

Clinical Applications of Particle Physics

Thierry M. Muanza, BA, MSc, MD, FRCPC McGill University Department of Oncology/Radiation Oncology Segal Cancer Centre Jewish General Hospital

STIAS, Stellenbosch, RSA, 19-08-2010

Outline

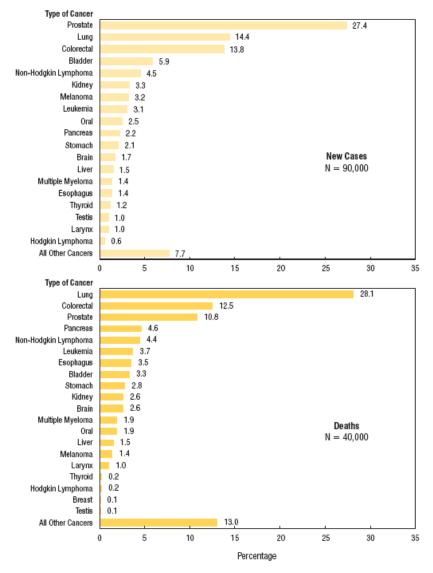
- Physics & Chemistry of Radiation Absorption
- Radiobiological basis of Radiotherapy
- Treatment Planning
- Charged particles

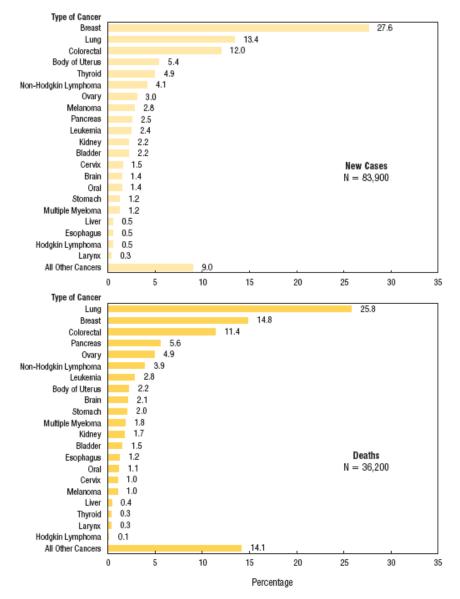
X-rays

- 1895 Roentgen discovery of X-rays
- 1896, 1st medical use reported in Lancet (Dx)
 - X-ray of sailor's backbone to remove piece of a knife
- 1896, L. Freund treatment of a hairy mole before Vienna Medical Society

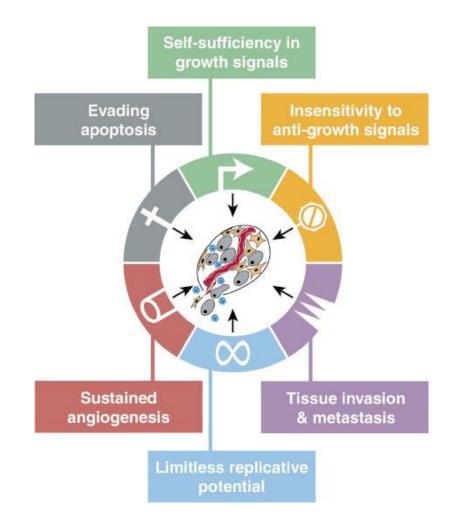
1st Therapeutic use

- 1896, , L. Freund treatment of a hairy mole before Vienna Medical Society
- A-H Becquerel discovery of radioactivity emitted by uranium compounds
- Becquerel INADVERTENTLY left radium container in his vest pocket


• 1901, Pierre Curie "radiation burn"


Mortality for the leading causes for death

- Heart diseases 36%
- Cancer 22%
- CVA diseases 7%
- Accidents 5%
- By 2003 statistics (Canada), cancer is equal to cardiovascular disease as a leading cause of death


Percentage Distribution of Estimated New Cases and Deaths for Selected Cancers, Males, Canada, 2010

Percentage Distribution of Estimated New Cases and Deaths for Selected Cancers, Females, Canada, 2010

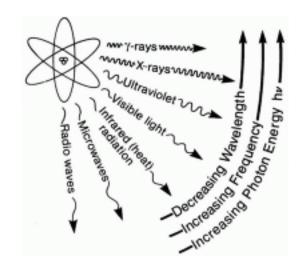
Hallmarks of Cancer

Cell, Vol. 100, 57–70, January 7, 2000, Copyright ã2000 by Cell Press

Radiobiology & Radiotherapy

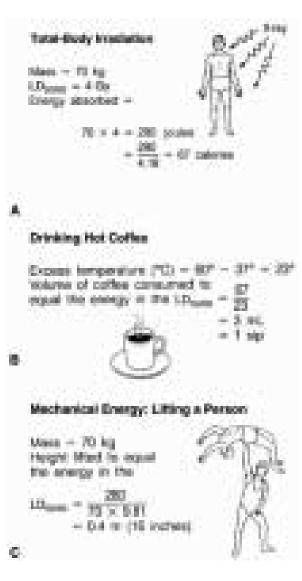
The study of the interaction of ionizing radiation on living things

excitation or ionization


• The medical use of ionizing radiation to treat malignant disease.

Radiobiology & Radiotherapy

- IR local release of large amount of energy
- ~ 33eV dissipated / ionizing event, enough to break strong chemical bond
- energy associated C=C bond is 4.9 eV
- Types:
 - Electromagnetic
 - particulate


Electromagnetic Radiations

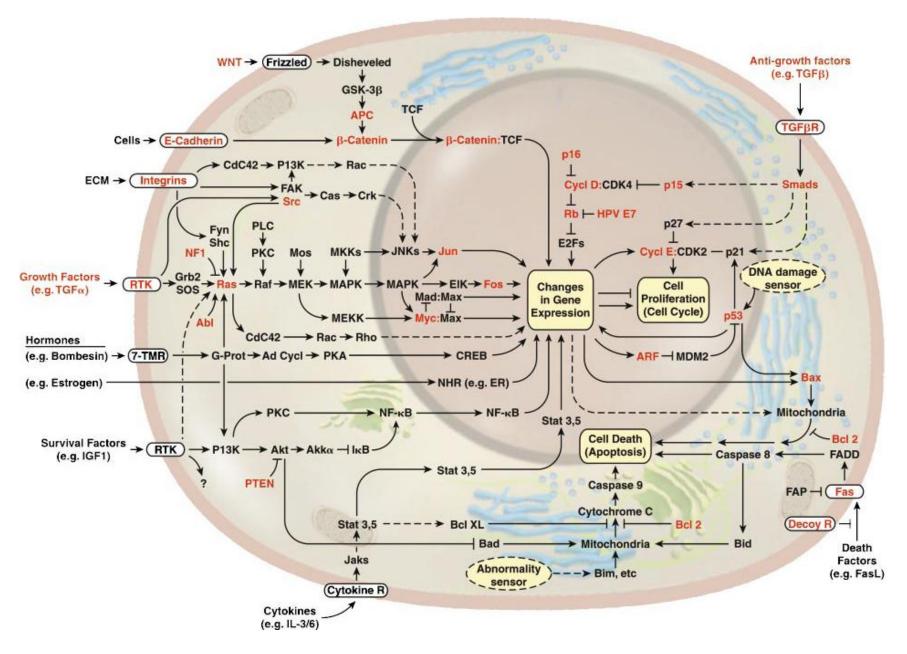
- X-rays and γ-rays
 - extranuclear and intranuclear production
- X-rays
 - electrical & magnetic energy
 - λv=c
 - Streams of photons/"packets" energy
 - hµ
 - λA=12.4/E(keV)

