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CERN BE - BI

(Beam Instrumentation)

Overview

• First hour: 

– Introduction

– Overview of measurement instruments
• Faraday Cup

• Beam Current Transformer

• Beam Position Monitor

• Profile Detectors

– SEMGrids
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– Wire Scanners

• Beam Loss Monitors

• Second hour

– Some depicted examples of beam parameter measurements
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Introduction

An accelerator can never be better than the instruments measuring its 
performance!
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Different uses of beam 
diagnostics

Regular crude checks of accelerator performance

– Beam Intensity ea e s y

– Radiation levels

Standard regular measurements

– Emittance measurement

– Trajectories

– Tune
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Sophisticated measurements e.g. during machine 
development sessions

– May require offline evaluation

– May be less comfortable
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Diagnostic devices and quantity 
measured

Instrument Physical Effect Measured Quantity Effect on beam

Faraday Cup Charge collection Intensity Destructive

C t M ti fi ld I t it N d t tiCurrent 
Transformer

Magnetic field Intensity Non destructive

Wall current 
monitor

Image Current Intensity

Longitudinal beam shape

Non destructive

Pick-up Electric/magnetic 
field

Position Non destructive

Secondary 
emission monitor

Secondary electron 
emission

Transverse size/shape, 
emittance

Disturbing, can be 
destructive at low 
energies
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Wire Scanner Secondary particle 
creation

Transverse size/shape Slightly disturbing

Scintillator screen Atomic excitation 
with light emission

Transverse size/shape 
(position)

Destructive 

Residual Gas 
monitor

Ionization Transverse size/shape Non destructive

A beam parameter measurement
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Required Competence in a beam 
diagnostics group

• Some beam physics in order to understand the beam 
parameters to be measured and to distinguish beam effectsparameters to be measured and to distinguish beam effects 
from sensor effects

• Detector physics to understand the interaction of the beam 
with the sensor

• Mechanics
• Analogue signal treatment

– Low noise amplifiers
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p
– High frequency analogue electronics

• Digital signal processing
• Digital electronics for data readout
• Front-end and Application Software

Layout of a Faraday Cup

• Electrode: 1 mm stainless steel

• Only low energy particles can be 
measured

• Very low intensities (down to 1 
pA) can be measured

• Creation of secondary electrons of 
low energy (below 20 eV) 

• Repelling electrode with some 
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p g
100 V polarisation voltage pushes 
secondary electrons back onto the 
electrode
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Faraday Cup
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Electro-static Field in Faraday 
Cup

In order to keep secondary 
electrons with the cup a repelling 
voltage is applied to the polarization 
electrode

Since the electrons have energies of 
less than 20 eV some 100V
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repelling voltage is sufficient
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Energy of secondary emission 
electrons

• With increasing repelling voltage

90keV
50keV
30keV

• With increasing repelling voltage 
the electrons do not escape the 
Faraday Cup any more and the 
current measured stays stable.

• At 40V and above no decrease in 
the Cup current is observed any 
more 
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Faraday Cup with water cooling
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For higher intensities 
water cooling may be needed
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Current Transformers

Magnetic field

ri

Fields are very low

Beam current

ro
Capture magnetic field 
lines with cores of high
relative permeability

(CoFe based amorphous 
alloy Vitrvac: μr= 105)
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Principle of a fast current transformer

Image
Current

• 500MHz Bandwidth
• Low droop (< 0.2%/s)

BEAM

Ceramic 
Gap
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Diagram by H. Jakob

Calibration winding

80nm Ti Coating
20to improve

impedance

Fast current transformers for the LHC
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Magnetic shielding

Shield should extend along the vacuum chamber 
length > diameter of opening

Shield should be symmetrical to the beam axis

Air gaps must be avoided especially along the 
beam axis

Shield should have highest μ possible but should 
not saturate

monitor
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Soft iron (μ1) Transformer steel (μ2)

Permalloy (μ3)

Calibration of AC current transformers

The transformer is 
calibrated with a very y
precise current source
The calibration signal is 
injected into a separate 
calibration winding
A calibration procedure 
executed before the 
running period
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running period
A calibration pulse before 
the beam pulse 
measured with the beam 
signal
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Current transformer and electronics
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Display of transformer readings

First result from
LHC FBCTLHC FBCT

Measurement of 
bunch intensity

Diminishing intensity
due to debunching

Beam losses will 
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trigger machine 
protection system 
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The DC current transformer

AC current transformer can be extended to very long droop 
times but not to DC

Measuring DC currents is needed in storage rings

Must provide a modulation frequency

Takes advantage of non/linear magnetisation curve
B
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H

Principle of DCCT

Synchronous
detector

Va-Vb

Vb

Va

beam

modulator

Power supply
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Compensation
current Ifeedback=-IbeamV=RIbeam

R
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Modulation of a DCCT  without beam

dt

dB
NAU 


B=f(t)

B

Modulation current 
has only odd 
harmonic 
f i i

0B
NA

Udt
B  H
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frequencies since 
the signal is 
symmetric

1 2 53 4

Modulation of a DCCT with beam

B=f(t)
B

H

Sum signal becomes non-zero
Even harmonics appear
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Modulation current difference signal 
with beam

• Difference signal has 2ω• Difference signal has 2ωm

• ωm typically 200 Hz – 10 kHz

• Use low pass filter with
ωc<<ωm

• Provide a 3rd core, normal 
AC transformer to extend to 
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higher frequencies

Photo of DCCT internals
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Results from DCCT

