

Associated J/ψ production: $J/\psi + \gamma$, $J/\psi + c$, $J/\psi + c\bar{c}$, $J/\psi + J/\psi$, etc

J.P. Lansberg Ecole Polytechnique – CPHT

Quarkonium production at the LHC CERN – February 19, 2010

J.P. Lansberg (Ecole Polytechnique-CPHT)

Associated J/ψ production

February 19, 2010 1 / 20

Part I

Present theoretical uncertainties

J.P. Lansberg (Ecole Polytechnique-CPHT)

Associated J/ψ production

February 19, 2010 2 / 20

3

The best we can do for now : NNLO* contributions for Υ

P.Artoisenet, J.Campbell, JPL, F.Maltoni, F. Tramontano, Phys. Rev. Lett. 101, 152001 (2008)

The best we can do for now : NNLO* contributions for Υ

P.Artoisenet, J.Campbell, JPL, F.Maltoni, F. Tramontano, Phys. Rev. Lett. 101, 152001 (2008)

× Very large uncertainty attached to the choice of μ_r through $\alpha_s^5(\mu_r)$

This is indeed the Born order for the leading P_T graphs

Associated J/ψ production

NNLO^\star contributions for ψ

P.Artoisenet, AIP Proc. Conf 1038,55,2008. JPL, EPJC 61:693,2009.

X Same large uncertainty attached to the choice of μ_r

18 A.

Υ cross section at the LHC

P.Artoisenet, J.Campbell, JPL, F.Maltoni, F. Tramontano, Phys. Rev. Lett. 101, 152001 (2008)

X No surprise : same uncertainty band

Υ and J/ψ polarisation in hadroproduction at $\mathcal{O}(\alpha_S^5)$

P.Artoisenet, J.Campbell, JPL, F.Maltoni, F. Tramontano, Phys. Rev. Lett. 101, 152001 (2008) see also JPL EPJC 61:693,2009.

Υ and J/ψ polarisation in hadroproduction at $\mathcal{O}(\alpha_S^5)$

P.Artoisenet, J.Campbell, JPL, F.Maltoni, F. Tramontano, Phys. Rev. Lett. 101, 152001 (2008) see also JPL EPJC 61:693,2009.

Most of the theoretical uncertainties vanish

Υ and J/ψ polarisation in hadroproduction at $\mathcal{O}(\alpha_S^5)$

P.Artoisenet, J.Campbell, JPL, F.Maltoni, F. Tramontano, Phys. Rev. Lett. 101, 152001 (2008) see also JPL EPJC 61:693,2009.

 ✓ Most of the theoretical uncertainties vanish
 ✗ For ↑ and J/ψ, comparisons with prompt measurements from CDF and DØ can be "dangerous"

→ Feed-down from χ_c , χ_b not known at NLO !!

Part II

Grass greener somewhere else ? Low P_T ?

J.P. Lansberg (Ecole Polytechnique-CPHT)

Associated J/ψ production

February 19, 2010 7 / 20

3

(人間) トイヨト イヨト

S. J. Brodsky and J. P. Lansberg, to appear in PRD Rapid. Com, 0908.0754 [hep-ph].

э

< 🗇 🕨 🔸

S. J. Brodsky and J. P. Lansberg, to appear in PRD Rapid. Com, 0908.0754 [hep-ph].

LO: $gg \rightarrow J/\psi g$: wrongly assumed to be negligible ! Large theoretical uncertainty

- ∢ ⊢⊒ →

S. J. Brodsky and J. P. Lansberg, to appear in PRD Rapid. Com, 0908.0754 [hep-ph].

LO: $gg \rightarrow J/\psi g$: wrongly assumed to be negligible !

Large theoretical uncertainty

NLO: $gg \rightarrow J/\psi gg$, $gq \rightarrow J/\psi gq$, ...

using the matrix elements from J.Campbell, F. Maltoni, F. Tramontano, PRL 98:252002,2007

Theoretical uncertainty are somewhat reduced

イロト 不得下 イヨト イヨト

- 31

S. J. Brodsky and J. P. Lansberg, to appear in PRD Rapid. Com, 0908.0754 [hep-ph].

LO: $gg \rightarrow J/\psi g$: wrongly assumed to be negligible !

