African School of Physics 2010

Marco Silari CERN, Geneva, Switzerland

M. Silari – Radionuclide production

Radionuclide production

The use of radionuclides in the physical and biological sciences can be broken down into three general categories:

```
Radiotracers

Imaging (95% of medical uses)

SPECT (<sup>99m</sup>Tc, <sup>201</sup>Tl, <sup>123</sup>l)

PET (<sup>11</sup>C, <sup>13</sup>N, <sup>15</sup>O, <sup>18</sup>F)

Therapy (5% of medical uses)

Brachytherapy (<sup>103</sup>Pd)

Targeted therapy (<sup>211</sup>At, <sup>213</sup>Bi)
```

Relevant physical parameters (function of the application)

```
Type of emission (\alpha, \beta^+, \beta^-, \gamma)
```

Energy of emission

Half-life

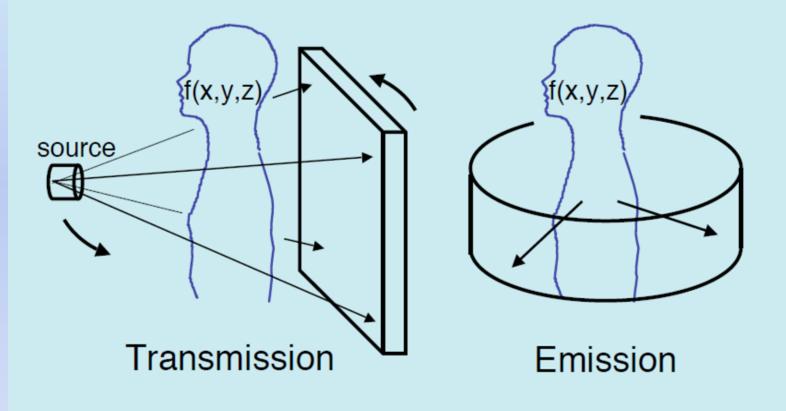
Radiation dose (essentially determined by the parameters above)

Radionuclides can be produced by Nuclear reactors Particle accelerators (mainly cyclotrons)

M. Silari – Radionuclide production

First practical application (as radiotracer)

The **first practical application of a radioisotope** (as *radiotracer*) was made by G. de Hevesy (a young Hungarian student working with naturally radioactive materials) in Manchester in **1911** (99 years ago!)


In 1924 de Hevesy, who had become a physician, used radioactive isotopes of lead as tracers in bone studies.

Brief historical development

- 1932: the invention of the cyclotron by E. Lawrence makes it possible to produce radioactive isotopes of a number of biologically important elements
- 1937: Hamilton and Stone use radioactive sodium clinically
- 1938: Hertz, Roberts and Evans use radioactive iodine in the study of thyroid physiology
- 1939: J.H. Lawrence, Scott and Tuttle study leukemia with radioactive phosphorus
- 1940: Hamilton and Soley perform studies of iodine metabolism by the thyroid gland in situ by using radioiodine
- 1941: first medical cyclotron installed at Washington University, St Louis, for the production of radioactive isotopes of phosphorus, iron, arsenic and sulphur
- After WWII: following the development of the fission process, most radioisotopes of medical interest begin to be produced in nuclear reactors
- 1951: Cassen et al. develop the concept of the rectilinear scanner
- 1957: the ⁹⁹Mo/^{99m}Tc generator system is developed by the Brookhaven National Laboratory
- 1958: production of the first gamma camera by Anger, later modified to what is now known as the Anger scintillation camera, still in use today

Emission versus transmission imaging

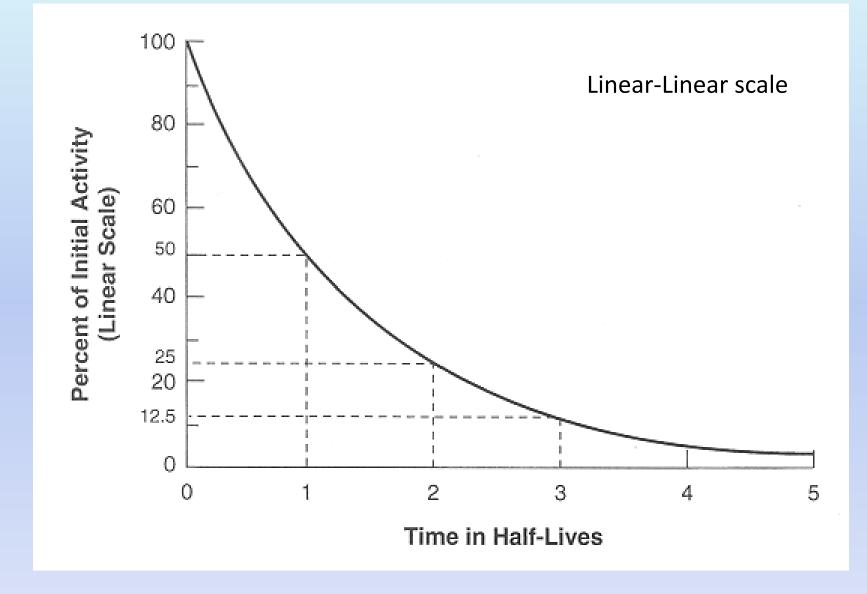
External versus internal radiation sources