Radiobiology

- Concept of X-rays composed as photons is central in radiobiology
- Energy is deposited in tissues & cells unevenly in discrete packets culminates in biologic change

The biologic effect of radiation is determined not by the

amount of the energy absorbed but by the photon size, or packet size,

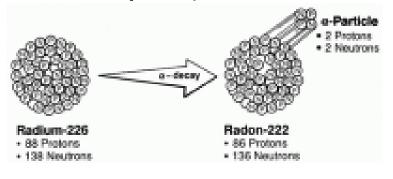

of the energy. A: The total amount of energy absorbed in a 70-kg

human exposed to a lethal dose of 4 Gy (400 rad) is only 67 cal. **B**:

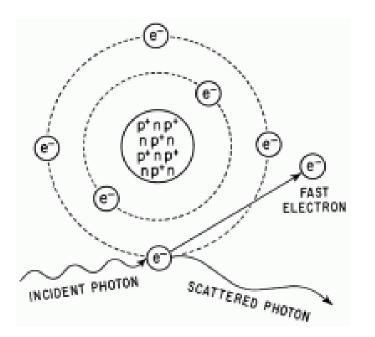
This is equal to the energy absorbed in drinking one sip of hot coffee.

C: It also equals the potential energy imparted by lifting a person

about 16 inches.

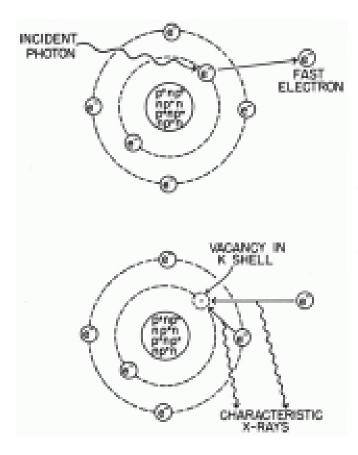


Cell, Vol. 100, 57–70, January 7, 2000, Copyright ã2000 by Cell Press

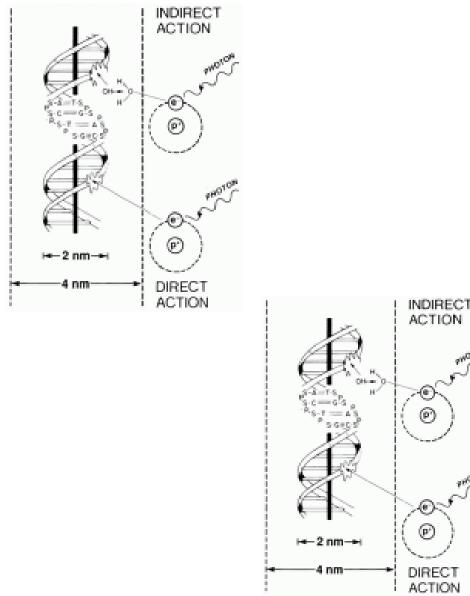

Particulate Radiations

- Electrons, protons, αparticles, neutrons, -π mesons, heavy charged ions
 - small charged particles accelerated to high energy (betatron or linear accelerator)
 - + charged particles, relatively massive, accelerated to high energy (cyclotron)
 - mass like protons, no electrical charge
 - C, Ne, Fe + charged

 α-particles (+charged, decay) lung cancer in smokers (10-20,000 cases/year)



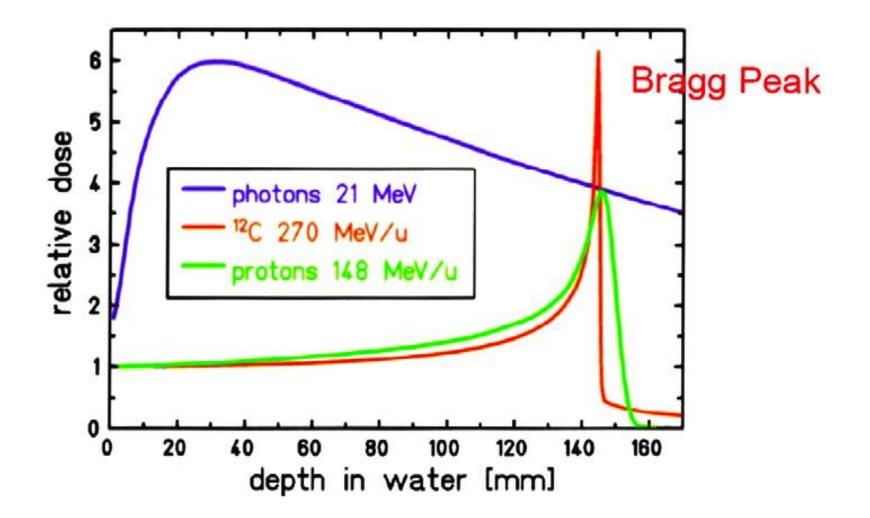
Absorptions of X-rays


- Absorption of an x-ray photon by the Compton process (Co & linac).
- The photon interacts with a loosely bound planetary electron of an atom of the absorbing
- material. Part of the photon energy is given to the electron as kinetic energy. The photon, deflected from its original direction, proceeds with reduced energy.

Absorptions of X-rays

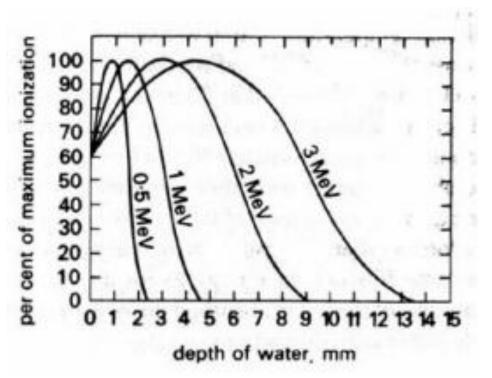
- Absorption of a photon of x- or γ-rays by the Photoelectric process. The interaction involves the photon and a tightly bound orbital electron of an atom of the absorber. The photon gives up its energy entirely; the electron is ejected with a kinetic energy equal to the energy of the incident photon less the binding energy that previously held the electron in orbit **(top). The vacancy is filled either by an electron from an outer**
- orbit or by a free electron from outside the atom (bottom). If
- an electron changes energy levels, the difference in energy is
- emitted as a photon of characteristic x-rays. For soft tissue
- these x-rays are of very low energy.