Large theoretical uncertainty

NLO: $gg \rightarrow J/\psi gg$, $gq \rightarrow J/\psi gq$, ...

using the matrix elements from J.Campbell, F. Maltoni, F. Tramontano, PRL 98:252002,2007

Theoretical uncertainty are somewhat reduced

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Yet, one contribution at LO was overlooked: $cg \rightarrow J/\psi c$ (+ NLO = NLO⁺)

Introduce new uncertainties (attached to c(x) mainly)

Associated J/ψ production

S. J. Brodsky and J. P. Lansberg, to appear in PRD Rapid. Com., 0908.0754 [hep-ph].

In all cases, somewhat large theoretical uncertainties

- 一司

Associated J/ψ production

February 19, 2010 9 / 20

Part III

Need for more observables !

J.P. Lansberg (Ecole Polytechnique-CPHT)

Associated J/ψ production

February 19, 2010 10 / 20

3

<ロ> (日) (日) (日) (日) (日)

Double charm/beauty HADRO-production should show large rates let us see how it can be a new valuable observable

P.Artoisenet, J.P.L, F.Maltoni, PLB 653:60,2007; S.P. Baranov PRD73:074021,2006.

イロト イ理ト イヨト イヨト

Double charm/beauty HADRO-production should show large rates let us see how it can be a new valuable observable

P.Artoisenet, J.P.L, F.Maltoni, PLB 653:60,2007; S.P. Baranov PRD73:074021,2006.

- it
 - \rightarrow can probe the colour-singlet part alone: $(d\sigma/dp_T \text{ and } \alpha(p_T))$

Double charm/beauty HADRO-production should show large rates let us see how it can be a new valuable observable

P.Artoisenet, J.P.L, F.Maltoni, PLB 653:60,2007; S.P. Baranov PRD73:074021,2006.

- it
 - \rightarrow can probe the colour-singlet part alone: $(d\sigma/dp_T \text{ and } \alpha(p_T))$

 \rightarrow can test factorisation/the universality of the colour-octet matrix elements

Double charm/beauty HADRO-production should show large rates let us see how it can be a new valuable observable

P.Artoisenet, J.P.L, F.Maltoni, PLB 653:60,2007; S.P. Baranov PRD73:074021,2006.

- it
 - \rightarrow can probe the colour-singlet part alone: $(d\sigma/dp_T \text{ and } \alpha(p_T))$

 \rightarrow can test factorisation/the universality of the colour-octet matrix elements

 \rightarrow can –in general– test many models which provided mostly "postdictions"

Double charm/beauty HADRO-production should show large rates let us see how it can be a new valuable observable

P.Artoisenet, J.P.L, F.Maltoni, PLB 653:60,2007; S.P. Baranov PRD73:074021,2006.

- it
 - \rightarrow can probe the colour-singlet part alone: $(d\sigma/dp_T \text{ and } \alpha(p_T))$

 \rightarrow can test factorisation/the universality of the colour-octet matrix elements

 \rightarrow can –in general– test many models which provided mostly "postdictions"

 \rightarrow is insensitive to the 4-point coupling $c\bar{c}\psi g$ and the s channel cut

Double charm/beauty HADRO-production should show large rates let us see how it can be a new valuable observable

P.Artoisenet, J.P.L, F.Maltoni, PLB 653:60,2007; S.P. Baranov PRD73:074021,2006.

- it
 - \rightarrow can probe the colour-singlet part alone: $(d\sigma/dp_T \text{ and } \alpha(p_T))$

 \rightarrow can test factorisation/the universality of the colour-octet matrix elements

 \rightarrow can –in general– test many models which provided mostly "postdictions"

- \rightarrow is insensitive to the 4-point coupling $c\bar{c}\psi g$ and the s channel cut
- → NRQCD factorisation ? Colour transfer mechanism ?

G.Nayak, J.W Qiu, G.Sterman, PRL99:212001, 2007, PRD 77:034022, 2008.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Need for more observables !

$Q + Q\overline{Q}$: CSM vs. COM (at the LHC)

P.Artoisenet, J.P.L, F.Maltoni, PLB 653:60,2007; P.Artoisenet, arXiv:0804.2975

3

< 回 ト < 三 ト < 三 ト

Need for more observables !

$Q + Q\bar{Q}$: CSM vs. COM (at the LHC)

P.Artoisenet, J.P.L, F.Maltoni, PLB 653:60,2007; P.Artoisenet, arXiv:0804.2975

• NOTE: ${}^{3}P_{J}^{[8]}$ (not shown): same P_{T} dependence as the CSM P.Artoisenet, Ph.D.