Courtesy P. Kinahan

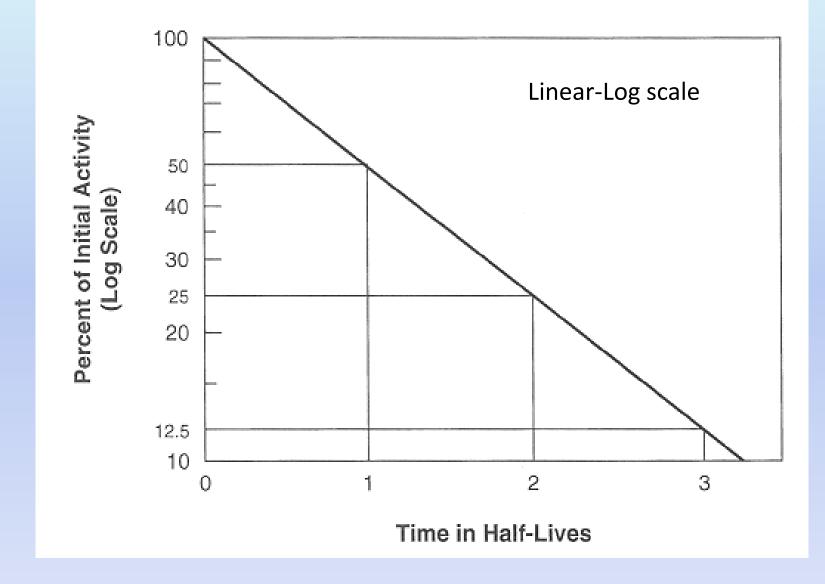
Fundamental decay equation

$$N(t) = N_0 e^{-\lambda t}$$
 or $A(t) = A(0) e^{-\lambda t}$

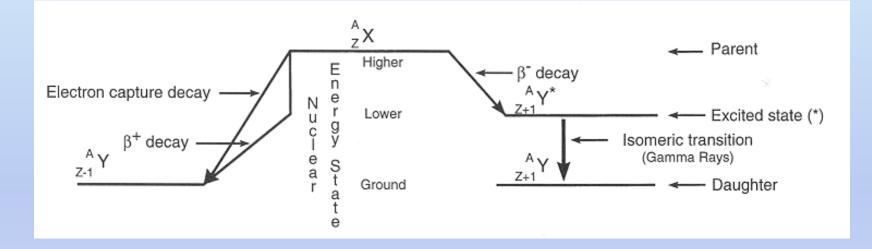
where:


N(t) = number of radioactive atoms at time t A(t) = activity at time t N_0 = initial number of radioactive atoms at t=0 A(0) = initial activity at t=0 e = base of natural logarithm = 2.71828... λ = decay constant = $1/\tau = \ln 2/T_{1/2} = 0.693/T_{1/2}$ t = time

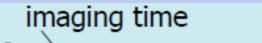
and remembering that:

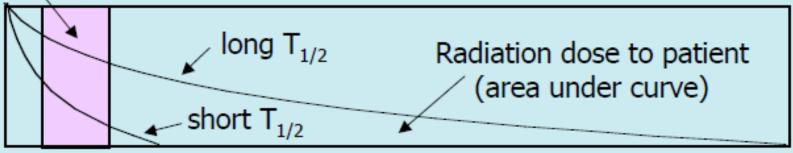

 $-dN/dt = \lambda N$

$$A = \lambda N$$


Fundamental decay equation

Fundamental decay equation




Generalized decay scheme

The "ideal" diagnostics radiopharmaceutical

- a) Be readily available at a low cost
- b) Be a pure gamma emitter, i.e. have no particle emission such as alphas and betas (these particles contribute radiation dose to the patient while not providing any diagnostic information)
- c) Have a short effective biological half-life (so that it is eliminated from the body as quickly as possible)
- d) Have a high target to non-target ratio so that the resulting image has a high contrast (the object has much more activity than the background)
- e) Follow or be trapped by the metabolic process of interest

$$A(t) = A(0)e^{-t(\ln(2)/T_{1/2})}$$

Production methods

All radionuclides commonly administered to patients in nuclear medicine are artificially produced

Three production routes:

- (n, γ) reactions (nuclear reactor): the resulting nuclide has the same chemical properties as those of the target nuclide
- Fission (nuclear reactor) followed by separation
- Charged particle induced reaction (cyclotron): the resulting nucleus is usually that of a different element

Production methods

	Production method				
Characteristic	Cyclotron	Nuclear reactor (fission)	Nuclear reactor (neutron activation)	Radionuclide generator	
Bombarding particle	Proton, deuteron, triton, alpha	Neutron	Neutron	Production by decay of parent	
Product Neutron poor		Neutron excess Neutron excess		Neutron poor or excess	
Typical decay pathway	Positron emission, electron capture	Beta-minus	Beta-minus	Several modes	
Typically carrier free	Yes	Yes	No	Yes	
High specific activity	5		Yes No		
Relative cost	High	Low	Low	Low (^{99m} Tc) High (^{81m} Kr)	
Radionuclides for nuclear medicine applications	²⁰¹ Tl, ¹²³ l, ⁶⁷ Ga, ¹¹¹ ln, ¹⁸ F, ¹⁵ O, ⁵⁷ Co	⁹⁹ Mo, ¹³¹ I, ¹³³ Xe	³² P, ⁵¹ Cr, ¹²⁵ I, ⁸⁹ Sr, ¹⁵³ Sm	^{99m} Tc, ^{81m} Kr, ⁶⁸ Ga, ⁸² Rb	

Reactor versus accelerator produced radionuclides

Reactor produced radionuclides

The fission process is a source of a number of widely used radioisotopes (⁹⁰Sr, ⁹⁹Mo, ¹³¹I and ¹³³Xe)