Action of Radiation



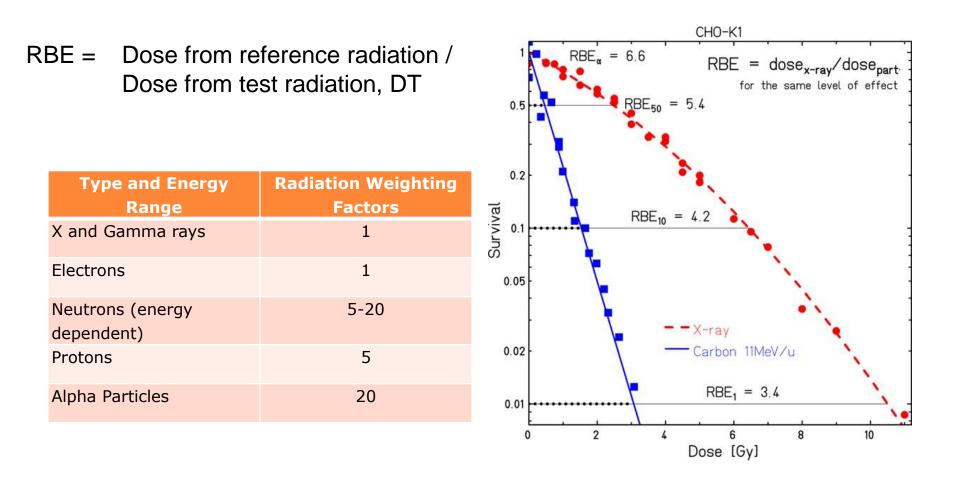
Direct and indirect actions of radiation. The structure of DNA is shown schematically. In direct action, a secondary electron resulting from absorption of an x-ray photon interacts with the DNA to produce an effect. In indirect action, the secondary electron interacts with, for example, a water molecule to produce a hydroxyl radical ($OH \cdot$), which in turn produces the damage to the DNA. The DNA helix has a diameter of about 20 Å (2 nm). It is estimated that free radicals produced in a cylinder with a diameter double that of the DNA helix can affect the DNA. Indirect action is dominant for sparsely ionizing radiation, such as xrays. S, sugar; P, phosphorus; A, adenine; T, thymine; G, guanine; C, cytosine.

Interactions of Charged Particles


- Ionization and excitation
- Mediated by Coulomb force (electric fields of particle & material)
- Heavy charged particles give rises to nuclear reactions (positrons emitters)
 - Rate of energy loss proportional to square of charged particle and inversely to square of its velocity "Bragg peak"

Percent Depth Dose

Interactions of Charged Particles


 Electrons small masses thus multiple scattering and changes in direction of motion resulting in a "smearing out" of the Bragg peak effect

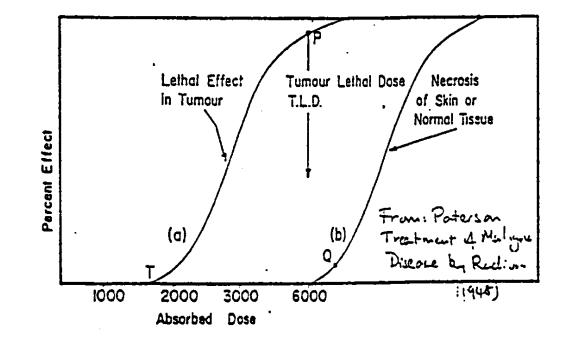
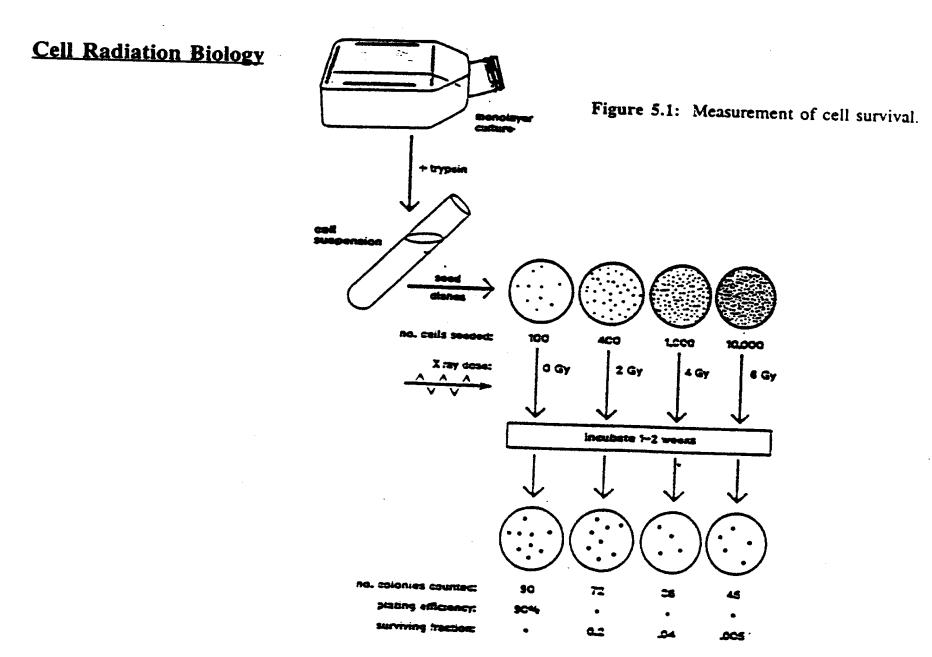
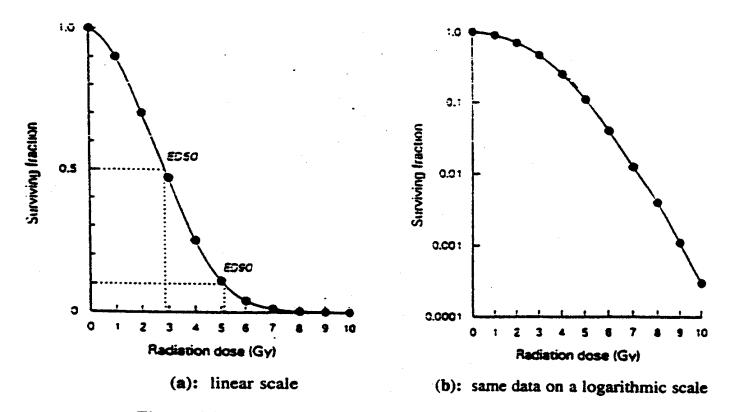
Interactions of Charged Particles

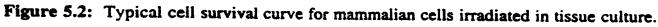
- Neutrons are indirectly ionizing interacting by 2 processes:
 - Recoiling protons: dose deposited in tissue is predominantly from recoil protons, dose absorbed by in fat is 20% > muscle due to differential H content
 - Nuclear disintegrations (charged particles & -rays) give rise to ~ 30% of the tissue dose

Relative Biological Effectiveness

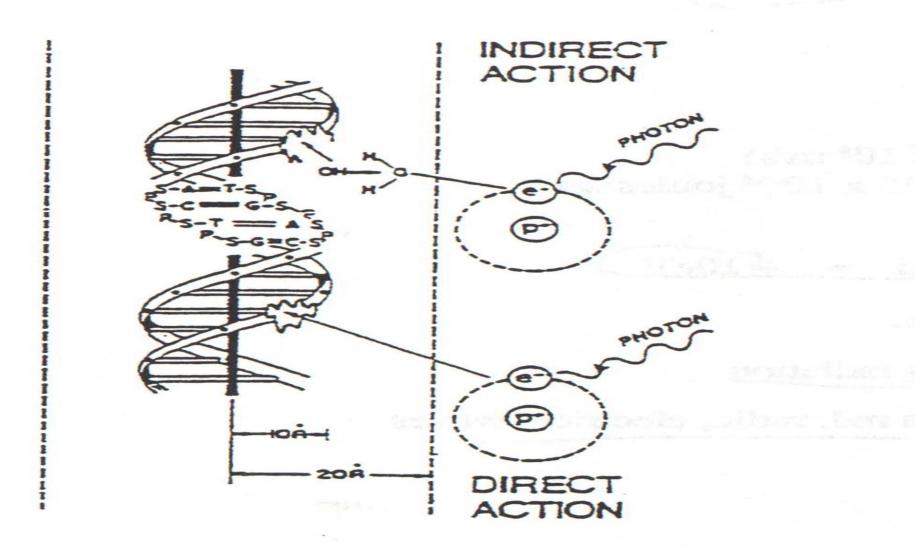
Dose Response Curves

Tumor Radiobiology


Figure 10.1: Therapeutic ratio.

