

Nuclear Research in South Africa and on the African Continent

Zeblon Z. VILAKAZI, iThemba LABS

zzv@tlabs.ac.za

Note:

The presentation has a bias on South Africa: Apologies for any omissions – largely a function of lack of detailed knowledge of the continental landscape

SLIDE COURTESY

- Medical Physics : Dr. Dan Jones (iTL: ret)
- Nuclear Medicine : Prof. Ellman (Stellenbosch U.)
- PET-CT : Prof. M. Sathekge (U. Pretoria)
- Members of iTL Accelerator Department
- Prof W Rautenbach (CSIR: ret.)

- Rob Adam & R von Gogh (Necsa)
- J Sharpey-Schafer (ex director: iTL)

Outline of the Presentation

Part I

- Overview of Nuclear Facilities in Africa
- Accelerators and Reactors in South Africa

Research & Applications at iTL

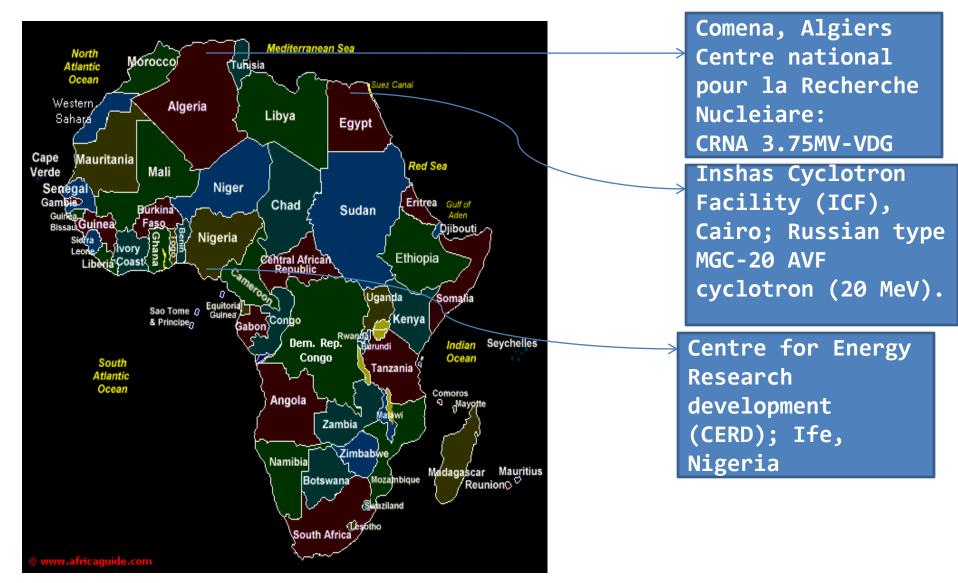
- Nuclear Physics Research
- ✓ Hadron Therapy & Radio-isotope production
- ✓ Radio -Active Isotope Beams

Part II: SA- CERN Programme

- Nuclear Research came from quest to understand origin of different nuclei
 - Big bang: H, He and Li
 - Stars: elements up to Fe
 - Supernova: heavy elements
- We are all made of stardust

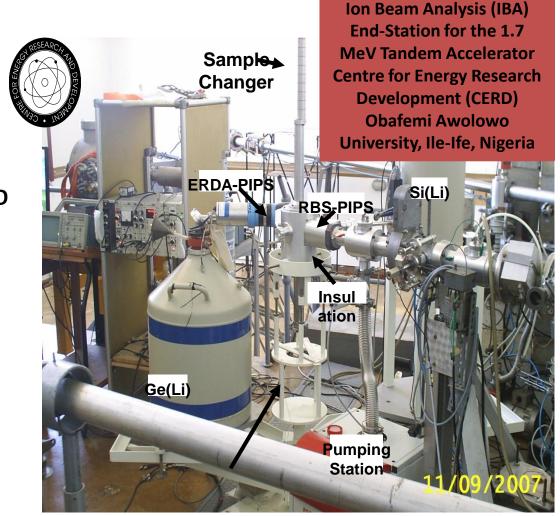
Nuclear : From Fundamental to Applications

- Nuclear fission for energy generation.
 - No greenhouse gasses
 - Safety and storage of radioactive material.
- The Nuclear fusion dream
 - No safeguards issues
 - Less radioactive material.


Applications

- Medical Applications
 - Radiotherapy for cancer
 - Kill cancer cells.
 - Used for 100 years but can be improved by better delivery and dosimetery
 - Heavy ion beams can give more localised energy deposition.
 - Medical Imaging
 - MRI (Nuclear magnetic resonance)
 - X-rays (better detectors → lower doses)
 - PET
 - Tc99(m)
 - Many others....

- Other Applications
 - Radioactive Dating
 - C¹⁴/C¹² gives ages for dead plants/animals/people.
 - Rb/Sr gives age of earth as 4.5 Gyr.
 - O¹⁶/O¹⁸ in H₂O in ice gives temperature
 - U²³⁸/Th²³² in stars gives ages of galaxies
 - Element analysis
 - Forensic (eg date As in hair).
 - Biology (eg elements in blood cells)
 - Archaeology (eg provenance via isotope ratios).



Nuclear Facilities in Africa

Nigeria

Centre for Energy Research & Development Pelletron Tandem Accelerator Other Names: CERD 1.7 Pelletron Location: CERD-Ife Ife (Osun

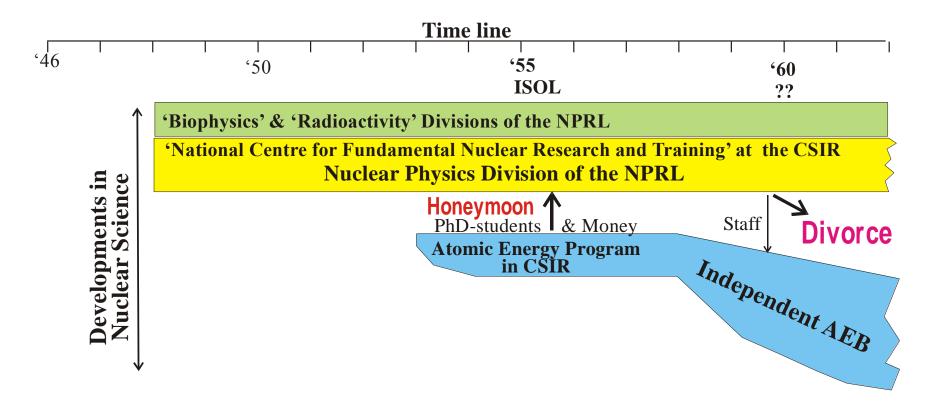
State)

Subordinate to: Nigerian

National Nuclear Commission Size: 1.7MV

Status: Operational + work
carried out

End station commissioned by the iThemba LABS team.


