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LSM = LYM + LD + LYukawa + LHiggs

In this course we shall not consider possible gauge-fixing
and ghost field contributions (which may result from other
choices of gauge)

The kinetic part
of the gauge fields

The Dirac fermions

The Yukawa sector
(interactions between the

Higgs doublet and fermions)

Higgs dynamics and EWSB



Local Gauge Invariance

Let us consider transformations which do depend on the
space-time coordinates (θa = θa(x)). One speaks in this
case of local or gauge symmetries (Weyl 1929).

The advantage of gauge symmetries is that from a free
theory invariant under global transformations it is possible
to construct a theory invariant under local transformations
(gauge transformations) by adding interaction terms and
one or more vector fields (gauge fields).

How to introduce these terms is not arbitrary but the
imposition of the invariance of the Lagrangian under gauge
transformations allows us to “generate” interactions and
introduce vector fields which are the mediators of forces.



Example: Electromagnetism

Consider, as a starting point, the Dirac equation for a free
electron

LD = ψ̄(x)(iγµ∂µ −m)ψ(x)

which is invariant under global U(1) transformations:

ψ(x)→ ψ′(x) = e−iαψ(x)
ψ̄(x)→ ψ̄′(x) = eiαψ̄(x) .

The corresponding local symmetry is:

ψ(x)→ ψ′(x) = e−iα(x)ψ(x)
ψ̄(x)→ ψ̄′(x) = eiα(x)ψ̄(x) .



The mass term of the Lagrangian is invariant under the
local transformation, but the derivative term is not:

ψ̄(x)∂µψ(x)→ ψ̄(x)∂µψ(x)− iψ̄(x)[∂µα(x)]ψ(x) .

To offset this additional term one can define a covariant
derivative with the property:

Dµψ(x)→ e−iα(x)Dµψ(x)

which provides an invariant term in the Lagrangian ψ̄(x)Dµψ(x).
The covariant derivative is obtained with the introduction
of a vector field (gauge field) aµ(x):

Dµψ(x) = (∂µ + ieaµ)ψ(x)

where the gauge field transforms under U(1) by:

aµ(x)→ a′µ(x) = aµ(x) +
1
e
∂µα(x) .



The gauge field is not currently a dynamic field, it can
be eliminated using the equation of motion. To make it
physical we must add a kinetic term. A term which is
gauge invariant and derived from the field aµ which is also
renormalisable such as fµν(x)fµν(x) where

fµν(x) = ∂µaν(x)− ∂νaµ(x) .

With the usual normalisation for the kinetic term, the
Lagrangian deduced from Dirac’s Lagrangian with the
application of local invariance is

LQED = ψ̄(x)(iγµDµ −m)ψ(x)− 1
4
fµν(x)fµν(x) ,

which is the Lagrangian of quantum electrodynamics (QED).

It may be noted that there is an absence of a mass term for
the field aµ. The reason for this is that the mass term
maµaµ is not gauge invariant. The photon is therefore
massless.



Example: The Yang-Mills theory

Electromagnetism can be generalised (Yang and Mills 1954)
to rotation by a phase where the phase is a matrix:

ψ → Sψ

with S being a special unitary matrix, for example S ∈
SU(2) and ψ a doublet. The invariance of physics in
relation to local rotations of SU(2)

S(x) = e−iθa(x)σa/2 a = 1, 2, 3

the σa being the Pauli matrices, can be done in analogy if
we consider an infinitesimal transformation of SU(2)

S(x) # 1− i
θa(x)σa

2
,



where the transformation of the vector field Aµ(x) is

Ai
µ(x)→ Ai

µ(x)− 1
g
∂µθi + εijkθj(x)Ak

µ(x) .

Compared to the Abelian case we have an εijk term and
Ai

µ transforms as a triplet in the adjoint representation of
SU(2). So the fields Ai

µ are charged against the charge of
SU(2) whilst for U(1) we had a neutral field (the
photon) compared to the charge of U(1) (electric charge).
The tensor Fµν(x):

F i
µν(x) = ∂νAi

µ(x)− ∂µAi
ν(x) + gεijkAj

µ(x)Ak
ν(x)



is a triplet under the gauge transformation of SU(2):

F i
µν(x)→ F i

µν(x) + εijkθj(x)F k
µν .