Cell survival curves

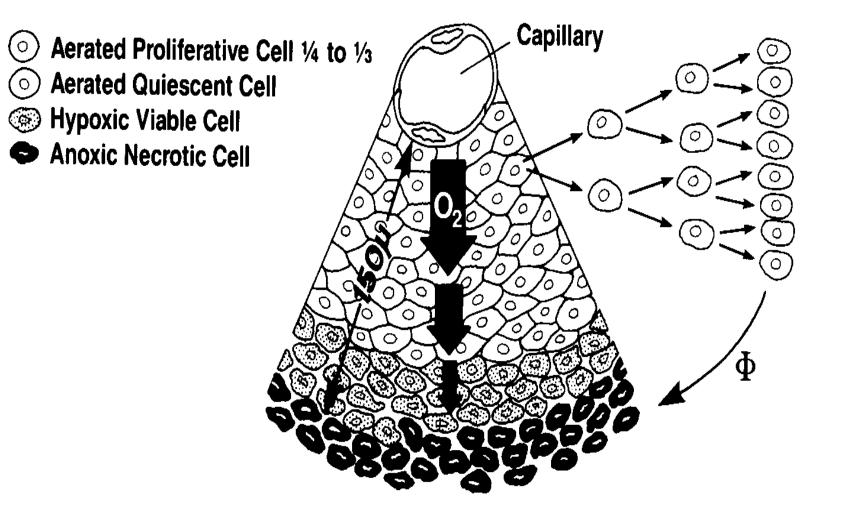


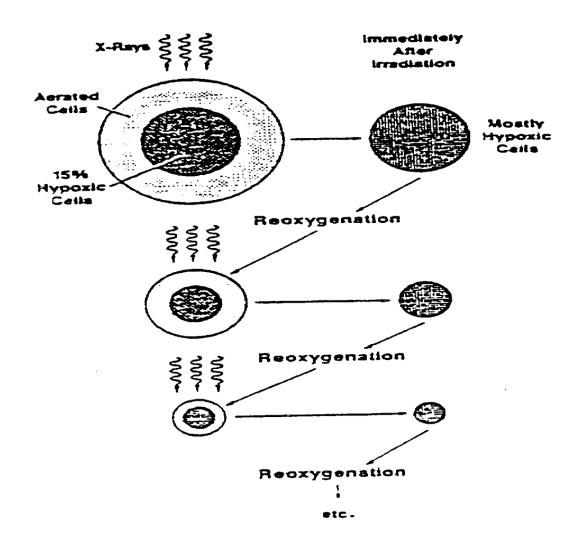
Cell Survival Curves

Mechanism of cytotoxicity

Chromosomal Damage

Apoptosis Reproductive Necrosis death


Effect of Oxygen


Figure 5.25: For sparsely ionizing radiation (x- and γ - rays) the OER is 2.5-3.0 at higher doses at which oxygen is dose modifying. At lower doses < 2.0 Gy, it may have a value of about 2.0.

Tumor Oxygenation

228 | Radiobiology for the Radiologist

Re-oxygenation

Effect of Cell Cycle

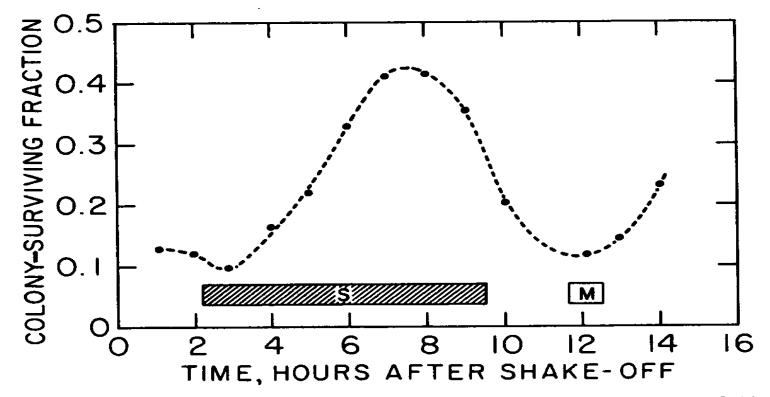


Figure 5-6. Fraction of Chinese hamster cells surviving a dose of 660 rads (6.6 Gy) of x-rays as a function of time. Time zero corresponds to the harvesting of mitotic cells. The cell-surviving fraction increases to a maximum late in S. (Redrawn from Sinclair WK, Morton RA: Radiat Res 29:450-474, 1966)

Why Daily treatments? Four R's of radiotherapy:

- Repair of sub-lethal damage
- Re-oxygenation
- Repopulation
- Redistribution

Effect of fractionation on tissue damage

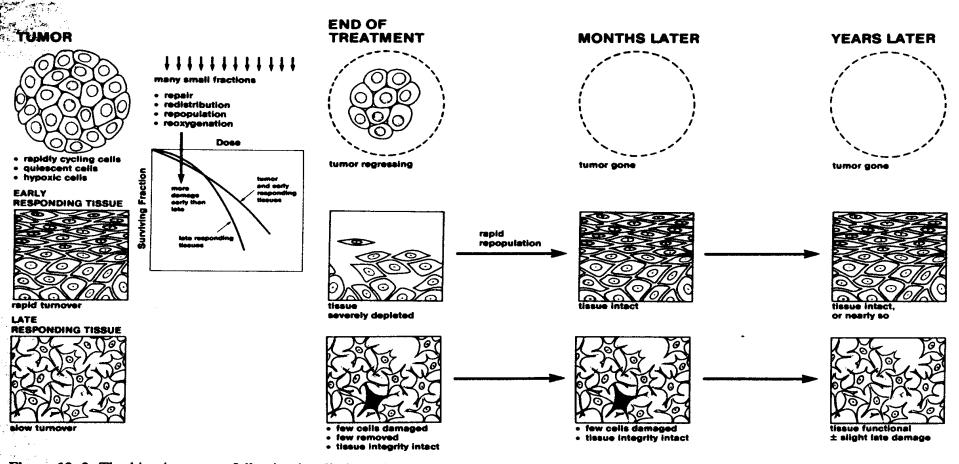
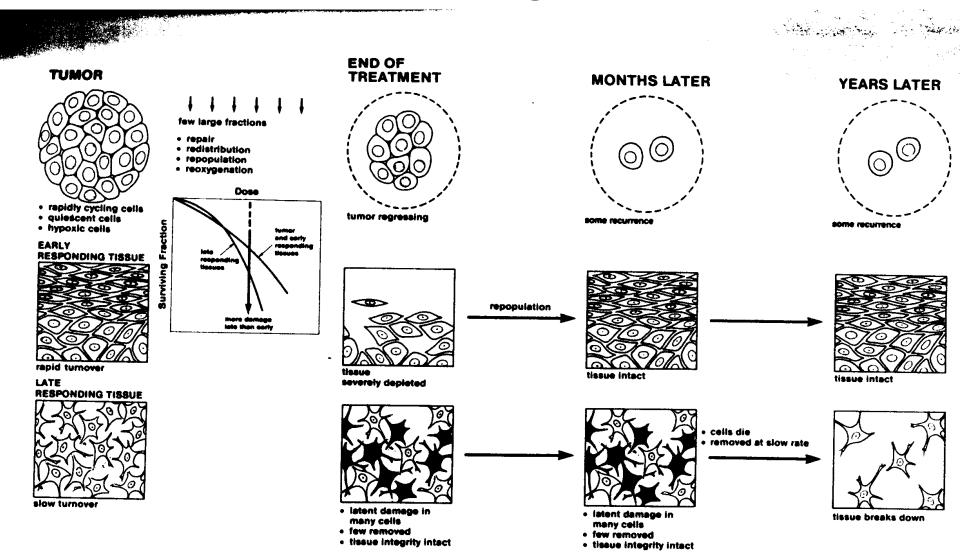
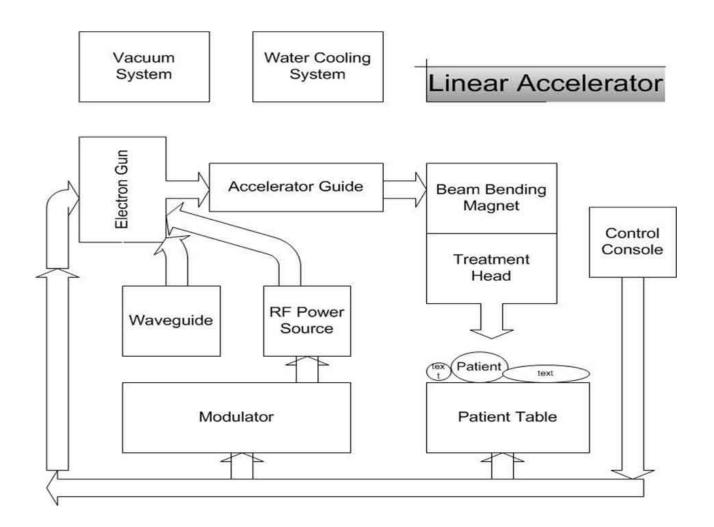
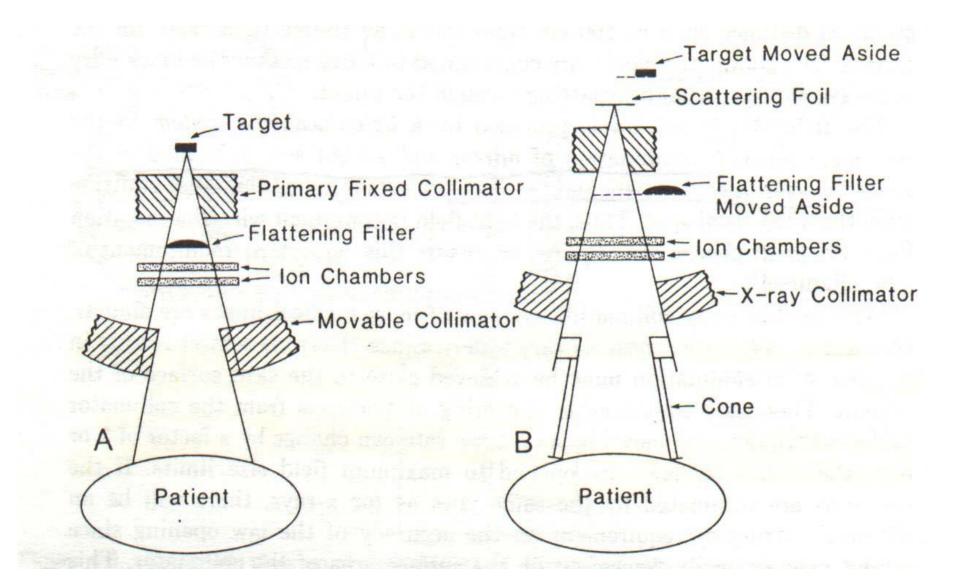



Figure 12-9. The kinetic pattern following irradiation with many small dose fractions. A small dose fraction produces relatively less damage to late-responding than to early-responding tissues because of their curvy dose-response relationship. The tumor regresses and disappears. The early-responding tissues show a reaction but repopulate by rapid cell division. The late responding tissues show little damage.

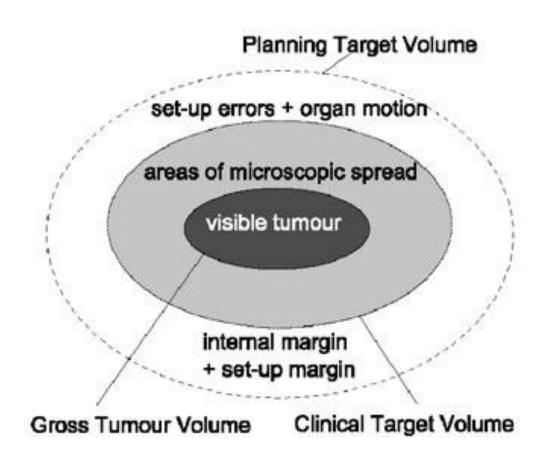

Effect of fractionation on tissue damage



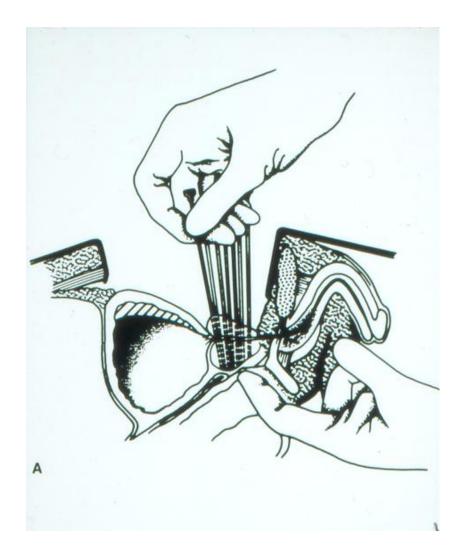
Radiotherapy delivery :

- External beam radiotherapy:
 - Photons:
 - X-rays: Linear accelerators.
 - γ-rays: Cobalt machines.
 - Particles:
 - Electrons.
 - Neutrons.
 - Protons.
- Brachytherapy:
 - Interstitial.
 - Intracavitary.