Beginning of Nuclear Research in SA

- 1948 1950: At CSIR, newly appointed head of the Nuclear Physics Division sent to the Nobel Institute in Stockholm to do Nuclear Physics research with a classical cyclotron.
- 1950: Decision to design and build a 16 MeV deuteron classical cyclotron at the Nuclear Physics Division, CSIR
- Southern University Nuclear Institute (SUNI) established jointly by Universities of Stellenbosch & Cape Town [1964]
- Pioneering Neutrino experiments (led by F Riennes) in the mines of Johannesburg (*circa*: 1966)
- JPF Sellschop establishes a research accelerator at University of Witwatersrand, Johannesburg [1972]

CSIR: <u>Council for Scientific and Industrial Research</u>

Organisational changes in nuclear sciences in SA: 1953 - 1960

Evolution of Nuclear Technology and Business at Atomic Energy Board

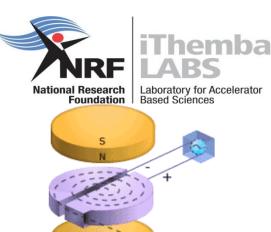
Research and Development Era – 1960 to mid 1970s

- SAFARI reactor operating at 20 MW and many other high level research and development programs
- Weapons Program ["Strategic" Era]

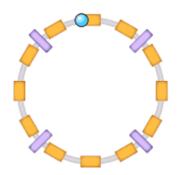
Strategic Era – mid 1970s to early 1990s

- PWR and SAFARI fuel Manufacture
- Isotope Production

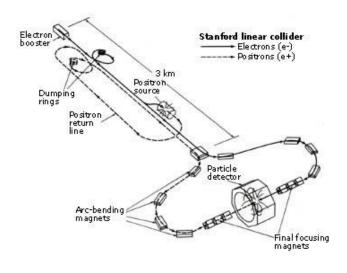
Commercial Era – early 1990s (signing of the IAEA-NPT)



Some Accelerators in South Africa						
Organisation	Туре	Date	Particle	Energy (MeV)		
CSIR	Cyclotron	1956/60	H_2^+	5.8 - 15.2		
			$^{2}\mathrm{H}^{+}$	11.5 - 17.3		
			${}^{3}\text{He}^{++}$	18 - 39		
			${}^{4}\text{He}^{++}$	23 - 34.6		
SUNI /	VdG	1964	n a o	6		
iThemba LABS			p a.o.	0		
NECSA	VdG	1962	p a.o.	4		
Univerity of	VdG	1972	n a o	2		
Potchestroom			p a.o.			
University	VdG	1964	p a.o.	2.5		
Pretoria			p a.o.			
WITS	Tandem	Nov. 72	p a.o.	12 (6)		
Themba LABS	Cyclotron	1984	p a.o.	8		
	Cyclotron	1986	p a.o.	11.5 - 227		
			Xe	790		
	Cyclotron	1994	p to Xe	8 (41.6)		
De Beers	RFQ	1997	d	4 and 5		
De Beers	RFQ	2003	d	4 and 5		
Pretoria Private Hospital	Cyclotron	2006	р	PET isotopes		
NECSA	Cyclotron	2007	р	PET isotopes		

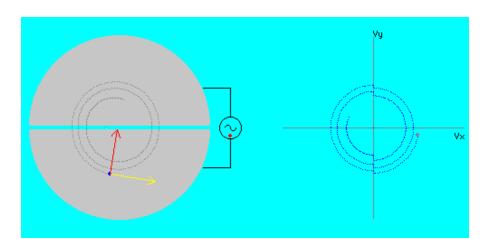

Research Facilities in South Africa

Themba Accelerators

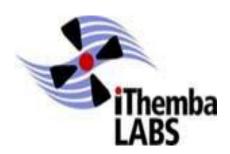


s

Ν


Cyclotron

Linear Accelerator



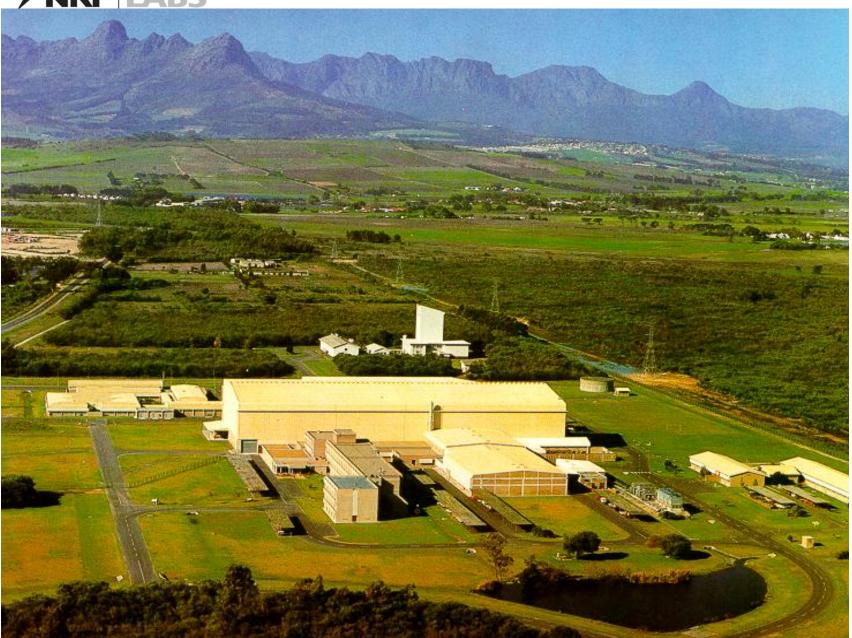
Cyclotrons

The earliest accelerators were cyclotrons. Cyclotron consists of two D-shaped objects (dees) with a potential difference between them. A stream of particles moved in a plane perpendicular to a uniform magnetic field, which bent the particle tracks so that they passed through an electric field in a gap between dees and were accelerated.

For non-relativistic particles the frequency of the machine was determined by the Lorentz force law, F= e v B, and the formula for centripetal acceleration, $v^2/r = F/m = e v B/m$, so the angular frequency is given by: $\omega = e$ B/m.