Major drawbacks:

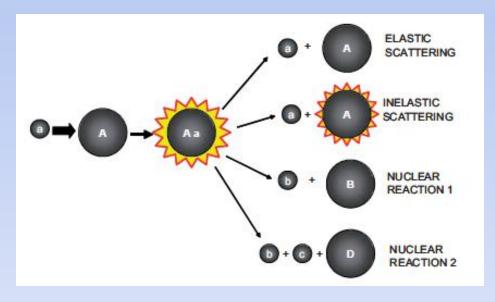
- large quantities of radioactive waste material generated
- large amounts of radionuclides produced, including other radioisotopes of the desired species (no carrier free, low specific activity)

Accelerator produced radionuclides

Advantages

- more favorable decay characteristics (particle emission, half-life, gamma rays, etc.) in comparison with reactor produced radioisotopes.
- high specific activities can be obtained through charged particle induced reactions, e.g. (p,xn) and (p,a), which result in the product being a different element than the target
- fewer radioisotopic impurities are produce by selecting the energy window for irradiation
- small amount of radioactive waste generated
- access to accelerators is much easier than to reactors

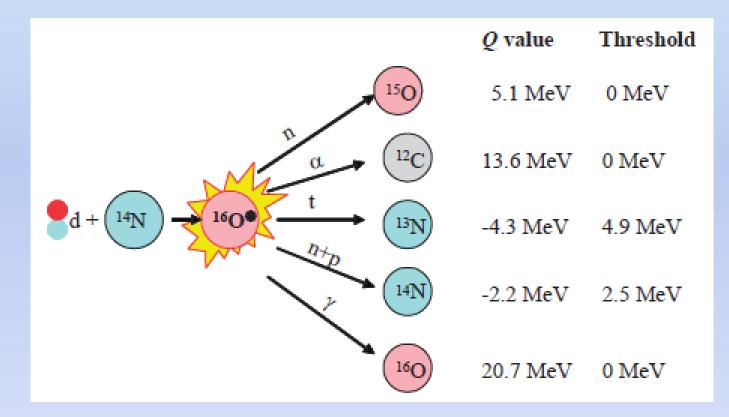
Major drawback: in some cases an enriched (and expensive) target material must be used


Accelerator production of radionuclides

- The binding energy of nucleons in the nucleus is 8 MeV on average
- If the energy of the incoming projectile is > 8 MeV, the resulting reaction will cause other particles to be ejected from the target nucleus
- By carefully selecting the target nucleus, the bombarding particle and its energy, it is possible to produce a specific radionuclide

The **specific activity** is a measure of the number of radioactive atoms or molecules as compared with the total number of those atoms or molecules present in the sample (Bq/g or Bq/mol). If the only atoms present in the sample are those of the radionuclide, then the sample is referred to as **carrier free**

The essential steps in accelerator r.n. production


- 1. Acceleration of charged particles in a cyclotron
- 2. Beam transport (or not) to the irradiation station via a transfer line
- 3. Irradiation of target (solid, liquid, gas) internal or external
- 4. Nuclear reaction occurring in the target (e.g. ${}^{A}X_{z}(p,n){}^{A}Y_{z-1}$)
- 5. Target processing and material recovering
- 6. Labeling of radiopharmaceuticals and quality control

a = bombarding particleb, c = emitted particlesA, B, D = nuclei

Example: $d + {}^{14}N \Longrightarrow {}^{16}O^*$

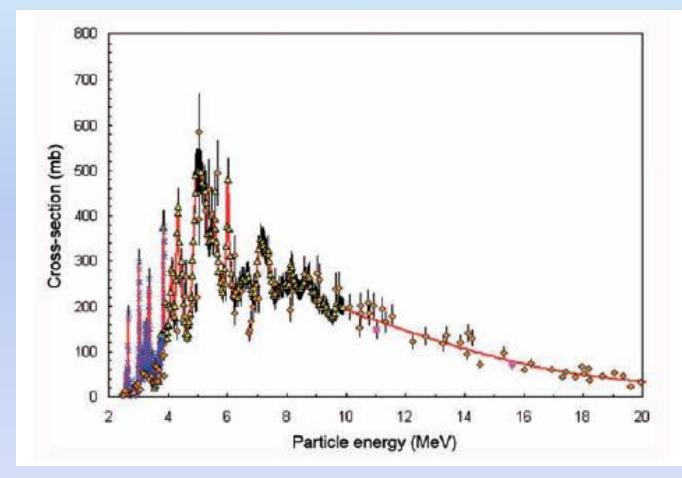
Q values and thresholds of nuclear decomposition for the reaction of a deuteron with a ¹⁴N nucleus after forming the compound nucleus ¹⁶O

Production rate and cross section

$$\frac{dn}{dt} = R = nI(1 - e^{-\lambda t}) \int_{E_s}^{E_0} \frac{\sigma(E)}{dE / dx} dE$$

- **R** = the number of nuclei formed per second
- n = the target thickness in nuclei per cm²
- I = incident particle flux per second (related to the beam current)

$$\lambda$$
 = decay constant = (ln 2)/T_{1/2}


- **t** = irradiation time in seconds
- σ = reaction cross-section, or probability of interaction (cm²), function of E
- **E** = energy of the incident particles
- **x** = distance travelled by the particle

and the integral is from the initial to final energy of the incident particle along its path

