Inelastic J/ψ Production at HERA

Quarkonium Production at the LHC 19 Feb 2010

Electron-Proton Collider HERA operated 1992 - 2007

Andreas B. Meyer

2

HERA Physics $\sqrt{s_{ep}} \sim 320 \text{ GeV}$

H1 General Search at HERA (e⁺p, 285 pb⁻¹)

 $e^{\pm}, \nu(k')$

Proton Remnant

Struck Quark

HERA

A H1 e'p NC

ZEUS e'p NC 98-99

SM e p NC (CTEQ6D)

104

Q² (GeV²)

 γ, Z^0, W^{\pm}

(pb/Ge

/da²

10

10

10

10

10

10 r y < 0.9

CC

H1 e'p CC

• ZEUS e'p CC 98-99

SM e'p CC (CTEQ6D)

10

Electroweak physics

 $\sigma^+_{r,NC}(\mathbf{x},\mathbf{Q}^2)$

0,4

0.2

 $F_2(x,Q^2)$

Searches for new physics

 $e^{\pm}(k)$

q(xp)

SCALAR LEPTOQUARKS WITH F=0

MINICUS D. INCYCI

J/ψ Event Signature

$J/\psi \rightarrow \mu^+\mu^-$ candidate event in H1 Detector:

 J/ψ , ψ (2S), Υ measurements:

- use decays into $\mu^+\mu^-$ or e⁺e⁻
- **Trigger and reconstruction** down to $p_t \sim 0$
- Feed down contributions (not subtracted from data):
 - **ψ(2S): ~15 %**

 \boldsymbol{p}

B, X_c: few % in measured range

- Q32~~~0 Photoproduction (yp): beam electron scattered and e_{P} low any less V²): (not detected in ever detector) in main detector
- Electroproduction $(\mathcal{Q}^2 \otimes \mathcal{Q}^2)$ $(\mathcal{Q}^2 \otimes \mathcal{Q}^2)$: scattered e detected in backward calorimeter

 $\sqrt{(P+q)^2}$ $W_{\gamma p}$ $z = \frac{p_{\psi} \cdot P}{q \cdot P}$ $= \frac{E_{\psi}^{*}}{E_{\infty}^{*}}$ in *p* rest frame

5

elasticity observable $z \rightarrow sensitivity$ to final state radiation details

J/w Production at HERA

Production Mechanisms

Andreas B. Meyer

0 L 2

events

60

40

20

J/w Production at HERA

Andreas B. Meyer

J/ψ Production at HERA

I/2/2 Photeproduction

Elastic Quarkonium Production

- Elastic VM production has been measured for $\rho^0, \omega, \phi, J/\psi, \psi(2S)$ and $\Upsilon(1S)$
- Controled variation of up to 4 different scales $(m_{VM}, Q^2, W_{gp} and t)$ in the same experiment:
 - unique multi-scale problem
 - study interplay between soft and hard QCD
- Test of QCD concepts, e.g. Generalized Parton Distributions, BFKL,

Inelastic Heavy Quarkonium Production

Colour Singlet Model

CS: one parameter fixed from $\Gamma(J/\psi \to \ell^+ \ell^-)$

LO: Berger et al, Baier et al, 1981 NLO: Kraemer et al, 1995 Colour Octet Contributions

NRQCD-factorization:

 $\sigma_{J/\psi X} = \sum \hat{\sigma}(p\bar{p} \to c\bar{c}[n]X) \times \mathsf{LDME}[n]$

Bodwin, Braaten, Lepage 1995

LDME determined from Tevatron data (NLO not yet available for $p\overline{p}$ or pp)

J/ψ Production at HERA

Kraemer et al, 1995

CSM: NLO available for γp already since 1995

good description of HERA data

NLO corrections are very large !

J/ Production at HERA

J/ψ Production at HERA

CSM (NLO): re-calculated recently

New calculation lower than previous results - due to use of different scales

No discrepancies between calculations / choice of scales is "matter of taste" (!?)

