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Lecture 1: 
Numerical Integration 
Monte Carlo methods
Importance Sampling
The Veto Algortihm

Lecture 2:
Application of these methods to simulations 
of collider physics: Monte Carlo Event Generators

+ on Friday
Practical Exercises:
PYTHIA 8 kickstart
(get the instructions)



Why Integrals?
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Think: scattering 
experiments

In particle physics: 
sum (= integrate) over all quantum histories 

∆Ω

Ncount(∆Ω) ∝
�

∆Ω
dΩ

dσ

dΩ

1

Predicted number of counts 
= integral over solid angle

∆Ω

Ncount(∆Ω) ∝
�

∆Ω
dΩ

dσ

dΩ

1

→ Integrate differential cross sections 
over specific phase space regions



ALICE Collision
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More complicated integrals ...
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4-jet event in 
ALEPH at LEP (a 
Higgs candidate)

Now compute 
the 

backgrounds ...
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First computed by K. Ellis, D. Ross, A. Terrano, Nucl.Phys.B178 (1981) 421
This version from Gehrmann-de-Ridder, Gehrmann, Glover, JHEP 0509(2005)056

Part of Z → 4 jets … 

Note that application of the Finite-operator in the above expression yields only the O(ε0)-

terms of the antenna functions. These antenna functions contain higher powers in ε as

well, and these are relevant to the integrated antennae listed below.

The integrated antennae are defined in (2.35). They read:
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5.3 Four-parton tree-level antenna functions

The tree-level four-parton quark-antiquark antenna contains three final states: quark-

gluon-gluon-antiquark at leading and subleading colour, A0
4 and Ã0

4 and quark-antiquark-

quark-antiquark for non-identical quark flavours B0
4 as well as the identical-flavour-only

contribution C0
4 . The quark-antiquark-quark-antiquark final state with identical quark

flavours is thus described by the sum of antennae for non-identical flavour and identical-

flavour-only. The antennae for the qggq̄ final state are:

A0
4(1q, 3g, 4g, 2q̄) = a0

4(1, 3, 4, 2) + a0
4(2, 4, 3, 1) , (5.27)
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4(1, 3, 4, 2) + ã0
4(2, 4, 3, 1) + ã0
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4(2, 3, 4, 1) , (5.28)
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where the sub-antennae are given by
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In A0
4 the gluonic emissions are colour-ordered, while in Ã0

4 the gluons are photon-like,

implying no ordering. Because of colour-ordering, A0
4 can be used with a single ordered

phase space mapping. In contrast, Ã0
4 can not be used with a unique ordered phase space

mapping. The above decomposition into ã0
4 yields however ordered terms, since the com-

bination ã0
4(1, 3, 4, 2) + ã0

4(2, 4, 3, 1) contains only single emission singularities in 1/s13 and

1/s24, corresponding to the ordered (1, 3, 4, 2) phase space mapping. On the other hand

ã0
4(1, 4, 3, 2) + ã0

4(2, 3, 4, 1) contains only single emission singularities in 1/s14 and 1/s23,

corresponding to the ordered (1, 4, 3, 2) phase space mapping. Since the decomposition of

Ã0
4 is symmetric, all four ã0

4 yield identical integrals if integrated over the tripole phase

space. It should be noted that it is not possible to analytically integrate an individual

ã0
4 over the tripole phase space using the reduction and integration techniques described

in [31], since the extra polynomial denominators present there enlarge the set of basis in-

tegrals considerably. When the four ã0
4 are added together these polynomial denominators

cancel, and the tripole integrals can be carried out.

The integrals of these antenna functions are according to (2.23):
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(5.32)
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The non-identical quark antenna is:

B0
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with a sub-antenna function given by
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In B0
4 , the secondary quark emission is ordered, such that a single ordered phase space

mapping can be used.

This subtraction term yields the integral
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The identical-flavour-only quark-antiquark-quark-antiquark antenna is:

C0
4 (1q, 3q, 4q̄, 2q̄) = c0

4(1, 2, 3, 4) + c0
4(1, 4, 3, 2) , (5.42)
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The non-identical quark antenna is:

B0
4(1q, 3q′ , 4q̄′ , 2q̄) = b0

4(1, 3, 4, 2) + b0
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In B0
4 , the secondary quark emission is ordered, such that a single ordered phase space

mapping can be used.

This subtraction term yields the integral
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The identical-flavour-only quark-antiquark-quark-antiquark antenna is:

C0
4 (1q, 3q, 4q̄, 2q̄) = c0

4(1, 2, 3, 4) + c0
4(1, 4, 3, 2) , (5.42)
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with
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It integrates to
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with
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All antenna functions listed in this section agree with the four-parton matrix elements

in the Appendix of [35], taking account of the different normalisation used here. They

also all agree with [A1].

6. Quark-gluon antennae

The quark-gluon antenna functions are obtained from the QCD real radiation corrections

to the decay of a heavy neutralino into a massless gluino and a gluon, χ̃ → g̃g, which is

described in detail in [46].