M. Silari – Radionuclide production

Energy dependence of the cross section σ

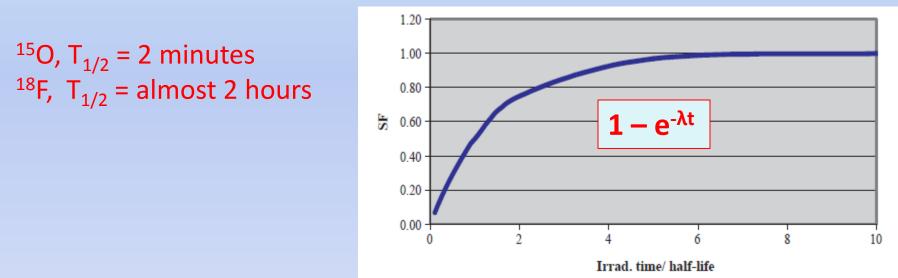
Excitation function of the ¹⁸O(p,n)¹⁸F reaction

Experimental measurement of cross section σ

$$R_i = Inx\sigma_i$$

where

 R_i = number of processes of type i in the target per unit time I = number of incident particles per unit time n = number of target nuclei per cm³ of target = $\rho N_A / A$ σ_i = cross-section for the specified process in cm² x = the target thickness in cm

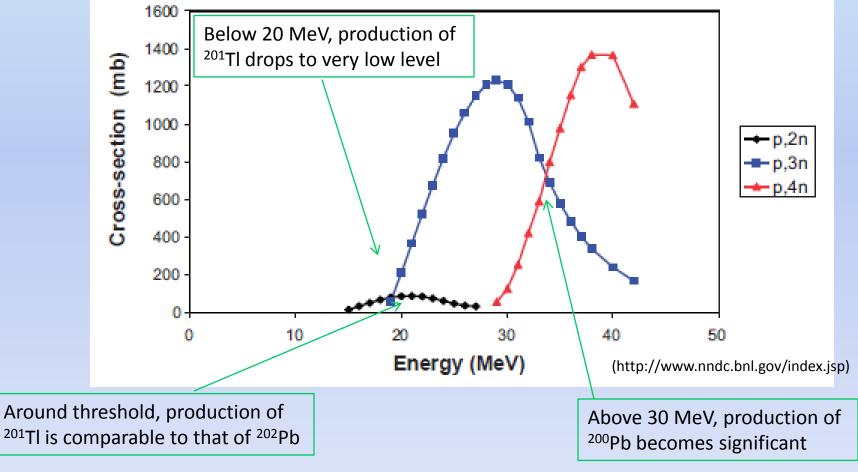

and assuming that

- 1. The beam current is constant over the course of the irradiation
- 2. The target nuclei are uniformly distributed in the target material
- 3. The cross-section is independent of energy over the energy range used

Saturation factor, SF = $1 - e^{-\lambda t}$

 T_{irr} = 1 half-life results in a saturation of 50% 2 half-lives → 75% 3 half-lives → 90%

The practical production limits of a given radionuclide are determined by the half-life of the isotope, e.g.



For **long lived species**, the production rates are usually expressed in terms of integrated dose or total beam flux ($\mu A \cdot h$)

Competing nuclear reactions, example of ²⁰¹Tl

The nuclear reaction used for production of ²⁰¹Tl is the ²⁰³Tl(p,3n)²⁰¹Pb ²⁰¹Pb ($T_{1/2} = 9.33 h$) \rightarrow ²⁰¹Tl ($T_{1/2} = 76.03 h$)

Cross-section versus energy plot for the ²⁰³Tl(p,2n)²⁰²Pb, ²⁰³Tl(p,3n)²⁰¹Pb and ²⁰³Tl(p,4n)²⁰⁰Pb reactions

Targets

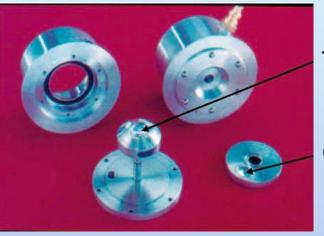
Internal (beam is not extracted from the cyclotron) External (extracted beam + beam transport to target)

Simultaneous irradiation of more than one target (H⁻ cyclotrons)

The target can be

- Solid
- Liquid
- Gaseous

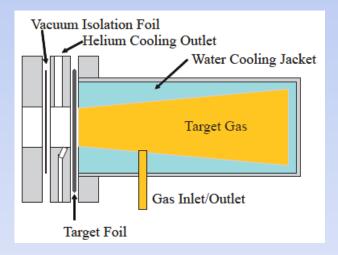
Principal constraints on gas targets


- removal of heat from the gas (gases are not very good heat conductors)
- the targets must be quite large in comparison with solid or liquid targets in order to hold the necessary amount of material.