The tensor F i
µν(x) is not gauge invariant, however, the

product

Tr
[
(σaF a

µν(x))(σbF bµν(x))
]
∝ F i

µν(x)F iµν(x) ,

which we will use in the Lagrangian, is invariant. In terms
of some of the other differences with the Abelian theory is
the presence of self-interaction terms for the gauge fields in
the kinetic term.



Before progressing with a closer analysis of this Lagrangian
and its components, we first need some background theory.
We shall start with a look at symmetries, where in
quantum mechanics an exact (unbroken) symmetry T has
the property of transforming the states of a system:

T : φ → φ′

such that the transition probabilities do not change

|〈φ, ψ〉|2 = |〈φ′, ψ′〉|2 .

Symmetry breaking



The operator U of the transformation is unitary or
anti-unitary, and in terms of an observable A

T : A→ A′ = UAU−1 .

Such a transformation preserves the commutation relations
and more general algebraic relations, especially any
equations of motion in the theory do not change under
the transformation T .



Conversely one may ask whether a symmetry of the
equations of motion implies an exact symmetry.

The answer is yes for a system with a finite number of
degrees of freedom.

If the number of degrees of freedom of the theory is infinite
(as in field theory) the answer is no. The reason is the
presence of nonequivalent representations of canonical
commutation relations. The symmetry of the equations
of motion may not give rise to transformations of system
states which preserve the transition probability. One speaks
in this case of spontaneously broken symmetries.



As an example consider a non-relativistic system in the
limit of infinite volume (which allows for an infinite number
of degrees of freedom). The Lagrangian of a scalar field φ
in this case is

L = iφ† ∂φ

∂t
− 1

2m

∂φ†

∂xi

∂φ

∂xi
.

The equations of motion correspond to the Schrödinger
equation

i
∂φ

∂t
+

1
2m

∆φ = 0 .

The Lagrangian and the equations of motion are invariant
under U(1) the transformation

φ→ e−iθφ φ† → eiθφ† .



The general solution of the Schrödinger equation is

φ(x, t) =
1√
V

∑

k

ake−i(ε(k)t−ik·x)

with the dispersion relation ε(k) =
k2

2m
and

[
ak, a†

k′

]
= δkk′ . The Hamiltonian and number operator

are
H =

∑

k

k2

2m
a†
kak N =

∑

k

a†
kak

with [H,N ] = 0, which expresses the conservation of
particle number.



The fundamental state of n particles (the vacuum of our
theory) is

|n〉 =
(a†0)n

√
n!

|0〉 ,

where a†0 = a†k=0 and |0〉 is the vacuum for zero particles
ak|0〉 = 0. The vacuum |n〉 is unique, an eigenvector of the
operator N . The vacuum explicitly has the U(1) symmetry.

Now consider the limit V → ∞ with a constant density of
particles ρ = N/V . We will see that the symmetry U(1)
is spontaneously broken in this limit. To prove this just
consider the vacuum state for the system.



A vacuum in the limit of infinite volume is

|θ〉 = exp(−n/2) exp(
√

neiθa†0)|0〉

and under the U(1) symmetry this is not invariant

|θ〉 → U(α)|θ〉 = |θ + α〉

where the unitary operator of transformation is

U(α) = eiαN .

To be convinced that this represents a vacuum for the
theory it suffices to verify some properties: First, because
the relation H|θ〉 = 0 for any |θ〉 all these statements have
the same energy E = 0.



However, there are no eigenvectors of the operator N , but
the average number of particles corresponds to n:

〈θ|N |θ〉 = n

all these states |θ〉 are orthogonal and normalised in the
limit of infinite volume (to keep the density ρ constant n
must also tend to infinity):

〈α|θ〉 = exp{n[cos(θ − α)− 1 + i sin(θ − α)]}→ δθα

when n →∞.



In the physics of a relativistic system, the dispersion rela-
tion is determined by the Poincaré transformations

ε(k) =
√

k2 + m2

and ε(k) → 0 when k → 0 behaviour is possible only for
a massless particle. This result is known as the Goldstone
theorem.

But more on that later.

The presence of degenerate vacuums implies the existence of
excitations in the zero energy of the system, a result related
to the dispersion relationship ε(k)→ 0 when k → 0.



Spontaneously broken discrete symmetries

We have seen that the basis of spontaneous symmetry
breaking was that an invariance of the theory (in the
Lagrangian) leads to a ground state of the theory (the
vacuum) which is degenerate.