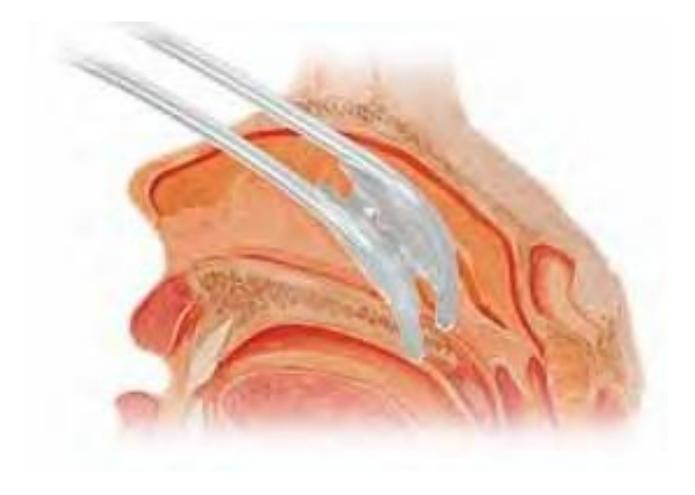
Linear Accelerator

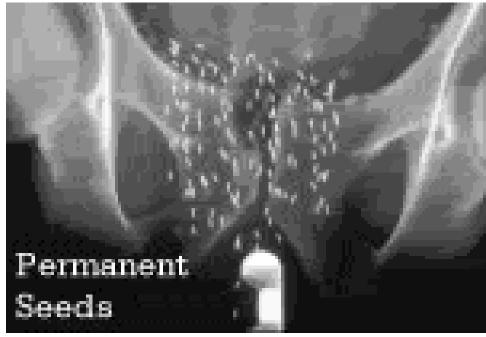


LINAC


XRT Treatment Volumes

Treatment Sequence


Patient referral to oncology		
Investigations	History, physical examination, imaging, biopsy, pathology	
Cancer staging	T = tumor size N = lymph node extension M = metastasis	
Multidisciplinary Tumor Board	Surgeon, radiation oncologist, medical oncologist, pathologist & radiologist	Treatment recommendations / clinical trials
Radiotherapy	CT simulation: immobilisation, isocenter, marking CT planning: image fusion (US/MRI/PET) Target volumes delineation Treatment planning/dosimetry	



- Cancer treatment:
 - Curative Primary:
 - Prostate cancer.
 - Cancer of the head and neck region (early stage)
 - Hodgkin's disease.
 - Cervix cancer.

– Curative as part of a combined approach:

- Lung cancer.
- Non-Hodgkin Lymphoma.
- Cancer of the Head and Neck Region (advanced stage)
- GI malignancies

- Cancer treatment:
 - Curative Adjuvant to surgery:
 - Breast cancer.
 - Sarcoma.
 - Cancer of the Head and Neck region.
 - Carcinoma of the rectum.
 - Tumors of the Central Nervous Systems

- Cancer treatment:
 - Palliative treatment:
 - Pain: Bone metastasis
 - Bleeding: Hemoptysis, Hematuria.
 - Obstructive or compressive symptoms:
 - Superior vena cava
 - Spinal cord compression
 - Brain metastasis.

- Treatment of begnin disease:
 - Prophylaxis of heterotopic bone formation.
 - Arterio-venous malformation.
 - Grave's disease.
 - Keloids.
 - Pterygium.

Timing and clinical manifestation of radiation injury

1-5 years

- 1. Acute clinical period 0-6 months
- 2. Sub-acute period 6-12 months
- 3. Chronic clinical period
- 4. Late clinical period

Acute versus late injury

- Timing depends on cell cycle kinetics
- Clinical importance: reversible versus irreversible
- Correlation between acute and late complications

Factors affecting radiation damage

- 1. Volume to be irradiated
- 2. Total dose
- 3. Fraction size
- 4. Concomitant treatment

Total body irradiation

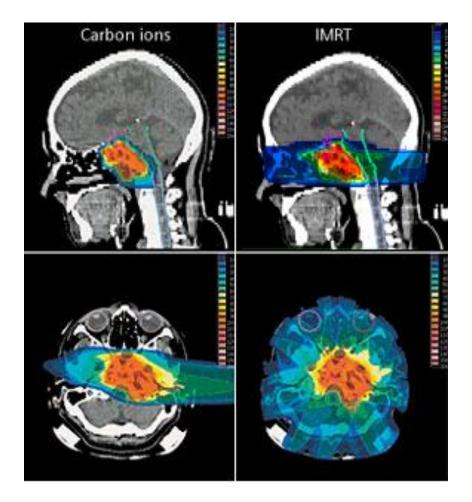
DoseEffectsGroup I0.5-1.5 GyMinimalGroup II1.5- 4 GyMild N/VGroup III4- 6 GyHemopoieticGroup IV6- 14 GyGIGroup V> 50 GyCNS

Radiation-Induced Malignancy

- 1. There is no threshold
- 2. Long latent period
- 3. Within the radiation ports
- 4. Different organ sensitivity
 - Thyroid, breast, lungs
 - Skeletal muscle

Image Guided RT

• Rapid Arc


<u>http://www.youtube.com/watch?v=3s756awll8o</u>

• Cyber Knife

<u>http://www.accuray.com/videos/lung_radiosurger</u>
 <u>y.aspx?video=Accuray_Lung</u>

Charged Particles Therapy

- Advantages
 - Superior dose distribution vs. photons
- Hypothesis
 - Improvement in treatment-related toxicity
 - Would allow for doseescalation studies
 - Should improve local control
 - May improve overall survival

MAGICAL PROTONS?

MICHAEL GOITEIN, PH.D.

Harvard Medical School, Boston, MA; and Windisch, Switzerland

Proton therapy has enjoyed a recent surge of interest. Dozens of new proton centers are being planned, in addition to the approximately 24 now in operation worldwide (1). This enthusiasm is based, in part, on a conviction that the physical advantages of protons have been, in at least some sites, reflected in clinical advantages. The interest in protons has also been fueled by the perception that, although (or, perhaps, because) proton facilities are expensive, proton therapy can be highly profitable.

I find it hard not to be pleased about this growth. However, it carries dangers. Protons are not magical; the mere exposure to protons does not, in itself, doom proliferating malignant cells to their graves. Protons must be used well and, in this connection, I want to sound a few notes of caution. JOURNAL OF CLINICAL ONCOLOGY

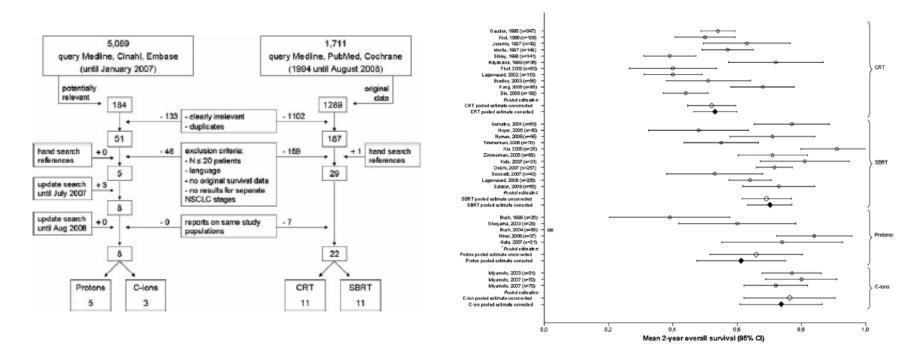
Should Randomized Clinical Trials Be Required for Proton Radiotherapy? An Alternative View