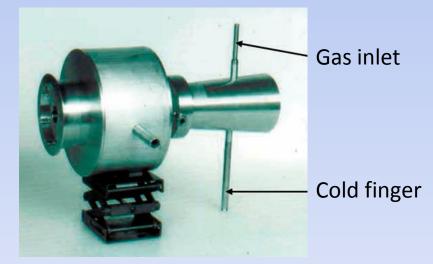
Targets

¹⁸O water target

Solid powder target used at BNL


Target powder

Cover foil


Solid

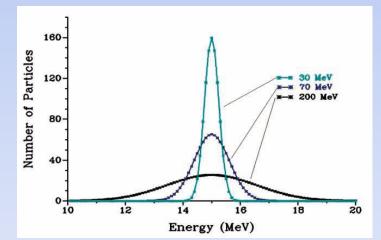
Liquid

Gaseous

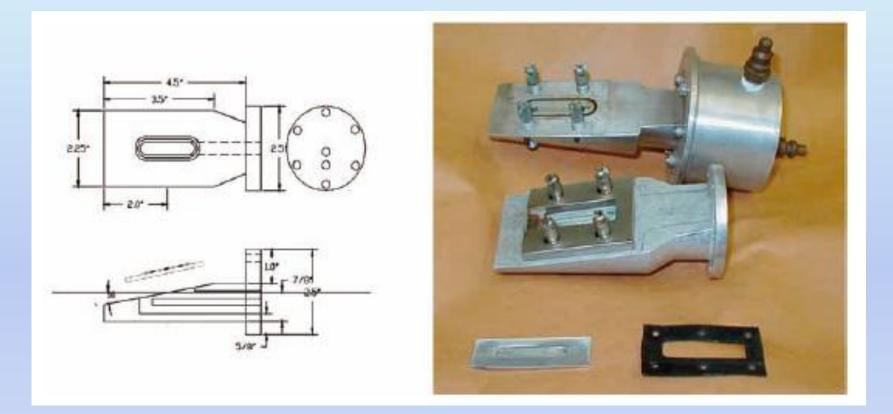
Gas target used for production of ¹²³I from ¹²⁴Xe

Targets

A major concern in target design is the generation and dissipation of heat during irradiation \implies target cooling

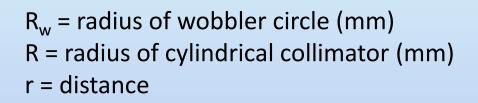

Efficient target cooling:

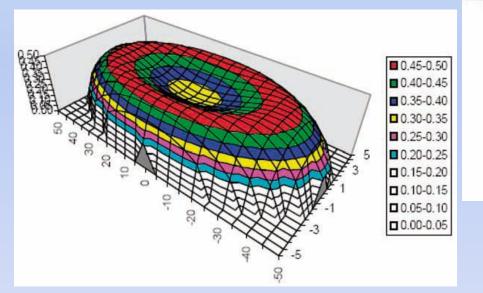
- ensures that the target material will remain in the target
- allows the target to be irradiated at higher beam currents, which in turn allows production of more radioisotopes in a given time


Factors to be considered in relation to thermodynamics include:

- Interactions of charged particles with matter
- Stopping power and ranges
- Energy straggling
- Small angle multiple scattering

Distribution of beam energy when protons are degraded from an initial energy of 200, 70 or 30 MeV to a final energy of 15 MeV

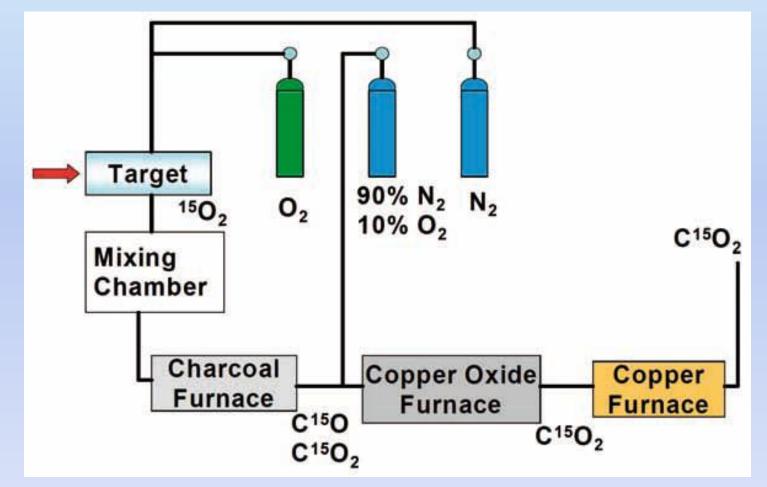

Inclined target for better heat dissipation



Example of an inclined plane external target used for solid materials either pressed or melted in the depression in the target plane

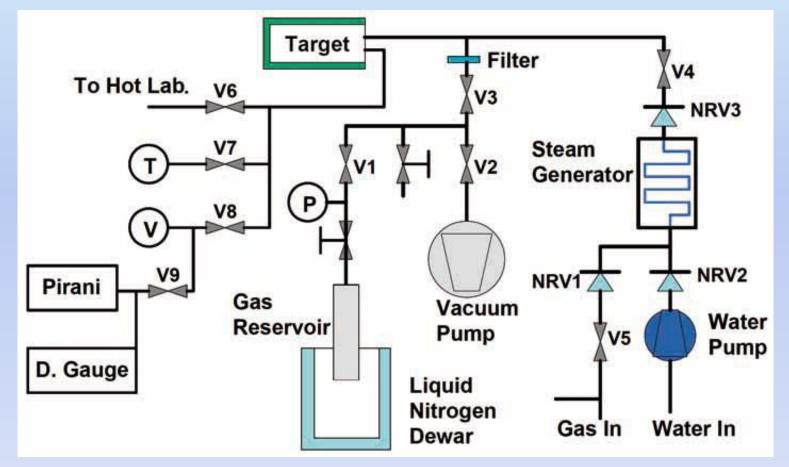
M. Silari – Radionuclide production

Circular wobbling of the beam during irradiation



Current density distribution for a 'wobbled' beam

Collimator


Target processing and material recovering

Schematic diagram of a processing system for the production of [¹⁵O]CO₂

Target processing and material recovering

Example of a gas handling system for production of ^{81m}Kr. Vs and Ps are mechanical pressure gauges and NRVs are one way valves to prevent backflow

Target processing and material recovering

Manifolds used for: (a) precipitation of ²⁰¹Pb and (b) filtration of the final solution.