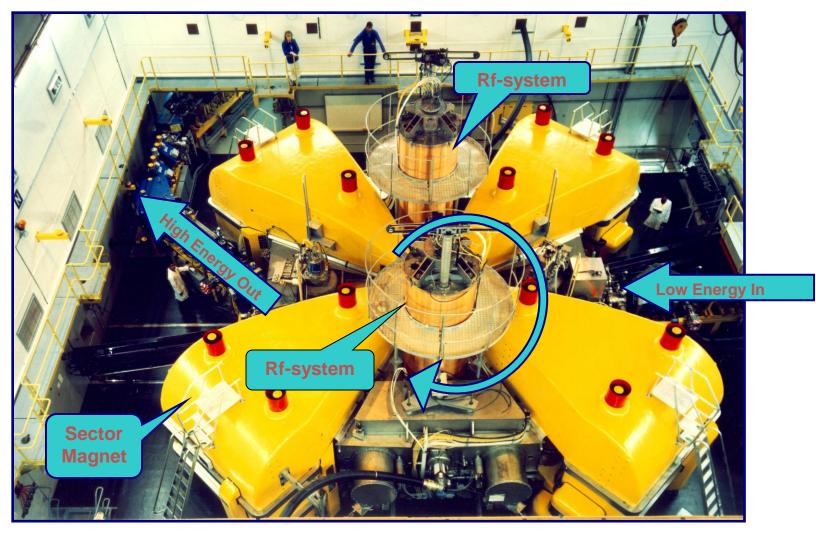
Operates a 200 MeV separate-sector cyclotron

The dream of a multidisciplinary medium energy national accelerator ~1964


Limited useful life of the cyclotron (and of all other nuclear accelerators in SA).

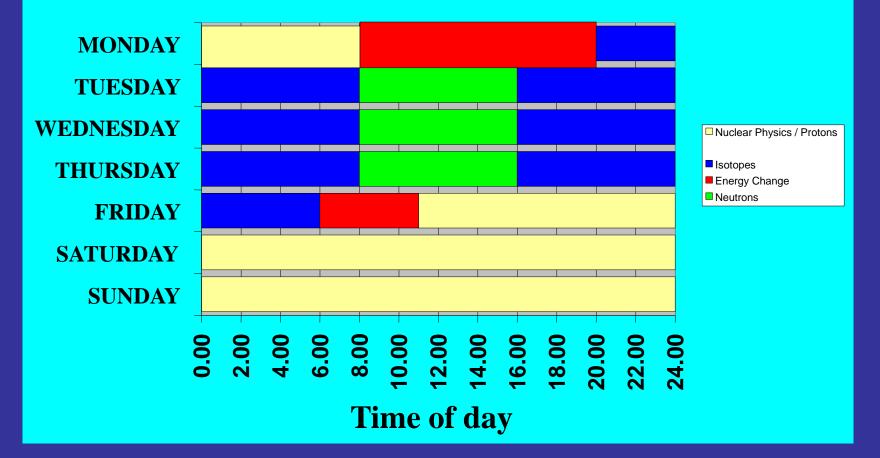
- * Started discussing the use of medium energy particle beams in nuclear physics;
- * Investigated the use of high intensity medium energy beams in isotope production.

Monitored the development of the **open sector cyclotron** concept, as a viable multi-disciplinary medium energy accelerator - started a low key theoretical study of it.



Aerial View of iThemba LABS

The iThemba LABS Cyclotron



iThemba LABS

iThemba L(aboratory) for A(ccelerator)-B(ased) S(ciences) is a multi-disciplinary research centre, operated by the NRF (National Research Foundation). It provides accelerator and ancillary facilities for:

- Research and training in the physical, biomedical and material sciences
- Treatment of cancer patients with energetic neutrons and protons and related research
- Production of radioisotopes and radiopharmaceuticals for use in nuclear medicine, research and industry and related research

CYCLOTRON OPERATING SCHEDULE

Beams delivered at iThemba LABS

ullet

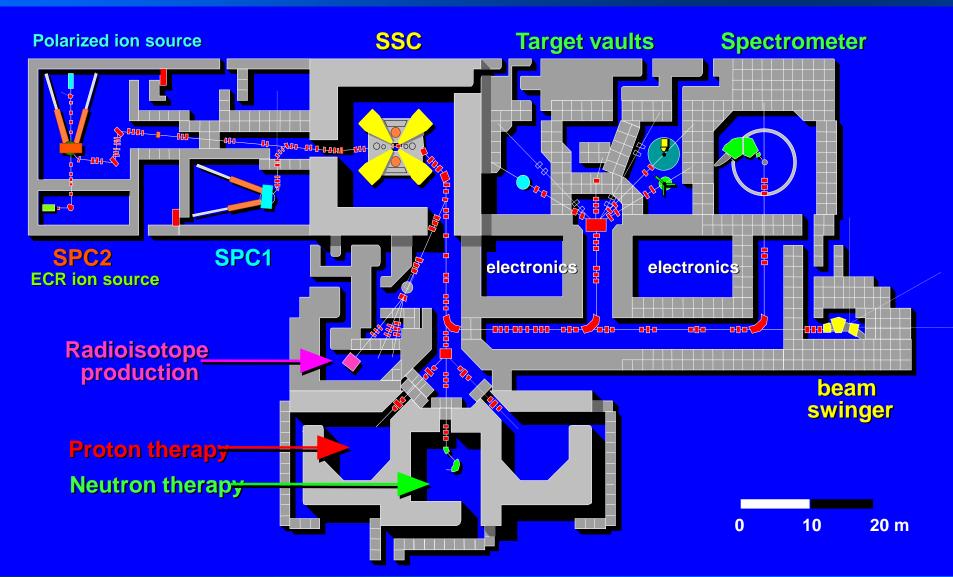
Some beams at iThemba LABS							
Element	Mass	Energy range MeV					
		from	to				
Н	1	11.5	227				
He	4	25	200				
В	11	55	60				
С	12	58	400				
С	13	75	82				
N	14	140	400				
0	16	73	400				
0	18	70	110				
Ne	20	110	125				
Ne	22	125	125				
AI	27	150	349				
Si	28	141	141				
Cl	37	205	250				
Ar	40	280	280				
Zn	64	165	280				
Kr	84	450	530				
Kr	86	396	462				
	127	730	730				
Xe	129	750	790				
Xe	136	750	750				