-

$Q + Q\bar{Q}$: CSM vs. COM (at the LHC)

P.Artoisenet, J.P.L, F.Maltoni, PLB 653:60,2007; P.Artoisenet, arXiv:0804.2975

• NOTE: ${}^{3}P_{J}^{[8]}$ (not shown): same P_{T} dependence as the CSM P.Artoisenet, Ph.D.

• Recent works on $e^+e^- \rightarrow J/\psi X$ at NLO (CSM & COM) strongly constrain the ${}^{3}P_{J}^{[8]}$ and ${}^{1}S_{0}^{[8]}$ LDMEs (at least 3 times smaller, if one switches off the CSM... which reproduces the data)

B.Gong et al., PRL 102:162003,2009; Y.Ma et al., PRL102:162002,2009. Y. Zhang et al.arXiv:0911.2166

- 4 回 ト - 4 回 ト

$Q + Q\bar{Q}$: CSM vs. COM (at the LHC)

P.Artoisenet, J.P.L, F.Maltoni, PLB 653:60,2007; P.Artoisenet, arXiv:0804.2975

• NOTE: ${}^{3}P_{J}^{[8]}$ (not shown): same P_{T} dependence as the CSM P.Artoisenet, Ph.D.

- Recent works on $e^+e^- \rightarrow J/\psi X$ at NLO (CSM & COM) strongly constrain the ${}^{3}P_{J}^{[8]}$ and ${}^{1}S_{0}^{[8]}$ LDMEs (at least 3 times smaller, if one switches off the CSM... which reproduces the data) B.Gong et al., PRL 102:162003,2009; Y.Ma et al., PRL102:162002,2009. Y. Zhang et al.arXiv:0911.2166
- Integrated cross section largely dominated by CSM contributions

$Q + Q\bar{Q}$: CSM vs. COM (at the LHC)

P.Artoisenet, J.P.L, F.Maltoni, PLB 653:60,2007; P.Artoisenet, arXiv:0804.2975

• NOTE: ${}^{3}P_{J}^{[8]}$ (not shown): same P_{T} dependence as the CSM P.Artoisenet, Ph.D.

- Recent works on $e^+e^- \rightarrow J/\psi X$ at NLO (CSM & COM) strongly constrain the ${}^{3}P_{J}^{[8]}$ and ${}^{1}S_{0}^{[8]}$ LDMEs (at least 3 times smaller, if one switches off the CSM... which reproduces the data) B.Gong et al., PRL 102:162003,2009; Y.Ma et al., PRL102:162002,2009. Y. Zhang et al.arXiv:0911.2166
- Integrated cross section largely dominated by CSM contributions
- COM contributions (may) dominate from $P_T \ge 15$ GeV

J.P. Lansberg (Ecole Polytechnique-CPHT)

Associated J/ψ production

February 19, 2010 12 / 20

$Q + Q\bar{Q}$: polarisation

___ ▶

$Q + Q\bar{Q}$: polarisation

 $\Rightarrow J/\psi + c\bar{c}$: polarisation with COM ("old" CO matrix elements)

P.Artoisenet, private communication

 \Rightarrow *B* feed-down expected to be proportionnally less important

 \Rightarrow idem for the χ_c feed-down

Indeed, no kinematical enhancements here

- 3

 \Rightarrow *B* feed-down expected to be proportionnally less important

 \Rightarrow idem for the χ_c feed-down

 \Rightarrow *B* feed-down expected to be proportionnally less important

 \Rightarrow idem for the χ_c feed-down

 Indeed, no kinematical enhancements here

 ← Color-singlet rate at NLO similar to a conservative (high) expectation from

 Colour-octets
 R.Li and J.X. Wang, PLB 672:51,2009

 ← But...

JPL, PLB 679:340,2009.

 \Rightarrow *B* feed-down expected to be proportionnally less important

 \Rightarrow idem for the χ_c feed-down

 \Rightarrow But... NNLO* CS one order of magnitude larger than NLO CS (\simeq CO)

JPL, PLB 679:340,2009.

 \Rightarrow *B* feed-down expected to be proportionnally less important

 \Rightarrow idem for the χ_c feed-down

 \Rightarrow But... NNLO* CS one order of magnitude larger than NLO CS (\simeq CO)

JPL, PLB 679:340,2009.