Most common radionuclides for medical use versus the proton energy required for their production

Proton energy (MeV)	Radionuclide easily produced
0 - 10	¹⁸ F, ¹⁵ O
11 – 16	¹¹ C, ¹⁸ F, ¹³ N, ¹⁵ O, ²² Na, ⁴⁸ V
17 – 30	¹²⁴ I, ¹²³ I, ⁶⁷ Ga, ¹¹¹ In, ¹¹ C, ¹⁸ F, ¹³ N, ¹⁵ O, ²² Na, ⁴⁸ V, ²⁰¹ TI
30+	¹²⁴ I, ¹²³ I, ⁶⁷ Ga, ¹¹¹ In, ¹¹ C, ¹⁸ F, ¹³ N, ¹⁵ O, ⁸² Sr, ⁶⁸ Ge, ²² Na, ⁴⁸ V

Nuclear reactions employed to produce some commonly used imaging radionuclides (1)

R	Radionuclide	Use	Half-life	Reaction	Energy (MeV)
	^{99m} Tc	SPECT imaging	CT imaging 6 h ¹⁰⁰ Mo(p,2n)		30
	¹²³	SPECT imaging	13.1 h	¹²⁴ Xe(p,n) ¹²³ Cs ¹²⁴ Xe(p,pn) ¹²³ Xe ¹²⁴ Xe(p,2pn) ¹²³ I	27
				123 Te(p,n) 123 l	15 25
				¹²⁴ Te(p,2n) ¹²³ I	
	²⁰¹ Tl	SPECT imaging 73.1 h ²⁰³		²⁰³ Tl(p,3n) ²⁰¹ Pb → ²⁰¹ Tl	29
	¹¹ C	¹¹ C PET imaging 20.3		¹⁴ N(p,α) ¹¹ B(p,n)	11–19 10
	¹³ N	PET imaging 9.97		¹⁶ Ο(p,α) ¹³ C(p,n)	19 11

Nuclear reactions employed to produce some commonly used imaging radionuclides (2)

Radionuclide	Use	Half-life	Reaction	Energy (MeV)
¹⁵ O	PET imaging	2.03 min	¹⁵ N(p,n) ¹⁴ N(d,2n) ¹⁶ O(p,pn)	11 6 > 26
¹⁸ F	PET imaging	110 min	¹⁸ O(p,n) ²⁰ Ne(d,α) ^{nat} Ne(p,X)	11-17 8-14 40
⁶⁴ Cu	PET imaging and radiotherapy	12.7 h	⁶⁴ Ni(p,n) ⁶⁸ Zn(p,α <i>n)</i> ^{nat} Zn(d,α <i>xn)</i> ^{nat} Zn(d,2pxn)	15 30 19 19
¹²⁴	PET imaging and radiotherapy	4.14 d	¹²⁴ Te(p,n) ¹²⁵ Te(p,2n)	13 25

Decay characteristics and max SA of some r.n.

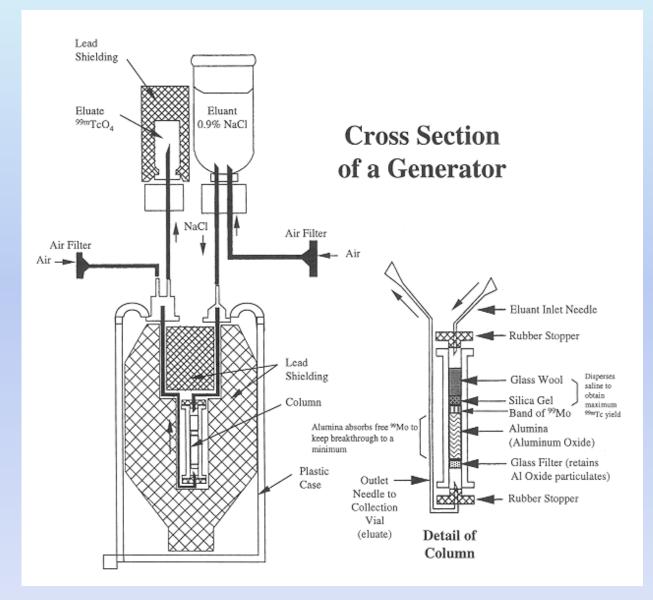
Nuclide	Half-life (min)	Decay mode	Maximum SA (theoretical)
C-11	20.4	100% β^+	9220 Ci/µmol (341 TBq/µmol)
N-13	9.98	100% β^+	18 900 Ci/μmol (700 TBq/μmol)
O-15	2.03	100% β^+	91 730 Ci/µmol (3394 TBq/µmol)
F-18	109.8	97% β +	1710 Ci/µmol (63.4 TBq/µmol)
Cu-62	9.74	99.7% β ⁺	19 310 Ci/µmol (714 TBq/µmol)
Ga-67	4696.8	100% EC	40 Ci/µmol (1.5 TBq/µmol)
Ga-68	68.0	89% β ⁺	2766 Ci/µmol (102 TBq/µmol)
Br-75	96.0	75.5% β ⁺	1960 Ci/µmol (73 TBq/µmol)
Rb-82	1.25	95.5% β ⁺	150 400 Ci/µmol (5565 TBq/µmol)
In-111	4048.8	100% EC	46 Ci/μmol (1.7 TBq/μmol)
I-122	3.62	75.8% β^+	51 950 Ci/μmol (1922 TBq/μmol)
I-123	793.4	100% EC	237 Ci/µmol (8.8 TBq/µmol)
I-124	6019.2	$23.3\% \beta^+$	31 Ci/μmol (1.15 TBq/μmol)
TI-201	4374.7	100% EC	42.6 Ci/μmol (1.58 TBq/μmol)