66 MeV Proton Beam

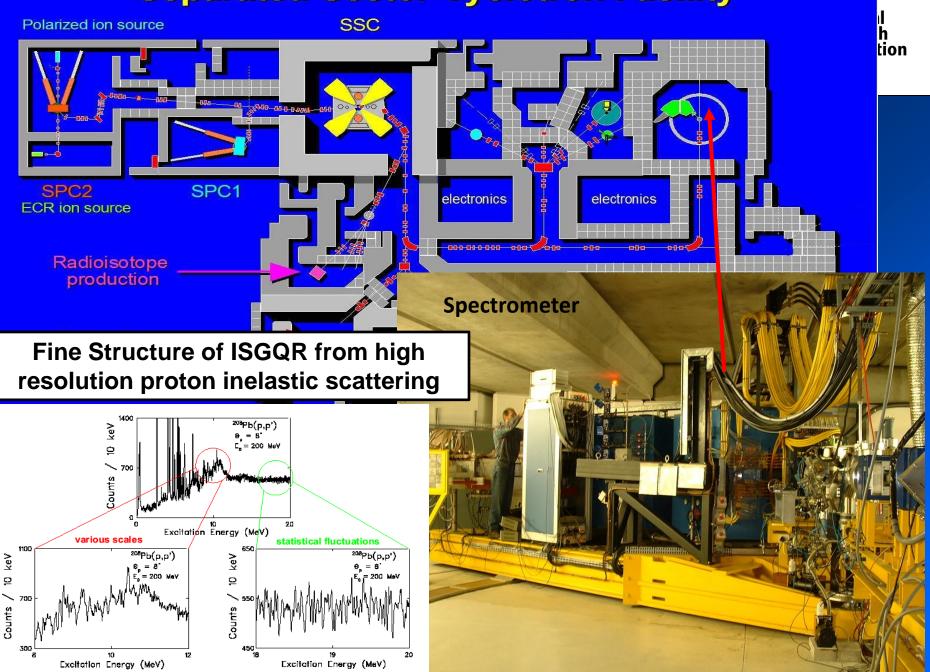
- Beam current on target: 250 μA
- Transmission efficiency
 through the SSC:

99.8%

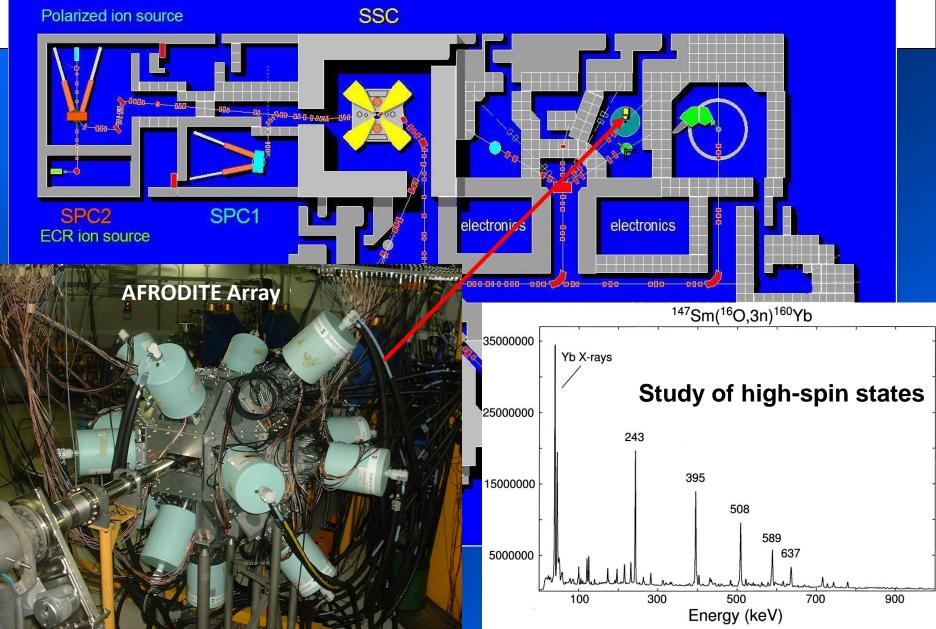
Solid-pole injector cyclotron 1 (SPC1)



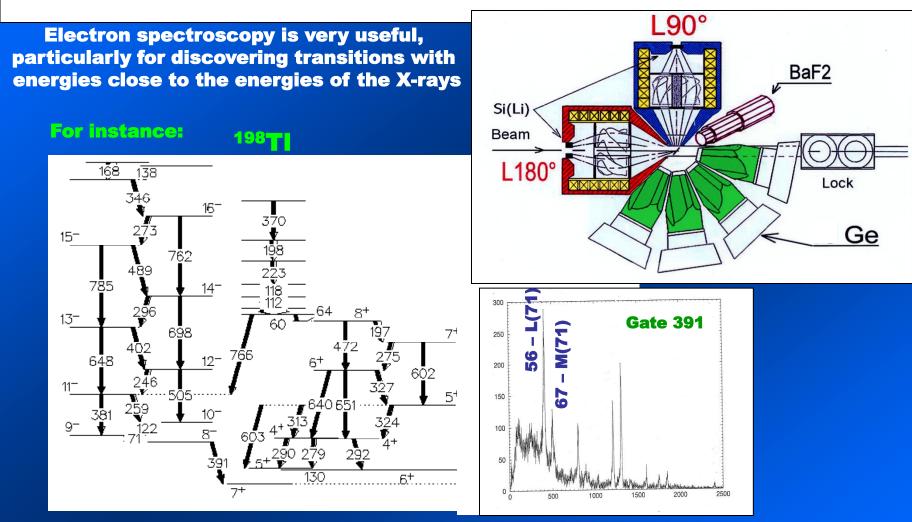
Solid-pole injector cyclotron 2 (SPC2)



Separated-Sector Cyclotron Facility


Separated-Sector Cyclotron Facility

The Separated Cyclotron Facility



Electron-gamma studies

National

The Orsay electron spectrometers ation

The introduction of the 71 keV leads to discovering for the first time signature inversion in the TI isotopes.

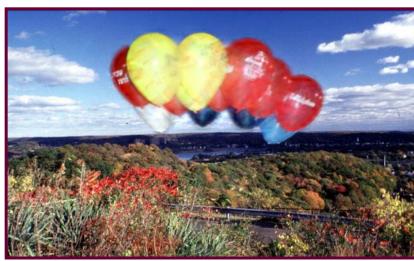
Radio nuclides

- Currently, iThemba LABS produces weekly the medical radionuclides ⁶⁷Ga, ¹²³I and ⁸¹Rb.
- ⁶⁷Ga and ¹²³I are used to prepare radiopharmaceuticals for the local users.
- ⁸¹Rb is used to manufacture the ⁸¹Rb/^{81m}Kr generator.
- ⁸²Sr is produced for use in medical generators to obtain the PET radionuclide ⁸²Rb.
- ²²Na is produced to manufacture positron sources.