 \Rightarrow B feed-down expected to be proportionnally less important

 \Rightarrow idem for the χ_c feed-down

Indeed, no kinematical enhancements here \Rightarrow Color-singlet rate at NLO similar to a conservative (high) expectation from Colour-octets R.Li and J.X. Wang, PLB 672:51,2009

NNLO* CS one order of magnitude larger than NLO CS (\simeq CO)

JPL, PLB 679:340.2009.

Associated J/ψ production

February 19, 2010 14 / 20 Need for more observables !

α_s^5 contributions \leftrightarrow NNLO^{*}: validations

J.P. Lansberg (Ecole Polytechnique-CPHT)

Associated J/ψ production

February 19, 2010 15 / 20

- 2

イロト イヨト イヨト

α_s^5 contributions \leftrightarrow NNLO^{*}: validations

→ Validation at α_s^4 : the full NLO is amazingly well reproduced by $jj \rightarrow Qjj$

P.Artoisenet, J.Campbell, JPL, F.Maltoni, F. Tramontano, Phys. Rev. Lett. 101, 152001 (2008)

-

α_s^5 contributions \leftrightarrow NNLO^{*}: validations

→ Validation at α_s^4 : the full NLO is amazingly well reproduced by $jj \rightarrow Qjj$

P.Artoisenet, J.Campbell, JPL, F.Maltoni, F. Tramontano, Phys. Rev. Lett. 101, 152001 (2008)

→ Further validation with another process $Q + \gamma$: Full NLO vs $jj \rightarrow Q\gamma j$

 \Rightarrow Cross sections at $\sqrt{s} = 14$ TeV (times the branchings)

$\sigma(\text{events})$	$p_{Tcut}=3~{\rm GeV}$	$p_{Tcut}=4 \text{ GeV}$	$p_{Tcut}=5 \text{ GeV}$	$p_{Tcut}=6~{\rm GeV}$	$p_{Tcut}{=}7~{\rm GeV}$
$\perp \perp$	5.83pb(58324)	1.74 pb(17425)	0.56pb(5607)	0.20pb(1981)	$0.077 {\rm pb}(767)$
	2.55pb(25543)	0.83pb(8262)	0.28pb(2786)	0.10 pb(1014)	0.040 pb(401)
⊥	3.95pb(39425)	0.94pb(9445)	0.24pb(2380)	0.066 pb(660)	$0.020 \mathrm{pb}(204)$
tot	12.33pb(123319)	3.51pb(35131)	1.08pb(10773)	0.37 pb(3656)	0.14 pb(1372)
$\perp_8\perp_8$	2.90pb(29022)	1.82pb(18205)	1.15pb(11461)	0.74pb(7399)	0.49 pb(4925)

C.F Qiao et al., 0903.0954 [hep-ph]

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

 \Rightarrow Cross sections at $\sqrt{s} = 14$ TeV (times the branchings)

$\sigma(\text{events})$	$p_{Tcut}=3~{\rm GeV}$	$p_{Tcut}=4 \text{ GeV}$	$p_{Tcut}=5~{\rm GeV}$	$p_{Tcut}=6~{ m GeV}$	$p_{Tcut}=7~{ m GeV}$
$\perp \perp$	5.83pb(58324)	1.74 pb(17425)	0.56 pb(5607)	0.20 pb(1981)	$0.077 \mathrm{pb}(767)$
	2.55pb(25543)	0.83pb(8262)	0.28pb(2786)	0.10 pb(1014)	0.040 pb(401)
⊥	3.95pb(39425)	0.94pb(9445)	0.24pb(2380)	0.066 pb(660)	$0.020 \mathrm{pb}(204)$
tot	12.33pb(123319)	3.51pb(35131)	1.08 pb(10773)	0.37 pb(3656)	0.14 pb(1372)
$\perp_8\perp_8$	2.90pb(29022)	1.82pb(18205)	1.15pb(11461)	0.74pb(7399)	0.49 pb(4925)

C.F Qiao et al., 0903.0954 [hep-ph]

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

→ Usual complications: the feed-downs !