Radionuclides for therapy

- High LET decay products (Auger electrons, beta particles or alpha particles)
- Radionuclide linked to a biologically active molecule that can be directed to a tumour site
- Beta emitting radionuclides are neutron rich
 they are in general produced in reactors
- Some of the radionuclides that have been proposed as possible radiotoxic tracers are:

Sc-47	Cu-64	Cu-67	Br-77	Y-90
Rh-105	Pd-103	Ag-111	I-124	Pr-142
Pm-149	Sm-153	Gd-159	Ho-166	Lu-177
Re-186/188	Ir-194	Pt-199	At-211	Bi-213

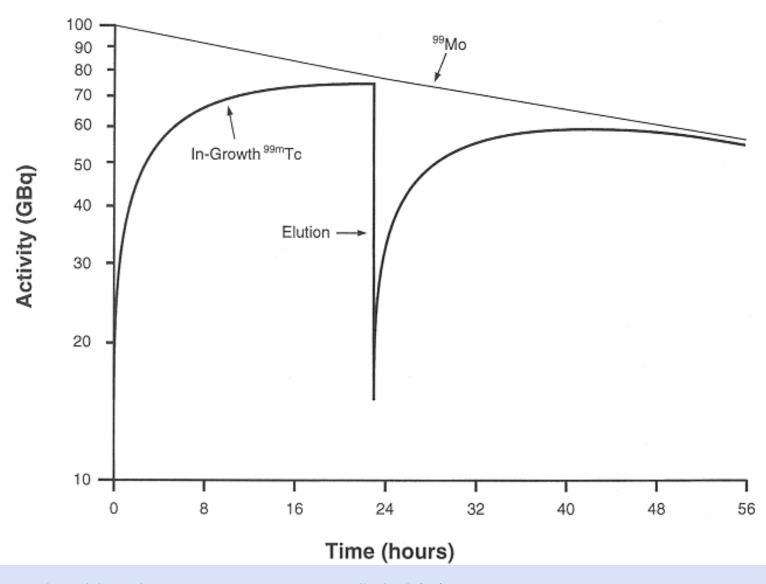
Radionuclides for therapy


Charged particle production routes and decay modes for selected therapy isotopes

Radionuclide	Half-life	Decay mode	Reaction	Energy (MeV)
Br-77	2.4 d	Auger electrons	75 As(α , 2n)	27
		-	⁷⁷ Se(p, n)	13
			⁷⁸ Se(p, 2n)	24
			79,81Br(p, xn)77Kr	45
			natMo(p, spall.)	>200
Pd-103	17.5 d	Auger electrons	¹⁰³ Rh(p, n)	19
			$^{nat}Ag(p, xn)$	>70
Re-186	90.6 h	β-	¹⁸⁶ W(p, n)	18
			¹⁸⁶ W(d, 2n)	20
			¹⁹⁷ Au(p, spall.)	>200
			natAu(p, spall.)	>200
			^{nat} Ir(p, spall.)	>200
At-211	7.2 h	α	$^{209}\text{Bi}(\alpha, 2n)$	28
			²⁰⁹ Bi(7Li, 5n) ²¹¹ Rn	60
			²³² Th(p, spall.) ²¹¹ Rn	>200

Radionuclide generators

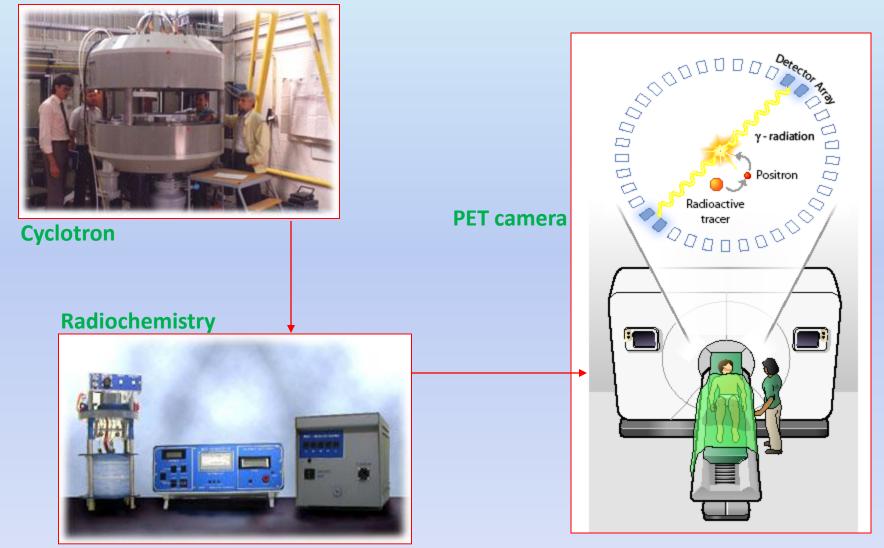
- Technetium-99m (^{99m}Tc) has been the most important radionuclide used in nuclear medicine
- Short half-life (6 hours) makes it impractical to store even a weekly supply
- Supply problem overcome by obtaining parent ⁹⁹Mo, which has a longer half-life (67 hours) and continually produces ^{99m}Tc
- A system for holding the parent in such a way that the daughter can be easily separated for clinical use is called a *radionuclide generator*