That is, when it is transformed under the symmetry group
it is not invariant.

One of the simplest examples is the Lagrangian a real scalar
field φ invariant under parity transformations:

L =
1
2
∂µφ∂µφ− V (φ2)

with
P : φ→ −φ P 2 = 1 .



For the potential V (φ2) we choose the form:

V (φ2) =
µ2

2
φ2 +

λ

4
φ4 .

In order to have a lower limit on the potential (that is, an
energy requirement for the system) λ must be a positive
constant. If µ2 is positive the potential has its minimum at
φ = 0, and as a results of that the Hamiltonian

H =
1
2
∂0φ∂0φ +

1
2
∂iφ∂iφ + V (φ2)

commutes with the parity operator

P |0〉 = |0〉 .



As such P |0〉 and |0〉 have the same energy and coincide.
Therefore the vacuum state of the scalar field is zero:

〈0|φ|0〉 = 〈0|P−1PφP−1P |0〉 = 〈0|PφP−1|0〉 = −〈0|φ|0〉 ,

this being the only possible solution: 〈0|φ|0〉 = 0.

If µ2 < 0 though, the potential V has two minima for

φ = ±
√
−µ2

λ
≡ ±v .

If we call |D〉 and |G〉 the two quantum states that
correspond to the standard configuration φ = ±v, parity
operations are a skip from one to the other

P |D〉 = |G〉 %= |D〉 .



The expectation value of the vacuum |D〉 or |G〉 of the
scalar field:

〈D|φ|D〉 = 〈D|P−1PφP−1P |D〉 = −〈G|φ|G〉

are no longer necessarily zero. It has a Lagrangian which
is symmetric and two degenerate vacuum state which are
not, the parity is spontaneously broken.

Our system therefore has a potential which is a double well.
It can be surprising to obtain two degenerate vacuum
solutions when quantum tunnelling could remove this
degeneracy.

The difference between the result of quantum mechanics
and that of field theory is due to the infinite number of
degrees of freedom in the second case.



To see this behaviour in detail we will consider a double
well potential in quantum mechanics and take the limit to
infinite volume.

The tunnelling gives a transition probability between the
non-zero |D〉 and |G〉, where the Hamiltonian has the form

(
E ε
ε E

)

and two eigenvalues

λ1 = E − ε λ2 = E + ε



corresponding to the eigenvectors

|1〉 =
1√
2

(|D〉 − |G〉) and |2〉 =
1√
2

(|D〉+ |G〉)

respectively. The degeneracy is removed and the vacuum
of the theory is |1〉 with energy λ1.

If at time t = 0 we are in the minimum of the potential,
the evolution time t given by quantum mechanics is

|D〉 =
1√
2
e−iλ2t

(
|2〉+ e2itε|1〉

)

and the period of oscillation between the two minima of the
potential is T = π/ε. For our scalar potential, the width
of the barrier is fixed and is 2v, the distance between two
minima.



The height of the barrier is the energy difference between
the maximum potential φ = 0 and a minimum in φ = ±v:

H(φ = 0)−H(φ = v) = −
∫

Vol
d3x

(
µ2

2
v2 +

λ

4
v4

)

=
µ4

4λ

∫

Vol
d3x =

µ4

4λ
Vol .

H is the Hamiltonian of the scalar field, which is obtained
by integrating the Hamiltonian density. In the infinite
volume limit the height of the potential is infinite and the
difference in the energy is 2ε → 0.

The transition between the two states |D〉 and |G〉 is
impossible in the limit of infinite volume and this allows us
to have the spontaneous breaking of symmetry.



Spontaneously broken continuous symmetries

As we build up to the Goldstone theorem, consider a scalar
theory with an O(3) symmetry

L =
1
2
∂µφ ∂µφ− µ2

2
φ2 − λ

4
φ4 .

The notation is compact, φ ≡ (φ1, φ2, φ3) is a vector of
O(3) and φ2 is the scalar product φ ·φ, the fourth power of
φ means φ4 = (φ · φ)2.

An infinitesimal rotation through the angle θ in the
direction of the vector n (with |n|2 = 1) can be written as

φ→ φ + θ φ ∧ n .



Since a rotation leaves the length of a vector invariant, for
an infinitesimal rotation we can write

|φ|2 → |φ + δφ|2 = |φ|2 + 2φ · δφ + O(δφ2)

and conclude that φ and δφ are orthogonal φ · δφ = 0 in
order to keep the vector invariant.