The overall normalisation is given by defining the tree-level two-parton quark-gluon

antenna function

D0
2(s13) ≡ 1 . (6.1)

In this equation, and in all subsequent equations in the section, we label the primary quark

momentum as (1)q and the momenta of gluons or of a secondary quark-antiquark pair

as (3)i, (4)j and (5)k. This non-consecutive labelling of momenta is introduced in view

of applying the quark-gluon antenna functions in an actual calculation, where they will

always appear in a pair: quark-gluon antenna and antiquark-gluon antenna, with (1)q and

(2)q̄ denoting the primary quark and antiquark momenta.
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Integrate over 4-particle phase 
space … 

This is one of the simplest 
processes … computed at lowest 
order in the theory.

Now compute the quantum 
corrections: Z → 5, 6, … 

And higher orders of quantum 
fluctuations (quantum loops) … 

And hadronization, hadron decays, detector response, … 



Numerical Integration

11

Problem:
find a numerical 
approximation to 
the value of S



Riemann Sums

12

B. Riemann, (1826-1866)

f (xi)

fmax
= Phit

lim
n→∞

1

n

n∑
i=1

f (xi) =
1

b − a

∫ b

a
f (x)dx

∫ b

a
f (x)dx =

∫ b

a

f (x)

g(x)
dG(x)

∫ b

a
f (x)dx = lim

n→∞

n∑
i=1

f (ti)(xi+1 − xi)



Numerical Integration in 1D
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Midpoint (rectangular) Rule: 
Divide into N “bins” of size ∆
Approximate f(x) ≈ constant in each bin
Sum over all rectangles inside your region

Fixed-Grid n-point Quadrature Rules:
1 function evaluation per bin

Trapezoidal Rule: 
Approximate f(x) ≈ linear in each bin
Sum over all trapeziums inside your region

2 function evaluations per bin

etc ...

Simpson’s Rule: 
Approximate f(x) ≈ quadratic in each bin
Sum over all simpsons inside your region

3 function evaluations per bin



Convergence Rate

The most important question:
How long do I have to wait?

(How many points do I need for a given precision)?

14

Uncertainty as a function of 
number of points neval / bin

Approx
Conv. Rate 

(in 1D)

Trapezoidal Rule (2-point) 2 1/n2

Simpson’s Rule (3-point) 3 1/n4

… m-point (Gauss quadrature) m 1/n2m-1 

See, e.g., Numerical Recipes See, e.g., F. James, “Monte Carlo 
Theory and Practice”



Higher Dimensions

N-point rule in 1 dimension

 … in 2 dimensions

15

1 2 m...

2 m...

m
2

...

→ m function evaluations per bin

→ m2 evaluations per bin

 … in D dimensions → ND per bin

E.g., to evaluate a 12-point rule in 10 dimensions, 
need 1000 billion evaluations per bin

Fixed-Grid (Product) Rules scale exponentially with D



Convergence Rate
+ Convergence is slower in higher Dimensions!
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Uncertainty as a function of 
number of points neval / bin

Approx
Conv. Rate 
(in D dim)

Trapezoidal Rule (2-point) 2D 1/n2/D

Simpson’s Rule (3-point) 3D 1/n4/D

… m-point (Gauss rule) mD 1/n(2m-1)/D 

→ More points for less precision

See, e.g., Numerical Recipes See, e.g., F. James, Monte Carlo 
Theory and Practice



Monte Carlo

17

“This risk, that convergence is only given with a 
certain probability, is inherent in Monte Carlo 
calculations and is the reason why this technique 
was named after the world’s most famous 
gambling casino. Indeed, the name is doubly 
appropriate because the style of gambling in the 
Monte Carlo casino, not to be confused with the 
noisy and tasteless gambling houses of Las Vegas 
and Reno, is serious and sophisticated.”

F. James, “Monte Carlo theory and practice”, 
Rept. Prog. Phys. 43 (1980) 1145

A Monte Carlo technique: is any technique making 
use of random numbers to solve a problem

Convergence:

Calculus: {A} converges to B
if an n exists for which 

|Ai>n - B| < ε, for any ε >0

Monte Carlo: {A} converges to B 
if n exists for which 
the probability for

 |Ai>n - B| < ε,  for any ε > 0,
is > P, for any P[0<P<1]



Example: you want to know the area of this shape:

Assume you know the 
area of this shape: 

πR2

(an overestimate)

Random Numbers and Monte Carlo

18

Now get a few 
friends, some balls, 
and throw random 
shots inside the 

circle 
(PS: be careful to make 
your shots truly random)

Count how many 
shots hit the shape 

inside and how 
many miss A  ≈ Nhit/Nmiss × πR2

Example 1: simple function (=constant); complicated boundary

Earliest 
Example of 

MC 
calculation: 

