contains more than one particle!

Number of circulating  particles in a 
synchrotron is typically in the order 
of 1010 - 1012 and more
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Trajectory of particles in a dipole field
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Photo:  
courtesy ANL



Quadrupoles as thin lenses
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Light rays passing through 
a series of focusing and 
defocusing lenses

The lenses, which are 
concave in one plane, are 
convex in the other

In both cases the concave lenses will have little effect as the light passes
very close to their centre, and the net result is that the light rays are
focused in both planes
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The mechanical equivalent

 The gutter below illustrates how the particles in a synchrotron 
behave due to the quadrupolar fields.

 Whenever a particle beam diverges too 
far away from the central orbit the 
quadrupoles focus them back towards 
the central orbit.
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G. Kraft, Proc. of CAARI 2008, AIP, p. 429

Hadron-therapy in Europe
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О in operation

◊ in construction
Δ planned

Yellow = p only
Orange = p and C
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National Centre for Oncological hadrontherapy (CNAO) in Pavia

Courtesy S. Rossi, CNAO
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National Centre for Oncological hadrontherapy (CNAO) in Pavia
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Dipole magnetsQuadrupole magnets RF cavity

Ion sources LEBT components
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The CNAO synchrotron

M. Silari - Medical particle accelerators

Injector linac

Courtesy S. Rossi, CNAO
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Heavy Ion Therapy Unit at the University of  Heidelberg clinics
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The HIT heavy ion gantry, weight about 600 tons

Courtesy HIT
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North European Radio-oncological Centre in Kiev  
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PROSCAN at PSI, Switzerland  
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ACCEL

SC cyclotron

250 MeV  
protons

PROSCAN

TERA

Courtesy PSI and U. Amaldi , TERA

J.M. Schippers et al., NIM BB 261 (2007) 773–776 
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Hadron-therapy in Japan
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C: carbon ions, p: protons
• in operation
• under construction

Courtesy NIRS
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HIMAC in Chiba
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K. Noda et al., Recent progress on HIMAC for carbon therapy, Proc. of PAC09

The gantry “only” 
weighs 350 t

ASP2010 - Stellenbosh (SA)



Some new concepts
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TERA Cyclinac=cyclotron+linac for Image Guided Hadron-therapy
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The energy is adjusted in 2 ms in the full range by changing the power 
pulses sent to the 16-22 accelerating modules

The charge in the next spot  is adjusted every 2 ms with the computer 
controlled source

chopped  beam at 
200-400 Hz

linac
modules 
of LIGHT

computer 
controlled 
source

fast-cycling beam  for 
tumour multi-painting 

RF generators
gantry

IBA 
structure

(synchro)cyclotron

beams used for other 
medical purposes

Courtesy U. Amaldi, TERA
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IDRA = Institute for Diagnostics and Radiotherapy
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30 MeV cyclotron by IBA

R A D I O P H A R M A C Y

P R O T O N T H E R A P Y

≤230 MeV

30 MeV

70 MeV

Linac for Image Guided

Hadron Therapy = LIGHT

15 m

Solid State
modulator 
+klystron

A.D.A.M. SA, Application of Detectors and Accelerators to Medicine, a CERN spin-off company 
will build LIGHT,  and has an agreement with IBA for the delivery of the rest and the overall control

A proton cyclinac Courtesy U. Amaldi, TERA
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The 250-300 MeV SC cyclotron designed by LNS, Italy
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The superconducting cyclotron 

accelerates particles with Q/A = ½

12C6+ 6p+ + 6n

H2
+                                                                        2p+ + 1e-

Output energies: 

protons 250 MeV

carbon ions       3000-3600 MeV

p

C

p / C

foil

4.9 m
deflector

SCENT  = Superconducting Cyclotron for Exotic Nuclei and Therapy

L. Calabretta et al, NIM A 562 (2006) 1009 -1012
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CABOTO = Carbon Booster for Therapy in Oncology
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CABOTO -S   (3 GHz)
CABOTO -C   (6 GHz)
CABOTO -X   (9 GHz)

design projects

Collaboration: EPFL and CERN - CLIC  

SC EBIS source by
DREBIT – Dresden
300 Hz – 108 C/pulse

SC Synchrocyclotron
230 MeV/u
H2

+ and C+6

@ 300 Hz 

400 MV – 3-9 GHz linac
≤ 1.5 μs pulses

5 m

≤ 18 m

230 MeV/u 430 MeV/u

Two sources:

12C6+ H2
+

Courtesy U. Amaldi, TERA

TERA Foundation, Italy
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IBA 400 MeV/u carbon-ion cyclotron
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Courtesy  Y.  Jongen, IBA

• Maximum energy: 400 MeV/u, 
adjustable externally by ESS

• Superconducting magnet. Hill 
field 4.5 T

• Cooling by helium loop, with 4 
external recondensers

“Archade”  (at Ganil in Caen, France) is based on the new 
IBA 400 MeV/u superconducting cyclotron
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Still River Systems
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Courtesy L. Bouchet, Still River Systems

Synchrocyclotron
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Still River Systems
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Synchrocyclotron @ 10 Tesla
Proton energy: 250 MeV 
Ion source tested up to 1,000 nA
Cooling is through cryo-compressors (NO liquid Helium)
Low maintenance requirements – quarterly only
Time structure: similar to linear accelerator with gating and scanning capabilities

Weight ≈ 20 tons

Courtesy L. Bouchet, Still River Systems
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Multi-room versus single-room facilities
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29 m (87ft)

14 m (41 ft)

1
3

 m
 (

3
9

  f
t)

Other Proton Systems

2
8

 m
 (

8
4

 f
t)

812 m2

182 m2

2,240 m2

714 m2

Courtesy L. Bouchet, Still River Systems

Advantages of single-room facility:
 Modularity
 Reliability / back-up
 PT treatment available at more hospitals
 (Hopefully) cost
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Some textbooks
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C.K. Karzmark, Advances in linear accelerator design for 
radiotherapy, Medical Physics 11, 105- 128 (1984) 

S. Humphries, Principles of charged particle acceleration, John 
Wiley and Sons

H. Wiedemann, Particle accelerator physics, Springer- Werlag

S. Baird, Accelerators for pedestrians, CERN AB-note-2007-014

PTCOG: Particle Therapy Co-Operative Group
http://ptcog.web.psi.ch/