By definition of the vector product a rotation around the
direction n, δφ must also be orthogonal to n, as follows by
comparing the above formulas

δφ = θ φ ∧ n .

For example if n ≡ (0, 0, 1) one finds

δφ1 = θ φ2 δφ2 = −θ φ1 δφ3 = 0 .



The minimum of the potential is given by

∂V

∂φi
= µ2φi + λφi|φ|2 = 0

with two possible solutions φi = 0, or |φ|2 = v2 with

v =

√
−µ2

λ
.

The minimum is found by examining the second derivative

∂2V

∂φi∂φj
= δij(µ2 + λ|φ|2) + 2λφiφj .



According to the sign of µ2 we have the following two
possibilities:

µ2 > 0 φ = 0 ,

µ2 < 0 |φ|2 = v2 .

If µ2 > 0 we have a single real minimum φ = 0.

In the case µ2 < 0 we have an infinite number of degenerate
minima, the points on the sphere |φ|2 = v2.

By choosing one of these points, for example φi = δi3v, we
can be develop an expansion around the minimum

V (φ) = V |min +
1
2

∂2V

∂φi∂φj

∣∣∣∣
min

(φi − δi3 v) (φj − δj3 v)



and use the differences (φi−δi3v) as new fields to be treated
as physical around that minimum. The previous formula
indicates the mass of the field after breaking the O(3)
symmetry:

M2
ij =

∂2V

∂φi∂φj

∣∣∣∣
min

= −2µ2δi3δj3 =




0 0 0
0 0 0
0 0 −2µ2



 .

So the masses of the fields φ1 and φ2 are zero, by the
conservation properties of the field χ = φ3 − v is nonzero:

m2
φ1

= m2
φ2

= 0 , m2
χ = −2µ2 .



The potential in terms of the new fields shows explicitly
how the O(3) symmetry is broken:

V = −
m4

χ

16λ
+

1
2
m2

χχ2 +

√
m2

χλ

2
(
φ2

1 + φ2
2 + χ2

)
χ

+
λ

4
(
φ2

1 + φ2
2 + χ2

)2
.

It may be noted that the Lagrangian has a residual O(2)
symmetry, because V depends only on the combination
φ2

1 + φ2
2 which is invariant for rotations around the axis

(0, 0, v).



This potential is not usually possible with the O(2)
symmetry, the spontaneous breaking of the O(3) symmetry
imposes constraints on the shape of the Lagrangian. It was
also shown that we obtained a theory with two scalar bosons
without mass corresponding to the symmetry breaking by
the two axes 1 and 2. This has a correspondence in terms
of the generators of O(3):

T1 = −i




0 0 0
0 0 1
0 −1 0



 , T2 = −i




0 0 −1
0 0 0
1 0 0



 , T3 = −i




0 1 0
−1 0 0
0 0 0





compared to their action on the vacuum (the state
minimum we chose)

|0〉 =




0
0
v



 .

The vacuum is not invariant for rotations around the axes
1 and 2, whilst the O(2) invariance remains with respect to
rotations around axis 3:

T1|0〉 "= 0 T2|0〉 "= 0 T3|0〉 = 0 .

)



The Goldstone theorem

In general, if a group with an internal symmetry G is broken
spontaneously into a group H ⊂ G which corresponds to
a symmetry of the vacuum state, the number of Goldstone
bosons is the number of generators of G minus the number
of generators of H.1 Since the size of a group is given by
number of generators we can write the number of Goldstone
bosons as

dim(G)− dim(H) = dim(G/H) ,

where G/H is called the quotient group. The physical
origin of these massless particles is due to the fact that
broken generators allow transitions between degenerate
vacuum states (which have the same energy) and these
transitions do not cost any energy to the system.
1 There is a peculiarity in the case of Goldstone bosons in two dimensional theories, which we will not

consider here, see the Coleman-Mermin-Wagner theorem.



Spontaneously broken internal symmetries

Consider a theory with scalar fields φi(x) and let φ0 be
the constant field which minimizes the potential V (φ). By
definition the minimum is

∂V

∂φi

∣∣∣∣
φi(x)=φ0

= 0 ,

and if we expand around the minimum

V (φ) = V (φ0) +
1
2
(φ− φ0)i (φ− φ0)j

(
∂2V

∂φi∂φj

)

φ0

+ . . .