 \Rightarrow Cross sections at $\sqrt{s} = 14$ TeV (times the branchings)

$\sigma(\text{events})$	$p_{Tcut}=3~{\rm GeV}$	$p_{Tcut}=4 \text{ GeV}$	$p_{Tcut}=5 \text{ GeV}$	$p_{Tcut}=6~{\rm GeV}$	$p_{Tcut}=7~{\rm GeV}$
$\perp \perp$	5.83pb(58324)	1.74 pb(17425)	0.56pb(5607)	0.20pb(1981)	0.077pb(767)
	2.55pb(25543)	0.83pb(8262)	0.28pb(2786)	0.10pb(1014)	0.040 pb(401)
⊥	3.95pb(39425)	0.94pb(9445)	0.24pb(2380)	0.066 pb(660)	$0.020 \mathrm{pb}(204)$
tot	12.33pb(123319)	3.51pb(35131)	1.08pb(10773)	0.37 pb(3656)	0.14pb(1372)
$\perp_8\perp_8$	2.90pb(29022)	1.82pb(18205)	1.15pb(11461)	0.74pb(7399)	0.49pb(4925)

C.F Qiao et al., 0903.0954 [hep-ph]

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

→ Usual complications: the feed-downs ! → ... and QCD corrections !?

 \Rightarrow Cross sections at $\sqrt{s} = 14$ TeV (times the branchings)

$\sigma(\text{events})$	$p_{Tcut}=3~{\rm GeV}$	$p_{Tcut}=4 \text{ GeV}$	$p_{Tcut}=5 \text{ GeV}$	$p_{Tcut}=6~{\rm GeV}$	$p_{Tcut}{=}7~{\rm GeV}$
$\perp \perp$	5.83pb(58324)	1.74 pb(17425)	0.56pb(5607)	0.20pb(1981)	$0.077 {\rm pb}(767)$
	2.55pb(25543)	0.83pb(8262)	0.28pb(2786)	0.10 pb(1014)	0.040 pb(401)
⊥	3.95pb(39425)	0.94pb(9445)	0.24pb(2380)	0.066 pb(660)	$0.020 \mathrm{pb}(204)$
tot	12.33pb(123319)	3.51pb(35131)	1.08pb(10773)	0.37 pb(3656)	0.14 pb(1372)
$\perp_8\perp_8$	2.90pb(29022)	1.82pb(18205)	1.15pb(11461)	0.74pb(7399)	0.49 pb(4925)

C.F Qiao et al., 0903.0954 [hep-ph]

- \rightarrow Usual complications: the feed-downs !
- \rightarrow ... and QCD corrections !?
- \rightarrow Maybe the data are not so out-of-reach:

Philip John Vint, Ph.D thesis: "Di- J/ψ Studies, Level 3 Tracking and the D \emptyset Run IIb Upgrade"

(I have discovered it yesterday night, I haven't looked at it yet)

J.P. Lansberg (Ecole Polytechnique-CPHT)

Associated J/ψ production

February 19, 2010 16 / 20

Part IV

Summary

J.P. Lansberg (Ecole Polytechnique-CPHT)

Associated J/ψ production

February 19, 2010 17 / 20

2

<ロ> (日) (日) (日) (日) (日)

• Large theoretical uncertainties affecting cross section predictions

3

(日) (周) (三) (三)

- Large theoretical uncertainties affecting cross section predictions
- χ_Q rate and polarisation not known at NLO:

comparison with polarisation measurements is awkward

3

- 4 週 ト - 4 三 ト - 4 三 ト

- Large theoretical uncertainties affecting cross section predictions
- χ_Q rate and polarisation not known at NLO: comparison with polarisation measurements is awkward
- Time has come for another look ? new observables ?
 - on the one hand, avoiding the presence of Colour Octets: $J/\psi + \gamma$?
 - on the other hand, testing the presence of Colour Octets: $J/\psi + J/\psi$?
 - for which LO contributions in α_s are leading in P_T : $J/\psi + c\bar{c}$?