D Export to CERN (anti- H experiment)

 Close to 60 local users in nuclear medicine

Supply for Nuclear Medicine

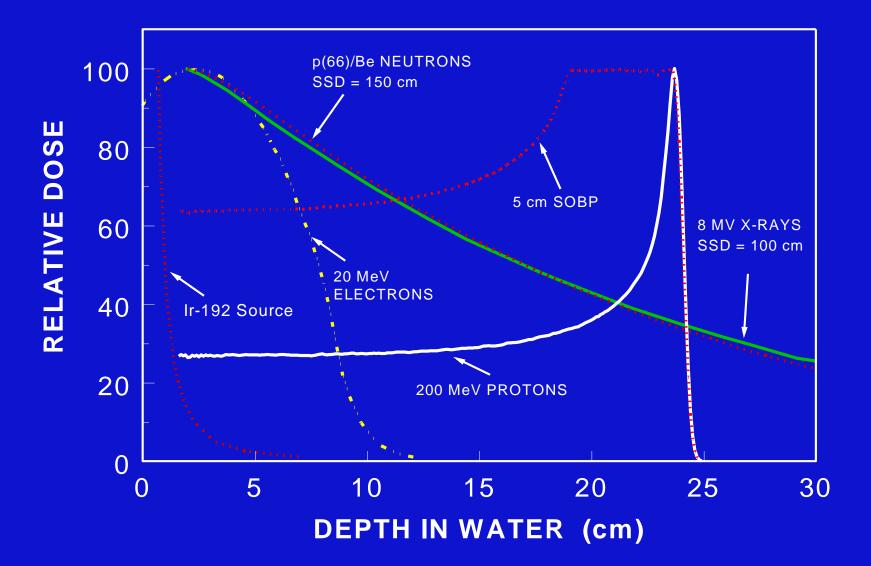

Themba NU-Clear Medicine: PET/CT

tion Laboratory for Accelerator Based Sciences

PET/CT Road Map to Personalized Molecular Medicine

NEUTRON AND PROTON THERAPY

Compared with conventional radiations (photons, electrons):


 Neutrons have similar physical characteristics to x-rays and are more effective for treating radioresistant tumors, usually large and/or slow-growing, such as salivary gland tumours, advanced prostate cancer

Neutrons are used because of their BIOLOGICAL EFFECTS

 Protons have more favorable dose distributions (fixed range, little scattering) which can easily be controlled and are used to treat well-delineated lesions (benign and malignant) close to critical structures, which can easily be avoided, such as brain lesions, early prostate cancer

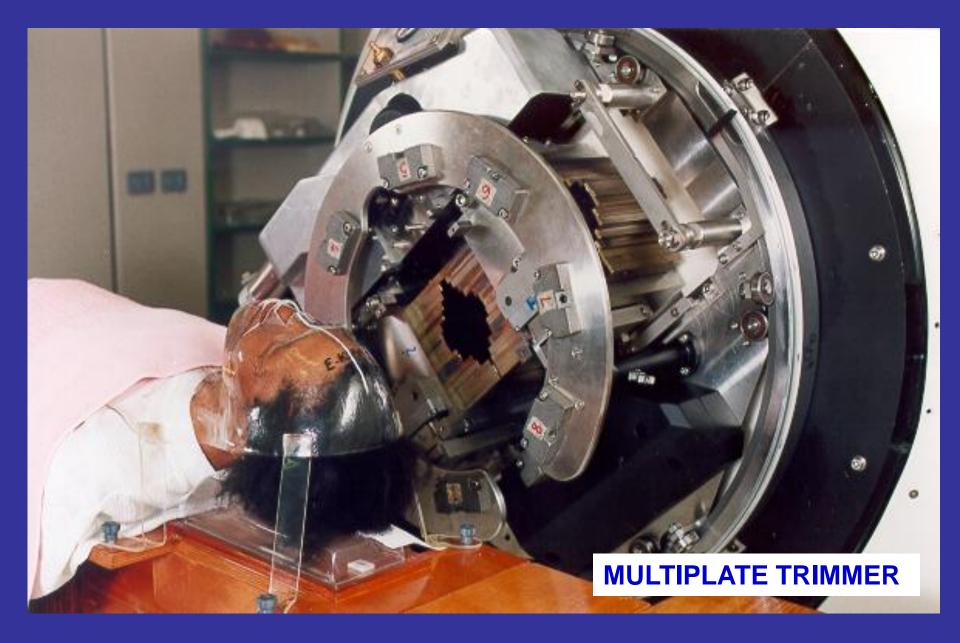
Protons are used because of their PHYSICAL PROPERTIES

Depth dose curves for different treatment modalities

Particle Therapy Programme

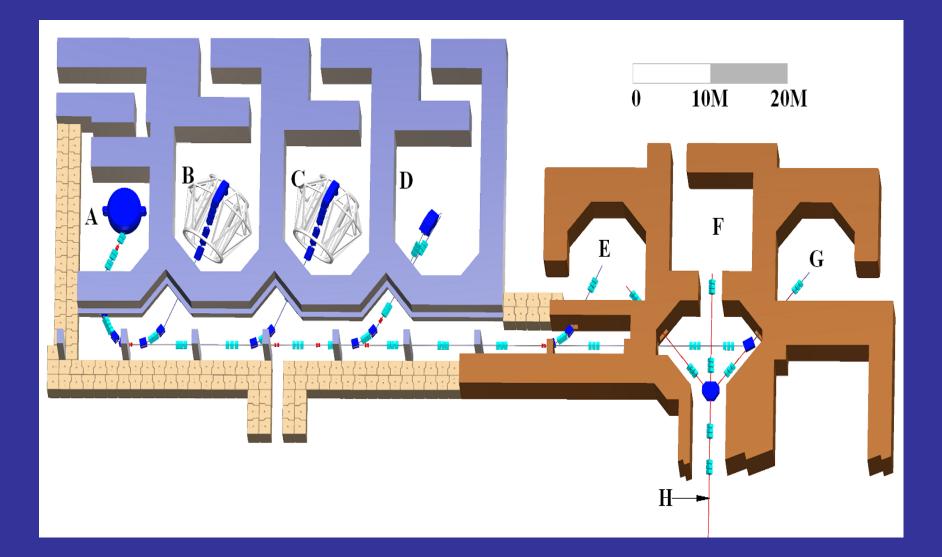
> Neutron Therapy at 66MeV (commenced: 1988)