Buffon’s 
Needle 
(1777) 

to calculate 
π 

G. Leclerc, Comte de Buffon (1707-1788)



Random Numbers and Monte Carlo

19

Start from overestimate,

Generate uniformly 
distributed random points 
between a and b

Example 2: complicated function; simple boundary

The integral is then ≈

∆Ω

Ncount(∆Ω) ∝
�

∆Ω
dΩ

dσ

dΩ

1√
n

2D

3D

(b− a)fmax
1

n

n�

i=1

f (xi)

fmax

1

area of rectangle fraction that ‘hit’

f (xi)

fmax
= Phit

2

f (xi)

fmax
= Phit

2

f (xi)

fmax
= Phit

2



Justification

1. Law of large numbers

2. Central limit theorem

20

The sum of n independent random variables (of finite 
expectations and variances) is asymptotically Gaussian

(no matter how the individual random variables are distributed)

For finite n:
The Monte Carlo estimate is Gauss distributed around the true value 

f (xi)

fmax
= Phit

lim
n→∞

1

n

n�

i=1

f (xi) =
1

b− a

� b

a
f (x)dx

2

Monte Carlo Estimate The Integral

For infinite n:
Monte Carlo is a 

consistent 
estimator 

For a function, f, of random variables, xi,



Convergence
MC convergence is Stochastic! 

       in any dimension

+ can re-use previously generated points (≈ nesting)
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Uncertainty as a function of 
number of points neval / bin

Approx
Conv. Rate 

(in 1D)

Approx
Conv. Rate 
(in D dim)

Trapezoidal Rule (2-point) 2D 1/n2 1/n2/D

Simpson’s Rule (3-point) 3D 1/n4 1/n4/D

… m-point (Gauss rule) mD 1/n2m-1 1/n(2m-1)/D 

Monte Carlo 1 1/n1/2 1/n1/2 

∆Ω

Ncount(∆Ω) ∝
�

∆Ω
dΩ

dσ

dΩ

1√
n

1



Importance Sampling

22



Peaked Functions

Precision on integral
dominated by the
points with f ≈ fmax (i.e., 
peak regions)

→ slow convergence 
if high, narrow peaks

20% 20% 20% 20% 20%

fmax



Stratified Sampling

→ make it twice as
likely to throw points
in the peak
→ faster convergence
for same number
of function evaluations

16.7% 16.7% 33.3% 16.7% 16.7%



Adaptive Sampling

→ can even design
algorithms that
do this automatically
as they run
→ Adaptive sampling5.6% 22.2% 44.4% 22.2% 5.6%



Importance Sampling

→ or throw points
according to some
smooth peaked 
function for which you 
have, or can construct, 
a random number 
generator
(here: Gauss)

E.g., VEGAS algorithm, by G. Lepage



Why does this work?
1) You are inputting knowledge: obviously need to 

know where the peaks are to begin with … (say 
you know, e.g., the location and width of a resonance)

2) Stratified sampling increases efficiency by 
combining n-point quadrature with the MC 
method, with further gains from adaptation

3) Importance sampling:

f (xi)

fmax
= Phit

lim
n→∞

1

n

n∑
i=1

f (xi) =
1

b − a

∫ b

a
f (x)dx

∫ b

a
f (x)dx =

∫ b

a

f (x)

g(x)
dG(x)

Effectively does flat MC with 
changed integration variables

Fast convergence if 
f(x)/g(x) ≈ 1



The Veto Algorithm

Hit Miss
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How we do Monte Carlo

• Take your system

• Set of radioactive nuclei

• Set of hard scattering processes

• Set of resonances that are going to decay

• Set of particles coming into your detector

• Set of cosmic photons traveling across the galaxy 

• …



How we do Monte Carlo

• Take your system

• Generate a “trial”  event/decay/interaction/… 

• Not easy to generate random numbers distributed 
according to exactly the right distribution?

• May have complicated dynamics, interactions … 

• → use a simpler “trial” distribution

• Flat with some stratification

• Or importance sample with simple overestimating 
function (for which you can generate random #s)



How we do Monte Carlo

• Take your system

• Generate a “trial”  event/decay/interaction/… 

• Accept trial with probability f(x)/g(x)

• f(x) contains all the complicated dynamics

• g(x) is the simple trial function

• If accept: replace with new system state

• If reject: keep previous system state

And keep going: generate next trial … 

no dependence on g in final result 
- only affects convergence rate



Summary
Quantum Scattering Problems are common to many areas of physics:

To compute expectation value of observable: integrate over phase space

Complicated functions → Numerical Integration

High Dimensions → Monte Carlo (stochastic) convergence is fastest
Additional power by stratification and/or importance sampling

Additional Bonus → Veto algorithm → direct simulation of 
arbitrarily complicated reaction chains → next lecture



Recommended Reading
F. James

Monte Carlo Theory and Practice
Rept.Prog.Phys.43 (1980) p.1145

S. Weinzierl
Topical lectures given at the Research School Subatomic physics, Amsterdam, June 2000

Introduction to Monte Carlo Methods
e-Print: hep-ph/0006269

S. Teukolsky, B. Flannery, W. Press, T. Vetterling
Numerical Recipes (in FORTRAN, C, …)

http://www.nr.com/

http://www.nr.com
http://www.nr.com