Eli Glatstein, Department of Radiation Oncology, University of Pennsylvenia School of Medicine, Philadelphia, PA John Glick, Department of Medicine, University of Pennsylvenia School of Medicine, Philadelphia, PA Larry Kaiser, Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA Stephen M. Hahn, Abramson Cancer Center, University of Pennsylvania School of Medicine, Philadelphia, PA

The facts offered by Goitein and Cox are incontrovertible in that the dose distribution of proton therapy is superior that of to x-rays. The question really has to do with whether or not these facts translate into *measurable benefits* for patients, and how significant those gains may be. The editorial in question alluded to a prior article in JCO by

Goitein and Cox believe that the superiority of protons rests largely on an improvement of the dose distribution that will almost certainly make for less morbidity. Exploiting that improvement in treatment-related toxicity suggests that dose escalation is feasible and that an improvement of local control should follow. Though local Nonetheless, there is a potential for clinical benefit to be derived from proton therapy compared with conventional x-rays, either from dose escalation and improved local control and/or survival, or from reduced treatment-related morbidity, especially in children. Another important consideration is the potential for increased secondary cancers from proton therapy that has been postulated on a theoretical basis by Hall³ in a recent article. Of course, Hall makes such predic-

community, whether we admit it or not. The enormous expenditures to build a proton center at the moment mean that during the next 5 to 10 years, there will be a relatively small number of facilities that have proton beam therapy.¹² The rest of the radiotherapeutic community will be interested in the outcomes to see if they really need to obtain such technology. It is likely that well-designed clinical trials that randomly assign proton beam therapy to patients would be supported by the National Cancer Institute and possibly even third-party payers themselves. To accrue the required numbers for such studies would probably require a concerted effort from virtually all the major centers


Comparison of the effectiveness of radiotherapy with photons, protons and carbon-ions for non-small cell lung cancer: A meta-analysis

Janneke P.C. Grutters^{a,*}, Alfons G.H. Kessels^b, Madelon Pijls-Johannesma^a, Dirk De Ruysscher^a, Manuela A. Joore^{b,1}, Philippe Lambin^{a,1}

^aDepartment of Radiation Oncology (MAASTRO Clinic), Maastricht University Medical Centre, The Netherlands

^b Department of Clinical Epidemiology and Medical Technology Assessment, Maastricht University Medical Centre, The Netherlands

Appendix 1. Flow diagram of the search results for particle therapy (left) and photon therapy (right)

Study	and	populatio	n charai	Der Blück	for stur	ties on	stage 1	NSCIC.

first author	Year	Study design	Treatment type	Sample size	Fraction dose (Gy)	Praction number	Total dose (Gy)	OTT (weeks)	BQD _{3,T}	Med ian/mean age (range)	X tumors <3 cm	X Medically inoperable	Median PU in months (range)
Gauden [30]	1995	R	OT	347	2,5	20	50	4	48	70 (34-90)	48	64	22
Crol [36]	1996	R	OT	108	2,5-3	20-26	60-65	5-7	51-57	74 (56-88)	47	94	NR
eremic [40]	1997	P	OT	-49	1,2	58	70	6	54	63 (51-70)	51	59	NR
Monita [32]	1997	R	OT	149	2	27-38	55-74	5-8	45-57	74 (50-89)	40	83	91
Sbhy [33]	1998	R	OT	141	1,8-3	NR	50-80	4-10	NC	70 (46-95)	54	99	24(7-132)
Hayakawa [35]	1999	R	OT D	36	2	30-40	60-81	6-8	47-59	NR	19	89	NR
first [34]	2002	R	OT	50	NR	NR	31-77	NR	NC	69 (52-83)	50	NR	NR
agerwaard [31]	2002	R	OT	113	2-2,5	28-35	60-72	5-7	47-60	74 (49-87)	58	90	29
Tradley [37]	2003	P	OT	55	1,8-2	30-42	60-84	6-8	42-63	73 (52-90)	55	100	20 (15-72)
lang [39]	2005	R	OT	85	NR	NR	45-90	NR	NC	73	64	82	19 (2-77)
Din [38]	2008	P/R	OT	192	1,5	36	54	2	57	71*	39	NR	Minimum 24
Jematsu [44]	2001	R	SEC	50	5-12	5-10	50-60	1-2	63-110	71 (54-86)	48	42	36
Hoyer [21]	2005		SBRT	-40	15	3	45	1	94	70 (46-80)	55	100	29(13-58)
Nyman [43]	2005	P	SBRT	45	15	3	45	1	94	74 (58-84)	40	100	43 (24-74)
fimmerman [48]	2005		SBRT	70	20-22	3	60-65	1-2	150-176	70(51-86)	50	100	18 (1-44)
Cimmermann [46]	2005	1/11	SBRT	68	6-12,5	3-5	24-40	NR	32-50	76 (59-92)	100	100	17 (3-44)
Ga [45]	2005	P	SET	25	7	10	70	2	99	71 (44-88)*	42	100	27 (24-54)
Cato (41)	2007		SBRT	31	7,5-15	3-8	45-60	1-2	88-94	77 (60-83)	61	65	32 (4-87)
Onishi [23]	2007	R	SBRT	257	4,4-35	1-14	30-84	NR	NC	74(39-92)	64	61	38(2-128)
icometti [47]	2007	P	SERT	-43	7-10	2-4	20-32	NR	33-40	74 (52-90)	67	100	14 (6-36)
agerwaard [42]	2008	P	SERT	206	7,5-20	3-8	60	NR	90-150	73	59	81	12 (3-44)
Salazar (49)	2008	P	SERT	60	13	4	52	3	100	75 (53-93)"	75	100	38 (2-84)
Sush (50)	1999	P	Proton	28	1.8-5.1	10-41	51-74	2-5	64	72 (54-87)	44	NR	14(3-44)
shioyama (54)	2003	R	Photon	28	2-6	7-32	49-93	1.5-11	MC.	74 (25-87)*	32	NR	30 (18-153)
lush (51)	2004		Proton	68	5,1-6	10	51-60	2	64-80	72 (52-87)	43	93	NR
Nibei (53)	2005	R	Proton	37	3.5-4.7	20	70-94	4-5	70-111	75 (63-87)	46	62	24 (3-62)
Hata (52)	2007	P	Proton	21	5-6	10	50-60	2	63-80	74 (51-85)	52	43	25 (10-54)
Viyamoto (57)	2003	1/11	Orton-ion	81	3.3-8.8	9-18	59-95	3-6	53-124	72 (47-85)	50	74	53
Aiyamoto [56]	2007	i i	Carbon-ion	50	8	9	72	3	108	74 (61-84)	59	66	59 (6-83)
Vivamoto (55)	2007	MI I	Orbon-ion	79	132-15	4	53-60	1	102-125	75 (47-88)	53	78	39 (3-72)

Abbreviations: Cy, gray (for particle therapy gray equivalent (CyE) or cobalt gray equivalent (CCE)); EQD2 , a biological equivalent dose for the turner in 2 Cy fractions corrected for time (for SIRT studies when no OTT was reported. we assume day OTT +21 days); OTT, overall treatment time; PU, follow-up; P, prospective; I, Phase 1; II, Phase 1; OTT -conventional radiotherapy with photons; SBIT, stereotactic body radiotherapy with photons;

NR, not reported; NC, not calculable.