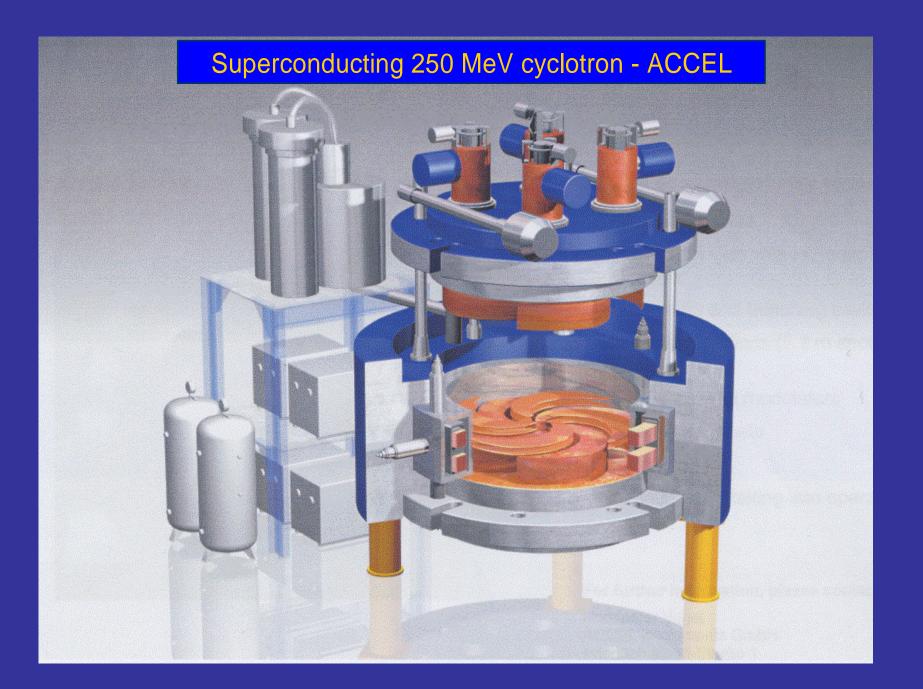
Proton Therapy at 200MeV (commenced: 1993)


- Number of Patients Treated:
 Neutrons: > 1 460
 Protons: > 500
- Various Types of Cancer Treated: Protons: Brain Tumours; Acoustic Neuroma; Pillsbury Adenoma; Eye Tumour.
 - Neutrons: Breast; Salivary Glands Head, Neck Carcinomas; Malignant Melanomas.

Neutron Therapy

Early Neutron patient





Cancer Statistics in South Africa

- Private Sector treats about 16000 new cases with 30 linear accelerators
- The State treats about 16 000 with 18 linear accelerators and 13 cobalt machines
- By the end of 2008 there will be 10 linear accelerators capable of delivering stereotactic treatment
- Number of cases for proton therapy will be less than 200 from the State. The private sector will not refer patients for proton therapy

New dedicated facility for proton therapy

230 MeV room-temperature cyclotron from IBA

Isosentriese Gantry

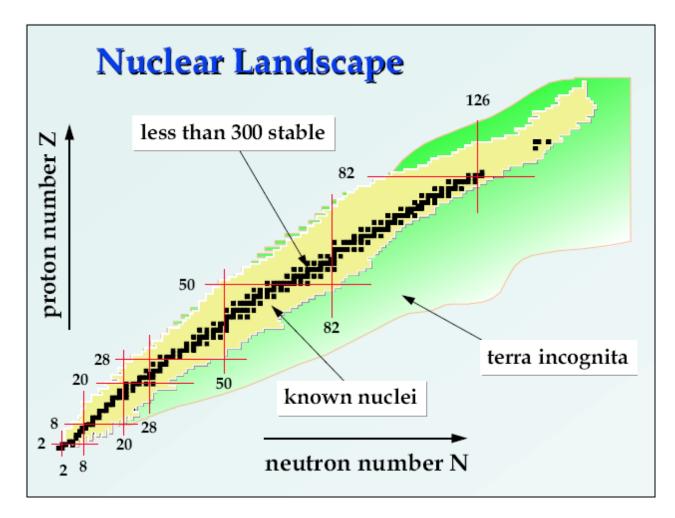
Current Plans

IThemba LABS : Key node in African network of Sub-Atomic Science & Technology

✓ Staging post for SA-CERN, SA-JINR Dubna and other international Facilities

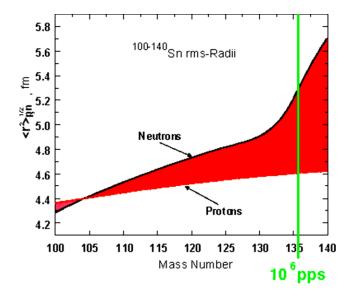
Centre for Nanoscience; AMS facility

iTPTC (iThemba Particle Therapy Centre)

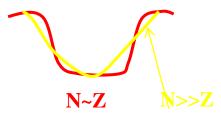

Radioactive Ion Beams : Nuclear Physics & Materials Science

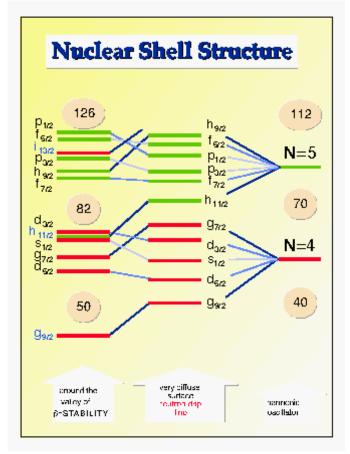
Radioactive Ion Beams : Proposed Flagship programme for Nuclear Physics at iTL

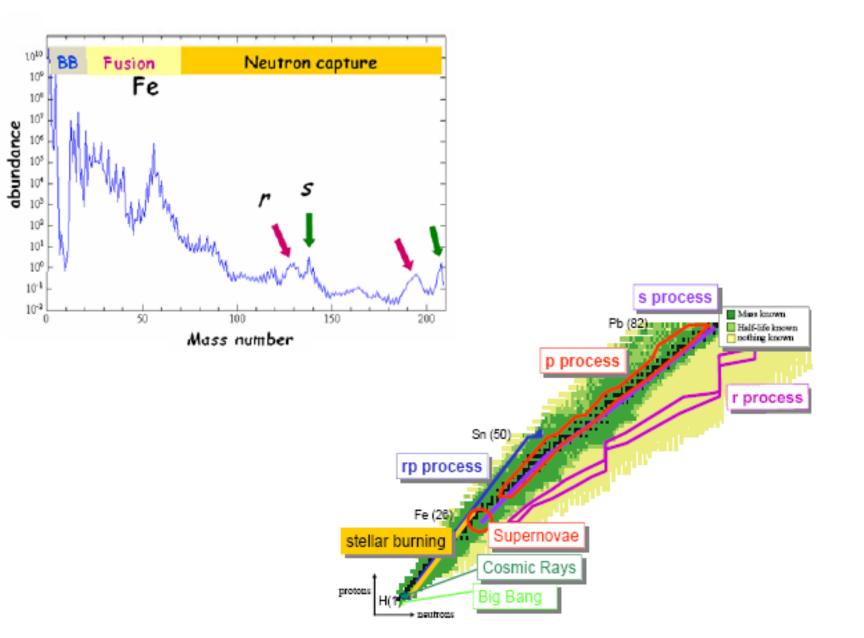
Why?