Radionuclide generators

Transient equilibrium

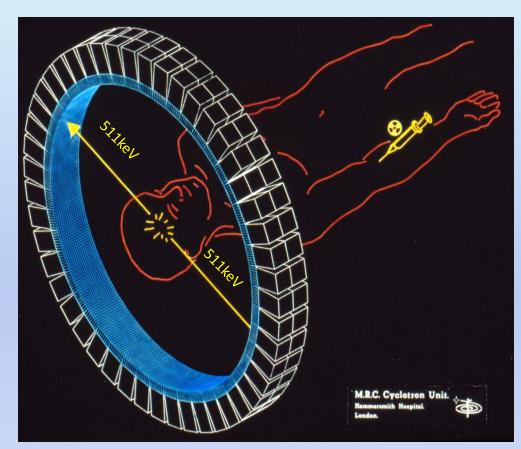
- Between elutions, the daughter (^{99m}Tc) builds up as the parent (⁹⁹Mo) continues to decay
- After approximately 23 hours the ^{99m}Tc activity reaches a maximum, at which time the production rate and the decay rate are equal and the parent and daughter are said to be in *transient equilibrium*
- Once transient equilibrium has been reached, the daughter activity decreases, with an apparent halflife equal to the half-life of the parent
- Transient equilibrium occurs when the half-life of the parent is greater than that of the daughter by a factor of about 10

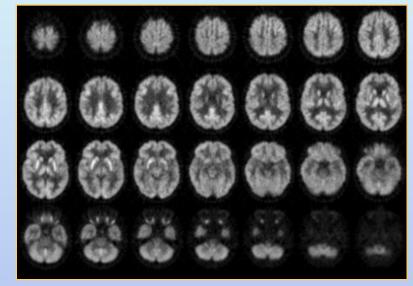
Transient equilibrium



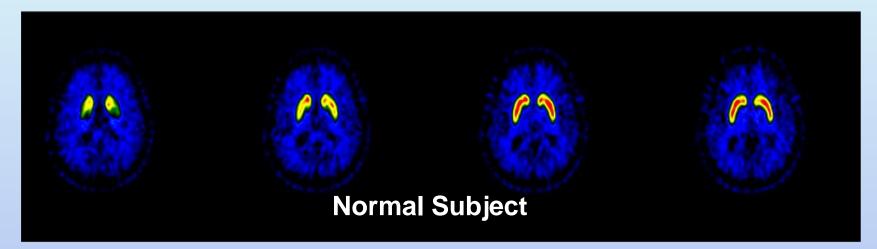
M. Silari – Radionuclide production

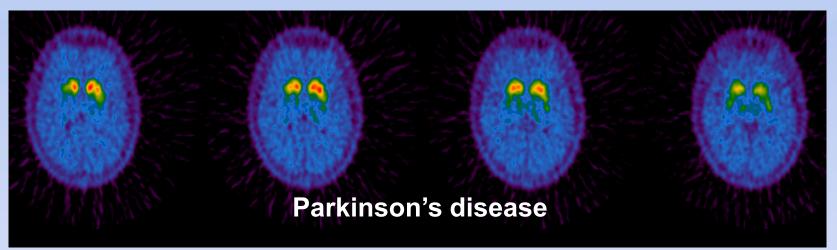
Radionuclide generators


Parent	Decay mode > Half-life	Daughter	Time of maximal ingrowth (equilibrium)	Decay mode ──> Half-life	Decay product
Germanium 69 (⁶⁹ Ge)	EC 271 days	Gallium 68 (⁶⁸ Ga)	~6.5 hr (S)	β⁺, EC →> 68 min	Zinc 68 (⁶⁸ Zn), stable
Rubidium 81 (⁸¹ Rb)	β⁺, EC →> 4.5 hr	Krypton 81m (^{81m} Kr)	~80 sec (S)	$\frac{\text{IT}}{3.5 \text{ sec}}$	Krypton 81 ⁸¹ Kr ^a
Strontium 82 (⁸² St)	EC 25.5 days	Rubidium 82 (⁸² Rb)	~7.5 min (S)	$\frac{\beta^+}{75 \text{ sec}}$	Krypton 82 (⁸² Kr), stable
Molybdenum 99 (⁹⁹ Mo)	$\frac{\beta^{-}}{67 \text{ hr}}$	Technetium 99m (^{99m} Tc)	~24 hr (T)	IT 6 hr	Technetium 99 (⁹⁹ Tc)ª


Positron Emission Tomography (PET)

J. Long, "The Science Creative Quarterly", scq.ubc.ca


Positron Emission Tomography (PET)



COVERAGE: ~ 15-20 cm SPATIAL RESOLUTION: ~ 5 mm SCAN TIME to cover an entire organ: ~ 5 min CONTRAST RESOLUTION: depends on the radiotracer

PET functional receptor imaging

[¹¹C] FE-CIT

M. Silari – Radionuclide production

Some textbooks

Cyclotron Produced Radionuclides: Principles and Practice, IAEA Technical Reports Series No. 465 (2008) (Downloadable from IAEA web site)

Targetry and Target Chemistry, Proceedings Publications, TRIUMF, Vancouver (http://trshare.triumf.ca/~buckley/wttc/proceedings.html)

CLARK, J.C., BUCKINGHAM, P.D., Short-Lived Radioactive Gases for Clinical Use, Butterworths, London (1975)