Prospects for quarkonium studies at LHCb

« Quarkonium Production at the LHC » workshop

Patrick Robbe, LAL Orsay, 19 Feb 2010

- Forward Spectrometer Geometry, with angular acceptance $15 < \theta < 300$ mrad
- Performance numbers relevant to quarkonium analyses:
- <u>Charged tracks</u> $\Delta p/p = 0.35 \% 0.55\%$, $\sigma(m)=12-25 \text{ MeV/c}^2$
- ECAL $\sigma(E)/E=$ 10% E^{-1/2} \oplus 1 % (E in GeV)
- <u>muon ID</u>: $\varepsilon(\mu \rightarrow \mu) = 94$ %, mis-ID rate $(\pi \rightarrow \mu) = 3$ %
- <u>Vertexing</u>: $\sigma(L)=250 \ \mu m$ (Primary Vertex Resolution: 10 μm in x/y, 60 μm in z)

Introduction

• Unique acceptance amongst LHC experiments:

- <u>Quarkonium Physics Program</u>:
 - Measurement of J/ ψ production cross-section in LHCb acceptance (3< η <5, p_T<7 GeV/c),
 - Measurement of J/ψ polarization
 - Similar measurements with $\psi(2S)$, Y(1S), Y(2S), Y(3S).
 - Production of χ_c , h_c
 - Extensive studies of B_c , X(3872)

Monte Carlo Tools

- <u>PYTHIA 6.3</u> for the studies shown here:
 - Production of J/ ψ through **Color Single Model**.
- <u>PYTHIA 6.4</u> for the current Monte Carlo productions:
 - With Color Octet Model added, tuned to reproduce CDF measurements see note CERN-LHCb-2007-042.
- <u>EvtGen</u> for decays:
 - Generator package which allows to have a detailed description of $b \rightarrow J/\psi X$ decays.
 - Also allows correct angular correlations in decays of polarized particles.
- <u>PHOTOS</u> for radiative corrections.

Monte Carlo J/ ψ Samples

In LHCb acceptance (3< η <5, p_{τ}<7 GeV/c):

- $\sigma(pp \rightarrow prompt J/\psi X) \times Br(J/\psi \rightarrow \mu^{+}\mu^{-}) = 2.7 \ \mu b$
- $\sigma(pp \rightarrow (b \rightarrow J/\psi X) X') x Br(J/\psi \rightarrow \mu^{+}\mu^{-}) = 0.15 \ \mu b$

<u>NB</u>: the analysis presented here does not depend on the exact spectrum of the J/ψ .

$J/\psi \to \mu^+ \mu^-$ Reconstruction

- Selection based on positive muon identification of the two μ , cut on the μ transverse momentum p_T>0.7 GeV/c and on the quality of the $\mu^+\mu^-$ vertex.
- Invariant mass plot on fully simulated minimum bias events (with *all background included*):
 - <u>Mass resolution</u>: 11.0 ± 0.4 MeV/c²,
 - <u>S/B</u>=17.6 ± 2.3 in ±3 σ mass window,
 - 1.3x10⁹ reconstructed after L0 trigger J/ ψ for 1 fb⁻¹ (\sqrt{s} =14 TeV)
 - Or <u>0.65x10⁶ for 1 pb⁻¹</u> at $\sqrt{s} = 7$ TeV

Separating prompt J/ ψ from J/ ψ from b

• Use pseudo-propertime: $t = \frac{dz}{p_z^{J/\psi}} \times m_{J/\psi}$

- Prompt component characterized by *peak at 0*,
- **Exponential decay** for J/ψ from b component,
- Long tail due to association of the J/ψ to a not-related primary vertex.

- Combined mass/pseudo-propertime fit will allow to measure both prompt and J/ ψ from b production cross sections in η and p_{τ} bins:
 - 4 pseudorapidity η bins, **3 < \eta < 5**.
 - 7 transverse momentum p_T bins , $p_T < 7$ GeV/c.

Example: fit on MC at \sqrt{s} = 14 TeV

Sample corresponding to 0.8 pb⁻¹, \sqrt{s} = 14 TeV

<u>Signal</u>: Inclusive J/ψ sample

Background: toy Monte-Carlo reproducing behaviour (mass and pseudolifetime) seen on the Minimum Bias sample.

- $\sigma(\text{prompt J/\psi}) \times \text{Br}(J/\psi \rightarrow \mu^+ \mu^-) = 2597 \pm 12 \text{ (stat)} \pm 24 \text{ (eff) nb}$ [Input: 2667 nb]
- $\sigma(J/\psi \text{ from b}) \ge Br(J/\psi \rightarrow \mu^+ \mu^-) = 161 \pm 4 \text{ (stat)} \pm 2 \text{ (eff) nb}$ [Input: 153 nb]

Statistical error at maximum 10% in each of the analysis bin, for 5pb⁻¹ of⁸ data at \sqrt{s} = 7 TeV.

Systematics from J/ψ polarization

• Acceptance as a function of $\cos\theta$, θ = helicity angle

• Large LHCb detector acceptance dependance on assumed initial polarization of J/ψ .

Systematics from J/ψ polarization

- Study the effect of ignoring the polarization dependance of the efficiency (J/ ψ are not polarized in the LHCb Monte Carlo)

$lpha_{_{\!$	Measured cross-section, assuming α =0	Input $\sigma_{_{\!$
0	2758 nb ± 27 nb	2820 nb
+1	2738 nb ± 27 nb	3190 nb
-1	2787 nb ± 28 nb	2286 nb

- Systematic error up to 25 % when ignoring polarization.
- Polarization will be measured (in a second step):
 - in bins of η and p_{τ} ,
 - separating prompt and J/ψ from b,
 - With full angular analysis, in different reference frames.