"TERRA INCOGNITA"

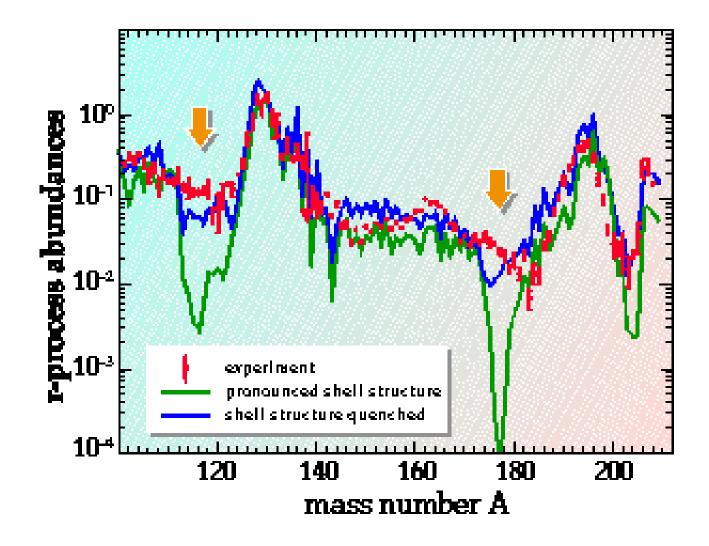
REQUIRES RADIOACTIVE BEAMS!


Neutron Skin!


Drastic Changes of Shell Structure far of stability!


Estimated difference in neutron and proton root-mean-square radii of the Sn isotopes (H.Lenske).

Softening of the nuclear potential: High-l pushed upward and Spin-Orbit splitting reduced

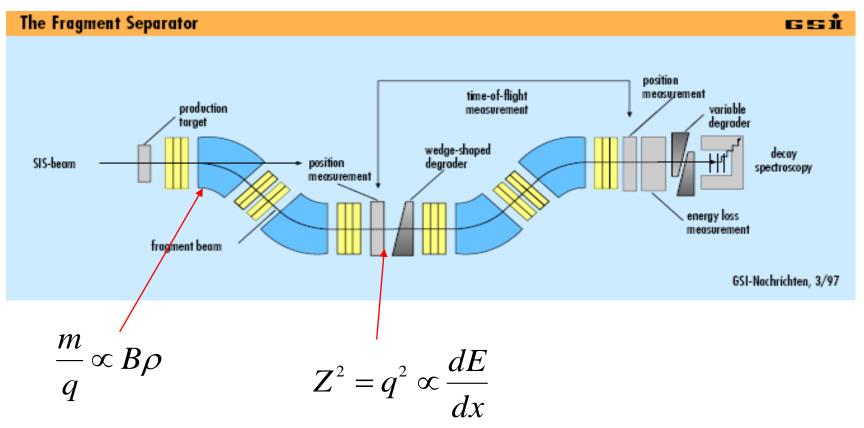


Shell quenching and reordering: Transition from SO gaps (50,82,126) to HO gaps (40,70,112)

r-process abundances: effect of quenching spin-orbit term

To Summarize:

The Shell Model of the Text Books is wrong!

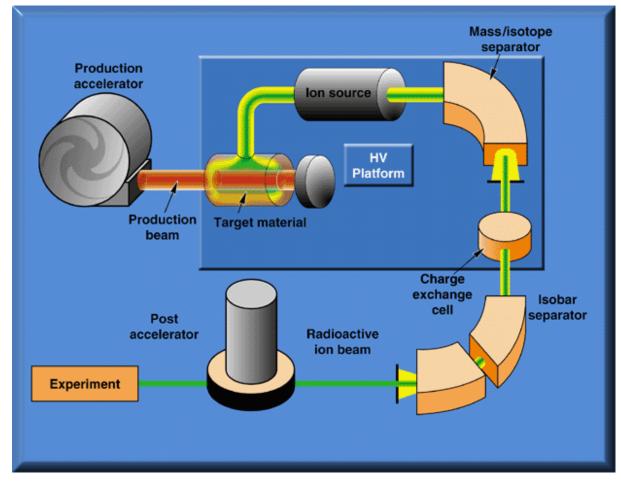

Radio-Active Beams will help us probe nuclear structure better

Producing Radioactive Beams: (i) In-flight isotope separation

Relativistic Primary Beam: reaction products -

"fragments"-

all fully stripped and traveling at nearly the original beam velocity (40 – 1000 MeV/u)


ii) Isotope Separation Online (ISOL) ISOLDE (CERN)

From HRIBF, Oak Ridge

Rough figure of merit is the total power on Target.

i.e. Beam energy X Current

e.g. 1µA of 1 MeV beam =1 Watt

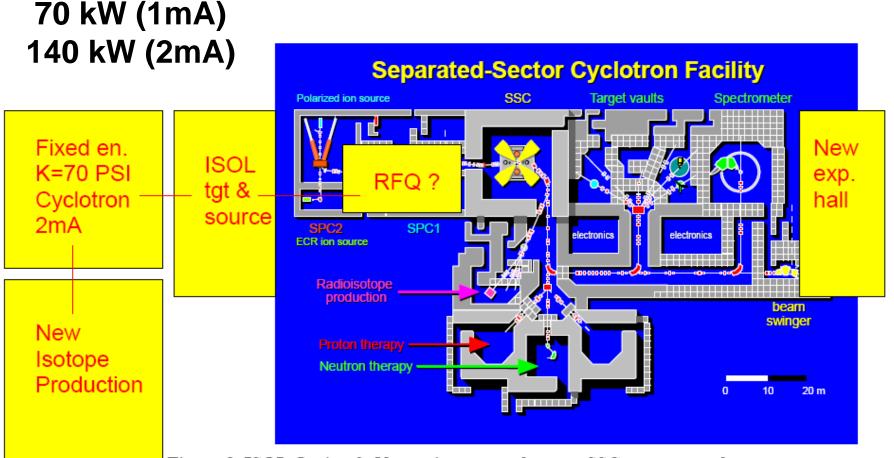
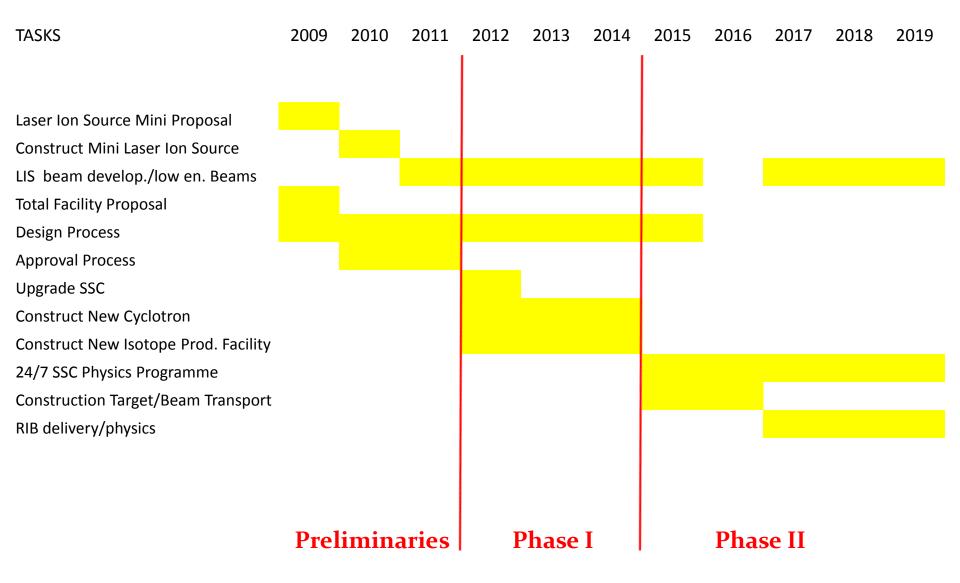