J/ Production at HERA

J/ψ Production at HERA and Tevatron

CSM (NLO) calculations for HERA and Tevatron by same authors

looking consistent, i.e. shape ok, normalization off

J/ ψ Production at HERA

J/ψ Production at HERA

Test against elasticity distribution z:

Shape well described

Color Octet Contributions

HERA photoproduction CO perturbative matrix elements now calculated to NLO

LDME (not yet at NLO) determined from Tevatron data

Kniehl, Kramer, 1998

Error band: difference between LDME (LO) and LDME (LO higher order improved)

J/w Production at HERA

Color Octet Contributions

Test against elasticity distribution z:

Shape wrong

Possibly due to LO - LDME (NLO) requires full NLO calculation of all NRQCD components to hadroproduction

J/ ψ Production at HERA

J/ψ Production in k_T -Factorization

CCFM evolution equation
M.Ciafaloni et al, 1988

- kt unintegrated gluon density
- contains NLO components

CCFM implemented in Monte Carlo event generator CASCADE H.Jung, 2001

Kt-factorization (CSM) as implemented in CASCADE describes HERA data very well out of the box match with data / no need for CO and/or complex reweighting etc.

J/ψ Production at HERA

 J/ψ Production in k_T-Factorization

Test against elasticity distribution z:

Shape well described, normalization also ok

out of the box match with data / no need for CO, reweighting etc.

J/w Production at HERA

 $c\bar{c} [1, {}^{3}S_{1}]$

J/ψ Helicity Distributions

• α and ν from angular distributions

$$\frac{1}{\sigma} \frac{d\sigma}{d\cos\theta^*} \propto 1 + \alpha\cos^2\theta^*$$
$$\frac{1}{\sigma} \frac{d\sigma}{d\phi^*} \propto 1 + \frac{\alpha}{3} + \frac{\nu}{3}\cos^2 2\phi^*$$

- Two complementary frames:
 - Helicity: z defined by J/ψ direction in γp rest frame
 - Collins Soper: z defined by bisector of γ and p in J/ ψ rest frame
- Projections onto x,y,z give:
 - Z \propto $\cos heta^*$
 - $\mathbf{y} \propto \sin \theta^* \sin \phi^*$
 - **x** $\propto \sin \theta^* \cos \phi^*$
- Measurement: minimize X² by variation of angular distributions at generator level

J/Ψ rest frame

J/ Production at HERA

J/ψ Helicity Distributions

J/w Production at HERA

Summary

- Measurements of Inelastic Charmonium Production:
 - H1: cross sections and polarization (ep and γp) final publication just out / reported here
 - ZEUS: polarization (γp) published final cross section measurements to come
- Reconstruction of final state kinematics: elasticity z (fractional photon energy carried by J/ψ in p rest frame): Sensitivity to final state QCD radiation, distinguish between different models and production regimes
- Detailed comparisons of H1 data with several recent calculations:
 - CSM (NLO) describes shape of data rather well, polarization ok
 - Normalization too low recent choice of scale large normalization uncertainties
 - This picture is largely consistent between HERA and Tevatron
 - CS+CO (NLO): first x-sec. calculations of color octet contributions to next-to-leading order are available now for HERA.
 - Failure describing the elasticity distribution z
 - Full determination of LDME (NLO) requires full calc. of ME for Hadroproduction + fit of Tevatron data (underway)
 - Test of NRQCD factorization / universality of LDME still to be done
 - Kt-factorization (CSM) does a good job describing the HERA data out-of-the box
 - Similar in shape as CSM (NLO), normalization and polarization ok.
 - The multi-purpose MC generator CASCADE implements kt-factorization (CCFM), available for ep, γp, pp, pp

Polarization Measurements as fct of z

Lifetime Distribution / Feed Down from B decays

Fraction of J/ ψ coming from B decays measured to be small (~15 % in lowest bin of the prompt production measurement, z > 0.3)