The coefficient of the quadratic term is a symmetric matrix
(

∂2V

∂φi∂φj

)

φ0

= m2
ij

its eigenvalues giving the masses of the fields.



To prove the Goldstone theorem we must show that every
continuous symmetry of the Lagrangian which is not a
symmetry of φ0 gives an eigenvalue of zero in the mass
matrix.

The generators TA of the symmetry G are spontaneously
broken into two separate classes, a number dim(H)
generators Tα are unbroken:

Tα φ0 = 0

in the residual group H, and a number dim(G) − dim(H)
generators T a are broken:

T a φ0 "= 0

in the quotient G/H.



The symmetry transformation is given by

δφ(x) = cATAφ0 = caT aφ0 .

The index has A has values (α, a), the cA = (ca, cα) are
function fields.

The invariance of the potential under a symmetry
transformation reads

V (φA) = V (φA + cATAφ0)

or as
cATA ∂V

∂φA
= 0 ,



by differentiation with respect to φB with φ = φ0 we obtain

0 =
(

∂cATA

∂φB

)

φ0

(
∂V

∂φA

)

φ0

+ cATA

(
∂2V

∂φA∂φB

)

φ0

.

The first term is zero because φ0 is a minimum of V . The
second must, therefore, also vanish.

For cαTα = 0 our equation is satisfied without restrictions
on the second derivative of V .

For ca(x)T a != 0 the second derivative of V must be zero.
This implies the values are zero for the mass matrix in
numbers equal to the number of broken generators and
demonstrates the Goldstone theorem.



Exercise A

Consider a complex scalar field φi in the vector
representation of SU(n), which transforms as follows under
infinitesimal transformations of SU(n)

φi → φi + iεj
iφj

φi → φi − iεi
kφk

with φ∗
i = φi. Find an expression which is invariant

under SU(n) transformations and construct a
renormalisable scalar potential for a general theory in
4-dimensions.



Choose a value for the vacuum of the scalar field as

〈0|φ|0〉 =





0
0
...
0
v





and consider the translation of this minimum of the field to
study the properties of the components of the scalar field.
How many Goldstone bosons remain massless in the
spectrum of the theory? What is the residual group
invariance of the theory?



Doing the same exercise with two complex scalar fields φ1i

and φ2i in the vector representation of SU(n), where they
transform in the same way that φi previously did. Build
the scalar potential and do not forget to also consider the
terms which mix the two fields.

Select vacuum expectation values

〈0|φ1|0〉 =





0
0
...
0
v1




〈0|φ2|0〉 =





0
0
...
v2

v3





and study the symmetry breaking.



The Higgs mechanism
The Goldstone theorem is a problem rather than a
solution for generating masses. In the spontaneous
breaking of a symmetry we obtained massless particles.
When one spontaneously breaks a gauge theory the results
are very different. The reason is that the Goldstone
theorem does not apply to a gauge symmetry because it is
impossible to quantify a gauge theory, keeping at the same
time the covariance of the theory and that the norm of the
Hilbert space remain positive.

In the case of a spontaneously broken gauge theory the
gauge bosons corresponding to the broken symmetries have
mass and the corresponding Goldstone bosons disappear.
We call this phenomenon the Higgs mechanism.



Example: O(2)

We can consider the example of a theory with an O(2)
symmetry

L =
1
2
∂µφ ∂µφ− µ2

2
φ2 − λ

4
φ4 ,

with vector fields φ having two real components. The
symmetry O(2) is not a gauge symmetry and we can repeat
the analysis of the previous section. If µ2 < 0 we can choose
the vacuum

φ = (v, 0) , v =

√
−µ2

λ

and make a translation of the field φ1 to φ1 = χ + v,



with the potential becoming

V = −
m4

χ

16λ
+

1
2
m2

χχ2+

√
m2

χλ

2
(
φ2

2 + χ2
)

χ+
λ

4
(
φ2

2 + χ2
)2

.

The Goldstone boson φ2 remains massless and the
continuous symmetry, O(2), is completely broken (except
for a discrete symmetry φ2 → −φ2). The infinitesimal
transformation under O(2) of the field φ is given by

δφ1 = −αφ2 , δφ2 = αφ1

and in terms of the new fields

δχ = −αφ2 , δφ2 = αχ + αv .