* Population characteristics are for total study population, including other disease stages,

Comparison of the effectiveness of radiotherapy with photons, protons and carbon-ions for non-small cell lung cancer: A meta-analysis

Janneke P.C. Grutters^{a,*}, Alfons G.H. Kessels^b, Madelon Pijls-Johannesma^a, Dirk De Ruysscher^a, Manuela A. Joore^{b,1}, Philippe Lambin^{a,1}

^aDepartment of Radiation Oncology (MAASTRO Clinic), Maastricht University Medical Centre, The Netherlands

^b Department of Clinical Epidemiology and Medical Technology Assessment, Maastricht University Medical Centre, The Netherlands

Results of meta-analysis for 2-year (disease-specific) survival."

Treatment	2-year overall survival	(95% CI)	p-Value**			
			SBRT	Protons	Carbon-ions	
CRT	0.531	(0.464-0.599)	<0.001	0,310	0,006	
SBRT	0.702	(0.633-0.770)		0,262	0,638	
Protons	0.612	(0.474-0.750)			0,180	
Carbon-ions	0.737	(0.609-0.864)				
	2-year disease-specific survival					
CRT	0.674	(0.587-0.761)	0.006	0.430	0.065	
SBRT	0.834	(0.751 - 0.917)		0,246	0,797	
Protons	0.740	(0.607-0.874)			0,391	
Carbon-ions	0.815	(0.700-0.930)				

. .

Results of meta-analysis for 5-year (disease-specific) survival.*

Treatment	5-year overall survival	(95% CI)	p-Value**				
			SBRT	Protons	Carbon-ions		
CRT	0.195	(0.148-0.242)	<0.001	0.014	<0.001		
SBRT	0.421	(0.341-0.501)		0,782	0,985		
Protons	0.397	(0.245-0.550)			0.790		
Carbon-ions	0.421	(0.322-0.520)					
	5-year disease-specific survival						
CRT	0.435	(0.311 - 0.559)	0.045	0.471	0.051		
SBRT	0.627	(0.500-0.754)		0,389	0,999		
Protons	0.521	(0.319-0.724)			0.353		
Carbon-ions	0.643	(0.486-0.801)					

Comparison of the effectiveness of radiotherapy with photons, protons and carbon-ions for non-small cell lung cancer: A meta-analysis

Janneke P.C. Grutters^{a,*}, Alfons G.H. Kessels^b, Madelon Pijls-Johannesma^a, Dirk De Ruysscher^a, Manuela A. Joore^{b,1}, Philippe Lambin^{a,1}

^aDepartment of Radiation Oncology (MAASTRO Clinic), Maastricht University Medical Centre, The Netherlands

^b Department of Clinical Epidemiology and Medical Technology Assessment, Maastricht University Medical Centre, The Netherlands

Treatment	N events	N at risk	Proportion	(95% CI**)	Source	N events	N at risk	Proportion	(95% CI**)	Source		
	Pneumonitis grade 3/4						Oesophagitis grade 3/4					
CRT	2	867	0.0023	(0.0003- 0.0083)	[30,32,33,35-37,40]	1	831	0.0012	(0.0000- 0.0067)	[30,32,33,35- 37,40]		
SBRT	16	800	0.0200	(0.0115-0.0323)	[21,23,41- 44,46,47,49]	2	840	0.0024	(0.0003-0.0086)	[21,23,41-44,46- 49]		
Protons	1	126	0.0079	(0.0002-0.0434)	[51-53]	0	126	0.0000	(0.0290)	[51-53]		
Carbon- ions	3	210	0,0143	(0.0030- 0.0412)	[55–57]	nr	nr	-	-			
	Irreversil	ble dysphoed	ı grade 3/4			Treatment-related death (grade 5)						
CRT	5	980	0.0051	(0.0017- 0.0119)	[30-33,35-37,40]	1	980	0.0010	(0.0000- 0.0057)	[30-33,35-37,40]		
SBRT	6	769	0.0078	(0.0029- 0.0169)	[21,23,42- 44,46,47,49]	6	870	0.0069	(0.0025- 0.0150)	[21,23,41-44,46- 49]		
Protons	0	58	0.0000	(0.0620)	[52,53]	0	126	0.0000	(0.0290)	[51-53]		
Carbon- ions	0	210	0.0000	(0,0170)	[55-57]	0	210	0.0000	(0.0170)	[55–57]		

Occurrence of adverse events grade 3-5* for each treatment modality in patients with stage I NSCLC.

Comparison of the effectiveness of radiotherapy with photons, protons and carbon-ions for non-small cell lung cancer: A meta-analysis

Janneke P.C. Grutters^a,*, Alfons G.H. Kessels^b, Madelon Pijls-Johannesma^a, Dirk De Ruysscher^a, Manuela A. Joore^{b,1}, Philippe Lambin^{a,1}

*Department of Radiation Oncology (MAASTRO Clinic), Maastricht University Medical Centre, The Netherlands

^b Department of Clinical Epidemiology and Medical Technology Assessment, Maastricht University Medical Centre, The Netherlands

ABSTRACT

Purpose: To provide a comparison between radiotherapy with photons, protons and carbon-ions in the treatment of Non-Small-Cell Lung Cancer (NSCLC), performing a meta-analysis of observational studies. *Methods:* Eligible studies on conventional radiotherapy (CRT), stereotactic radiotherapy (SBRT), concurrent chemoradiation (CCR), proton therapy and carbon-ion therapy were searched through a systematic review. To obtain pooled estimates of 2- and 5-year disease-specific and overall survival and the occurrence of severe adverse events for each treatment modality, a random effects meta-analysis was carried out. Pooled estimates were corrected for effect modifiers. *Results:* Corrected pooled estimates for 2-year overall survival in stage I inoperable NSCLC ranged from 53% for CRT to 74% for carbon-ion therapy. Five-year overall survival for CRT (20%) was statistically significantly lower than that for SBRT (42%), proton therapy (40%) and carbon-ion therapy (42%). However, caution is warranted due to the limited number of patients and limited length of follow-up of the particle studies. *Conclusion:* Survival rates for particle therapy were higher than those for CRT, but similar to SBRT in stage I inoperable NSCLC. Particle therapy may be more beneficial in stage III NSCLC, especially in reducing adverse events.

© 2009 Elsevier Ireland Ltd. All rights reserved. Radiotherapy and Oncology 95 (2010) 32-40

References

- <u>http://www.medphys.mcgill.ca/intro/mainintro.h</u>
 <u>tml</u>
- Podgorsak, E.B., Radiation Physics for Medical Physicists, 2nd ed., 2010, XXXIII, 745 p. 190 illus., 16 in color., HardcoverISBN: 978-3-642-00874-0
- Khan, F.M. (1994) The Physics of Radiation Therapy, Williams & Wilkins, Baltimore
- Hall, E.J. (1988) *Radiobiology for the Radiologist,* J.B. Lippincott Co., Philadelphia