Injections into LHC

Beam 2
DCCT sees first
circulating beam
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Measuring Beam Position –
The Principle
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Wall Current Monitor – The Principle
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Ceramic Insert
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Wall Current Monitor –
Beam Response
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Electrostatic Monitor – The Principle
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Electrostatic Monitor –
Beam Response
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Position measurements

U

w

U

d

d
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If the beam is much smaller than w, all field lines are captured and
U is a linear function with replacement
else: Linear cut (projection to measurement plane must be linear)

Shoebox pick-up

 

UL UR
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Linear cut through a shoebox 
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Doubly cut shoebox

• Can measure horizontal and vertical position at once

Has 4 electrodes• Has 4 electrodes

a
b
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c
d

Simulatenous horizontal and vertical 
measurement

horizontal vertical

a
b

c d

a
b

c
d
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Interaction of particles with 
matter

Coulomb interaction

A f i di ti 0

 
Beam particle

Average force in s-direction=0

Average force in transverse 
direction <> 0

Mostly large impact parameter 
=> low energy of ejected 
electron

s   

Atomic shell electron 

b

F 
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Electron mostly ejection 
transversely to the particle 
motion

Bethe Bloch formula
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• with the following constants:
NA: Avogadro’s number
me and re: electron rest mass and classical electron radius
c: speed of light

• the following target material properties:
ρ: material density
AT and ZT: the atomic mass and nuclear charge

• and the particle properties:
Z ti l h
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Zp: particle charge
β: the particles velocity and 

Dependance on

21  

2
pZ
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High energy loss a low energies
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1 0.1 0.01 10 100 1000

Heavy ions at low energy are stopped within a few micro-meters
All energy is deposited in a very small volume 

Scintillating Screens

Method already applied in cosmic ray 
experiments

• Very simple

• Very convincing

Needed: 

• Scintillating Material 

• TV camera 

• In/out mechanism

Problems:
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• Radiation resistance
of TV camera

• Heating of screen (absorption of
beam energy)

• Evacuation of electric charges
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Test for resistance against heat-shock

Material



g/cm3
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Al2O3 3.9 0.9 30 1600 1012

ZrO2 6 0.4 2 1200 103

BN 2 1.6 35 2400 1014

Better for electrical conductivity (>400ºC)

Better for thermal properties
(higher conductivity, higher heat capacity)

Often used in accelerators
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Degradation of screen

 

Degradation clearly visible
However sensitivity stays essentially 
the same
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Screen mechanism

• Screen with graticule
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Results from TV Frame grabber

First full turn
as seen by theas seen by the 

BTV
10/9/2008

Uncaptured
beam sweeps 

through he dump 
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• For further evaluation the video 
signal is digitized, read-out and 
treated by program 

g p
line
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Profile measurements

• Secondary emission grids (SEMgrids)

When the beam passesWhen the beam passes
secondary electrons are
ejected from the ribbons

The current flowing back 
onto the ribbons is 
measured

El k
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Electrons are taken away
by polarization voltage

One amplifier/ADC chain
channel per ribbon

SEMgrids with wires
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Profiles from SEMgrids

Projection of charge density
j t d t i iprojected to x or y axis is 

Measured

One amplifier/ADC per wire
Large dynamic range

Resolution is given by wire 
distance
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distance

Used only in transfer lines

Wire Scanners

A thin wire is quickly moved across the beam
Secondary particle shower is detected outside the vacuum chamber
on a scintillator/photo-multiplier assembly 
Position and photo-multiplier signal are recorded simultaneously
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Wire scanner profile

High speed neededg p
because of heating.

Adiabatic damping

Current increase due to
Speed increase

Speeds of up to 20m/s
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Speeds of up to 20m/s
=> 200g acceleration

Stored Beam Energies
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0.01

1 10 100 1000 10000
Momentum [GeV/c]

Quench Levels Units Tevatron RHIC HERA LHC

Instant loss (0.01 - 10 ms) [J/cm3] 4.5 10-03 1.8 10-02 2.1 10-03 - 6.6 10-03 8.7 10-04

Steady loss (> 100 s) [W/cm3] 7.5 10-02 7.5 10-02 5.3 10-03
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Beam power in the LHC

shotshot

The Linac beam (160 mA, 200μs, 50 MeV, 1Hz) is enough to burn a hole into
the vacuum chamber
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What about the LHC beam: 2808 bunches of 15*1011 particles at 7 TeV?
1 bunch corresponds to a 5 kg bullet at 800 km/h

Beam Dammage
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primary collimatorprimary collimator

Fermi Lab‘sTevatron has 200 times less beam power than LHC!
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Beam Loss Monitor Types

• Design criteria: Signal speed and robustness

• Dynamic range (> 109) limited by leakage current through insulator 
ceramics (lower) and saturation due to space charge (upper limit).ceramics (lower) and saturation due to space charge (upper limit).

Ionization chamber:

– N2 gas filling at 100 mbar 
over-pressure

– Length 50 cm

– Sensitive volume 1.5 l

– Ion collection time 85 s

Secondary Emission Monitor
(SEM):

– Length 10 cm

– P < 10-7 bar

– ~ 30000 times smaller 
gain
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• Both monitors:

– Parallel electrodes (Al, SEM: 
Ti) separated by 0.5 cm

– Low pass filter at the HV 
input

– Voltage 1.5 kV

Quench levels
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Industrial production of 
chambers

Beam loss must beBeam loss must be
measured all around
the ring
=> 4000 sensors!
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System layout
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Successive running sums
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