Thus the Goldstone boson, in terms of new variables,
becomes a rotation plus a translation. The invariance of
the field to translation makes the potential V flat in this
direction, and this in turn means that the translation does
not cost any energy and the particle is massless.

We will now analyze the same model in the case of a local
symmetry (gauge symmetry). The invariance under
transformations of the Goldstone boson becomes

δφ2(x) = α(x)χ(x) + α(x)v

and since α(x) is an arbitrary function of space-time there
can be a choice of how to eliminate φ2.



To see these details we can transform to polar coordinates

ρ =
√

φ2
1 + φ2

2 , θ = arcsin
φ2

ρ
,

where the transformation under finite rotations is

ρ→ ρ , θ → θ + α .

In the case of an infinitesimal systems of two coordinates
coinciding:

ρ =
√

φ2
2 + χ2 + 2vχ + v2 ∼ v + χ , θ ∼ φ2

χ + v
∼ φ2

v
.

we make the theory invariant under local transformations

θ(x)→ θ(x) + α(x)

with the choice α(x) = −θ(x) and the field θ(x) can be
completely eliminated from the theory.



To explicitly construct the local theory with invariance we
must introduce a gauge field and covariant derivatives. It
is easier to change by writing the dipole field real scalar in
terms of a complex field

φ =
1√
2
(φ1 + iφ2) , φ† =

1√
2
(φ1 − iφ2)

and rotations of O(2) become phase transformations for the
complex field φ

φ→ eiαφ .

The Lagrangian model is written in the new variables

L = ∂µφ†∂µφ− µ2φ†φ− λ(φ†φ)2 .



To make the Lagrangian invariant under the local
transformations we must introduce covariant derivatives

∂µφ→ (∂µ − igAµ)φ = Dµφ

and the kinetic term for the gauge field Aµ. Therefore

L = −1
4
FµνFµν+(∂µ+igAµ) φ† (∂µ−igAµ) φ−µ2φ†φ−λ(φ†φ)2 .

It is difficult to read directly the masses of the particles
from this Lagrangian because we have a mixing term Aµ∂µθ
between the Goldstone boson θ and the gauge boson Aµ.



It is possible, by a gauge transformation to eliminate the
mixing term because we saw how to completely eliminate
the Goldstone boson from the Lagrangian earlier. In polar
coordinates

φ =
1√
2

ρ eiθ , φ† =
1√
2

ρ e−iθ .

The gauge transformation that eliminates θ is φ → φ e−iθ

for the scalar field, and Aµ → Aµ −
1
g
∂µθ for the gauge

field.
The Lagrangian becomes

L = −1
4
FµνFµν + (∂µ + igAµ)ρ(∂µ − igAµ)ρ

−µ2

2
ρ2 − λ

4
ρ4 .



We have to perform the translation in order to be around
the minimum ρ = χ+v, and one can see that the covariant
derivative term generates a mass term for the gauge field

1
2
g2v2AµAµ ,

thus the gauge field has mass

m2
A = g2v2

and the Goldstone boson has disappeared from the theory.
The choice of gauge where the Goldstone boson vanishes is
the gauge unit. Note that the number of degrees of freedom
of the theory has not changed: Initially we had two real
scalar fields and two components of a massless gauge boson.
After the gauge transformation we had a single real scalar
field and three components of a massive boson.



In general, if the global symmetry group of the Lagrangian
is G, H ⊂ G is the invariance group of the vacuum, and
GW ⊂ G the local gauge symmetry (with K = H∩GW #= 0)
the broken generators of G can be separated into two
categories: TK ∈ K are the generators associated with the
massive gauge bosons, and the other broken generators
correspond to massless Goldstone bosons. The unbroken
generator GW corresponds to massless gauge bosons.



Exercise B
Consider the Lagrangian of the local O(3) symmetry

L = −1
4
FµνFµν +

1
2
(Dµ)ijφj(Dµ)ikφk−

µ2

2
φiφi−

λ

4
(φiφi)2

with covariant derivative

(Dµ)ij = δij∂µ − ig (Ta)ij W a
µ

and (Ta)ij = −iεaij . Choose the solution with spontaneous
symmetry breaking (µ2 < 0) and the vacuum of the theory
along the 3 direction:

φi = v δi3

and show that both gauge fields Wµ
1 and Wµ

2 associated
with broken generators T1 and T2 have weight g2v2. Also
show that Wµ

3 has zero mass.