Figure 8 ISOL Option 3: New primary accelerator, SSC as post-accelerator

(Like SPES at Legnaro € 43M 8kW(?))

Table 3.1


	-	Power on target	5	s ⁻¹	Reaccelerator	AMeV A=130 20+	¹³² Sn rate
ISOLDE	p 1-1.4 GeV 2 mA	0.4 kW	Direct&Conv		Linac	3	107
HRIBF	p 40 MeV 10 μΑ	0.4 kW	Direct	4·10 ¹¹	Tandem 25MV	4	2·10 ⁵
TRIAC	p 30 MeV 3 μΑ	0.9 kW	Direct	10 ¹¹	IH Linac	1	3 10 ⁵
HIE ISOLDE u	pgrade		Direct&Conv	4·10 ¹²	SC Linac	5-10	2·10 ⁸
	р 54 MeV 20 µА	1.8 kW	Direct	10 ¹²	Tandem 25MV	4	5·10 [°]
SPIRAL2	d 40 MeV 5mA	200 kW		1014	Cyclotron	6	2·10 ⁹
SPES	p 40 MeV 200 mA	8 kW	Direct	10 ¹³	SC Linac	10	3·10 ⁸
SPIRAL	C-Kr 95 AMeV	6 kW	Direct		Cyclotron		
TRIUMF	p 450 MeV 70 mA	17 kW	Direct		SC Linac		
CRC UCL	p 30 MeV 300 mA	9 kW	Direct		Cyclotron		
EXCYT	13C 45 AMeV	0.5 kW	Direct		Tandem 15MV		

Costs

Table 14.2

	2008	2009	2010	2011	2012	2013	
							k€
infrastrutture	220	620	5000	8000	700	300	14840
target	1500	1300	1000	750	1050	300	5900
Beam Transfer	400	2350	2100	2000	650	150	7650
safetyRadioprot	250	110	750	2800	1800	290	6 000
Cyclotron		2000	2000	2000	1000	1400	8400
Re-accelerator	900	2700	3000	300	100		7000
High Intensity Linac	300	200	1600	700	500	300	3600
Neutron Facility BNCT - LENOS	550	850	500	550	650	200	3300
	4120	10130	15950	17100	6450	2940	56690

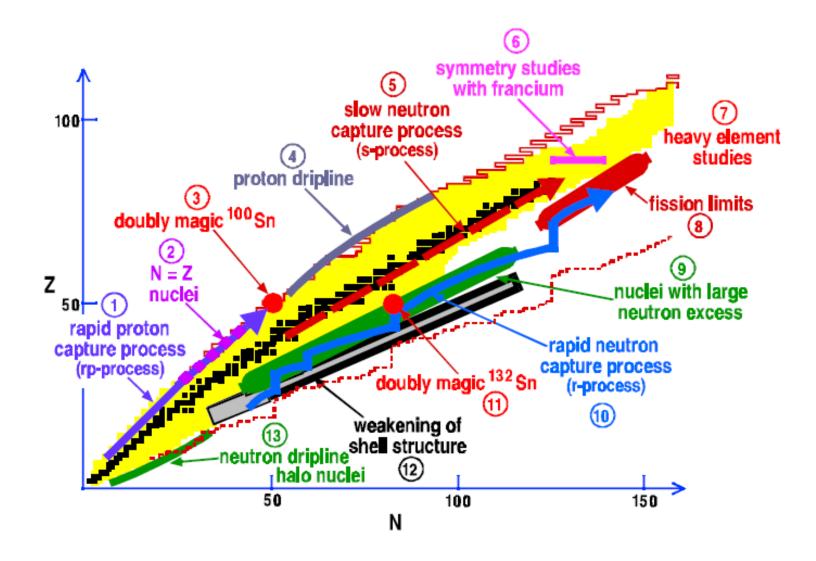
iThemba Timeline – Phased Approach

TASK	sub task	iThemba	External
Development of Stakeholders	Creation & Support of Users	Directorate	
		Physics	
		MRG	
Commercial Case	Isotope Production	Isotope Production	NECSA
Political/Social Case	All	Directorate	NECSA
		Physics	Univerities/Educational Institiutions
			PBMR
			ESKOM
Physics Case	Physics	Physics	Universities
		MRG	
	HR Development	Physics	Universities
		MRG	
Technical Case	RIB Development	Accelerator Group	Univerisities
		Physics Group	National Laser Centre
		Radiation Safety	NECSA?
	Detector Development	Accelerator Group	Univerisities
		Physics Group	
	HR Development	Directorate	Universities/Educational Institutions
		Accelerator Group	
		Physics Group	
		MRG	
		Isotope Production	
	Finance	Directorate	
		Accelerator Group	
		Physics Group	
		MRG	
		Isotope Production	
		Administration	

Educational Programs & Outreach

Science Awareness Programs: G. Arendse

Interventions aimed at promoting an awareness and appreciation of science amongst learners (primary and secondary schools), teachers and the general public through interactive workshops, science shows, public lectures, and publications.



Training at iThemba LABS

	2005/06	2006/07	2007/08
 Number of M.Sc and Ph.D. students currently using your Facility for their project work. 	195	211	205
2 Number of M.sc. and Ph.D. students who used your facility that graduated during the last three years.	26	35	40
 Number of publications in refereed journals in last three years 	45	47	51
 No. of international conference contributions in last three years. 	72	81	56
No. of scientists from HEIs that used your facility in the last three years	225	282	278
 No of scientists from Africa that were involved in research at your Facility in the last three years 	45	63	53
 No of international scientists from elsewhere who were involved in research at your Facility in the last thee years. 	94	110	78

End of part I

