Calibration of the PSPMT (LJU diary 8)

A. Studen H. Kagan N. Clinthorne

Department of Physics, Ohio State University, Columbus, OH

Institut Jožef Stefan Odsek za eksperimentalno fiziko osnovnih delcev andrej.studen@ijs.si

January 24, 2019

Studen		
ljuDiary		

イロト イヨト イヨト イヨト

LYSO module study

/mnt/hrpet1/data1/pet/test/20171214/ants2Flood/run0/root

WS III

LYSO position decoding

- Light p_i incident on tube i out of N tubes with gain g_i connected through resistor chain to outputs s₀ and s₁, i numbering from 0 at s₀ to N − 1 at s₁
- For a single hit in i-th PSPMT, we get

$$s_0 = (1 - \alpha_i)g_ip_i$$
 $s_1 = \alpha_ig_ip_i$

where α_i is the ratio of resistivity

$$\alpha_i = \frac{R_0}{R_1 + R_0} = i/(N-1)$$

 In actual events, more than 1 PMT is hit, hence

$$s_0 = \sum_i (1-\alpha_i)g_ip_i$$
 $s_1 = \sum_i \alpha_i g_i p_i$

 Asymmetry in expressions prevents from absorbing g_i in resistor values. Equivalently - cannot separate low energy event in high gain tube from high energy event in low gain tube.

イロン イヨン イヨン

Э

ø\$te

LYSO position decoding

Convert to linear algebra by writing:

 $G = \text{diag}\{g_i\}$ $\mathbf{e} = \text{ones}(\text{size}(\mathbf{p}))$

$$\mathbf{p} = \{ \boldsymbol{p}_i \} \quad , \quad \boldsymbol{\alpha} = \{ \alpha_i \}$$

Coordinate in Anger's algebra:

$$x = \frac{s_1 - s_0}{s_1 + s_0} = \frac{(\mathbf{e} - 2\alpha)^T G \mathbf{p}}{\mathbf{e}^T G \mathbf{p}}$$

3

メロト メポト メヨト メヨト

r B