 $\psi(2S) \rightarrow \mu^+ \mu^-$

- Similar performances than J/ψ :
 - Mass resolution: 13 MeV/c²
 - <u>S/B</u> = 2
 - Number of reconstructed $\psi(2S) = 2-4$ % of the number of reconstructed J/ ψ .
- Measurement of the ratio σ(ψ(2S))/σ(J/ψ), as a function of p_τ, separating prompt and from b.
- Polarization effects complicate also the measurement: systematic error up to 22% on the cross section ratio.

 $Y(1S) \rightarrow \mu^+ \mu^-$

- Loose muon ID selection, and transverse momentum requirement (p_τ(μ)>1.5 GeV/c).
- L0 trigger efficiency: 96 %
- Mass resolution: 37 MeV/c²
- Similar reconstruction and resolutions will be obtained for the Y(2S) and Y(3S) states: this will allow to separate the 3 Upsilon states.
- Goal is to measure cross-sections and polarization for all di-muon states, as a function of p_{T} .

$\chi_{\rm c}$ reconstruction

- J/ ψ selection, adding a photon detected in the ECAL with $p_{\tau}(\gamma)$ >500 MeV/c.
- $\Delta m=m(J/\psi \gamma)-m(J/\psi)$ distribution obtained on fully simulated events containing one J/ψ . Since the J/ψ background is very low, the plot contains a large fraction of the total background.
- $\Delta m resolution = 27 MeV/c^2$.

$\chi_{\mbox{\tiny b2}}$ reconstruction

- Reconstruction of $\chi_{b2}(1P) \rightarrow Y(1S) \gamma$
- Photon detected in ECAL, with $p_{T}(\gamma) > 500 \text{ MeV/c}$
- Mass resolution: 47 MeV/c²

h_{c} reconstruction

- Besides di-muon states, LHCb detector performances will allow to study other states though hadronic decay modes.
- Reconstruction of $h_c \rightarrow \eta_c \gamma$ is difficult (E(γ)~500 MeV in the h_c rest frame).
- Hadronic decay channels look promising: $h_c \rightarrow p\overline{p}$, $h_c \rightarrow \phi K^+ K^-$, $h_c \rightarrow \phi \pi^+ \pi^-$.
 - In particular, $h_c \rightarrow p\overline{p}$ probably visible with first year data, which will give access to $\sigma(h_c)xBr(h_c \rightarrow p\overline{p})$ relative to $\sigma(J/\psi)xB(J/\psi \rightarrow p\overline{p})$.

Expected $p\overline{p}$ mass distribution:

- Assuming $Br(h_c \rightarrow p\bar{p}) = 0.12$ %,
- Toy Monte Carlo for background, reproducing background seen on fully simulated minimum bias events,
- 100 pb⁻¹ at \sqrt{s} = 10 TeV

X(3872) and Z(4430)[±]

- Reconstruction of X(3872) $\rightarrow J/\psi \pi^+ \pi^-$ (and the control channel $\psi(2S) \rightarrow J/\psi \pi^+ \pi^-$), prompt or from b: systematic study of this state.
- Expect **1800** reconstructed $B^{\pm} \rightarrow X(3872) \text{ K}^{\pm}$, with 2 fb⁻¹ at $\sqrt{s} = 14 \text{ TeV}$, allowing to disentangle unknown quantum number J^{PC}: 1⁺⁺/2⁻⁺.

- Similar studies for $B^0 \rightarrow Z(4430)^+ (\rightarrow \psi(2S)\pi^+)K^-$
 - About 6200 signal events can be selected from 2 fb⁻¹ of data at \sqrt{s} =14 TeV, assuming B(B⁰ \rightarrow Z(4430)⁺ K⁻)xB(Z(4430)⁺ \rightarrow ψ (2S) π ⁺) = 4.1x10⁻⁵
 - Possible to confirm the Belle discovery with about 100 pb⁻¹ of data at $\sqrt{s} = 7_1$ eV.

$\mathsf{B}_{\mathsf{c}}^{\pm}$

- Measurement of mass, lifetime and production cross section using the decay modes:
 - $B_c^+ \rightarrow J/\psi \pi^+$ assuming $\sigma(B_c^+)=0.4 \mu b$, and $Br(B_c^+ \rightarrow J/\psi \pi^+)=0.13 \%$, expect **310** signal events for 1 fb⁻¹ of data at $\sqrt{s} = 14$ TeV.
 - Production cross section relative to $B^{\scriptscriptstyle +}(\to J/\psi\;K^{\scriptscriptstyle +})$
 - $B_c^+ \rightarrow J/\psi \mu^+ X$: signal yield one order of magnitude larger, production cross section measurement possible with 2010 data.

Conclusions

- LHCb will measure production cross sections and polarization of di-muon states, in the LHCb acceptance: $3 < \eta < 5$, p_T<7 GeV/c.
- Other quarkonium states will also be looked at: h_c , χ_c , χ_b , B_c .
- LHCb performances will allow to also study associate productions: J/ψ+J/ψ, J/ψ+cc, either reconstructing D or tagging it with a displaced e or μ.
- Study of « exotic » states: X(3872) and Z(4430).
- Similar states can also be searched in (Quarkonium $\pi^+ \pi^-$) mass spectra: $Y_{b} \rightarrow Y(1S) \pi^+ \pi^-$, $B_{c}^{**} \rightarrow B_{c}^+ \pi^+ \pi^-$.