- Large theoretical uncertainties affecting cross section predictions
- χ_Q rate and polarisation not known at NLO: comparison with polarisation measurements is awkward
- Time has come for another look ? new observables ?
 - on the one hand, avoiding the presence of Colour Octets: $J/\psi + \gamma$?
 - on the other hand, testing the presence of Colour Octets: $J/\psi + J/\psi$?
 - for which LO contributions in α_s are leading in P_T : $J/\psi + c\bar{c}$?
 - $J/\psi + c \bar{c}$ seems anyhow the most promising

- Large theoretical uncertainties affecting cross section predictions
- χ_Q rate and polarisation not known at NLO: comparison with polarisation measurements is awkward
- Time has come for another look ? new observables ?
 - on the one hand, avoiding the presence of Colour Octets: $J/\psi + \gamma$?
 - on the other hand, testing the presence of Colour Octets: $J/\psi + J/\psi$?
 - for which LO contributions in α_s are leading in P_T : $J/\psi + c\bar{c}$?
 - $J/\psi + c \bar{c}$ seems anyhow the most promising
 - $J/\psi + c$ correlation at low P_T possible as well: studies of c(x)

- Large theoretical uncertainties affecting cross section predictions
- χ_Q rate and polarisation not known at NLO: comparison with polarisation measurements is awkward
- Time has come for another look ? new observables ?
 - on the one hand, avoiding the presence of Colour Octets: $J/\psi + \gamma$?
 - on the other hand, testing the presence of Colour Octets: $J/\psi + J/\psi$?
 - for which LO contributions in α_s are leading in P_T : $J/\psi + c\bar{c}$?
 - $J/\psi + c\bar{c}$ seems anyhow the most promising
 - $J/\psi + c$ correlation at low P_T possible as well: studies of c(x)
 - $J/\psi + hadron$ correlation or activity around the quarkonium

STAR, PRC 80, 041902(R) (2009), A. Kraan, AIP Conf.Proc.1038:45,2008.

- Large theoretical uncertainties affecting cross section predictions
- χ_Q rate and polarisation not known at NLO: comparison with polarisation measurements is awkward
- Time has come for another look ? new observables ?
 - on the one hand, avoiding the presence of Colour Octets: $J/\psi + \gamma$?
 - on the other hand, testing the presence of Colour Octets: $J/\psi + J/\psi$?
 - for which LO contributions in α_s are leading in P_T : $J/\psi + c\bar{c}$?
 - $J/\psi + c\bar{c}$ seems anyhow the most promising
 - $J/\psi + c$ correlation at low P_T possible as well: studies of c(x)
 - $J/\psi + hadron$ correlation or activity around the quarkonium

STAR, PRC 80, 041902(R) (2009), A. Kraan, AIP Conf.Proc.1038:45,2008.

- Other proposals are welcome !
- Prepare yours for a 3 day workshop entirely devoted to Quarkonium production after ICHEP in Paris (29-31 July 2010) www.cpht.polytechnique.fr/quarkonium

Part V

Backup slides

J.P. Lansberg (Ecole Polytechnique-CPHT)

Associated J/ψ production

February 19, 2010 19 / 20

2

<ロ> (日) (日) (日) (日) (日)

 "Approximately taking into account the higher-order effects due to multiple-gluon initial-state radiation, [...] we find that the matrix elements [...] $^{2S+1}L_J = S_0$ and ${}^{3}P_{I}$, are significantly reduced." B.A. Kniehl, G. Kramer, EPJC 6:493,1999. \rightarrow a priori better agreement with γp where CO Dominance was excessive.

J.P. Lansberg (Ecole Polytechnique-CPHT)

- "Approximately taking into account the higher-order effects due to multiple-gluon initial-state radiation, [...] we find that the matrix elements [...] ${}^{2S+1}L_J = {}^1S_0$ and 3P_J , are significantly reduced." B.A. Kniehl, G. Kramer, EPJC 6:493,1999. \rightarrow a priori better agreement with γp where CO Dominance was excessive.
- Analysis of fixed target data (low P_T) also tends to a reduction of the CO LDMEs

F. Maltoni et al., PLB 638:202,2006.

イロト イポト イヨト イヨト 二日

- "Approximately taking into account the higher-order effects due to multiple-gluon initial-state radiation, [...] we find that the matrix elements [...] $^{2S+1}L_J = {}^1S_0$ and 3P_J , are significantly reduced." B.A. Kniehl, G. Kramer, EPJC 6:493,1999. \rightarrow a priori better agreement with γp where CO Dominance was excessive.
- Analysis of fixed target data (low P_T) also tends to a reduction of the CO LDMEs

• Computation at NLO for CO channels confirms this: data overshot

B. Gong, X. Q. Li, J.-X. Wang,

F. Maltoni et al., PLB 638:202.2006.

PLB 673:197.2009.

- "Approximately taking into account the higher-order effects due to multiple-gluon initial-state radiation, [...] we find that the matrix elements [...] $^{2S+1}L_J = {}^1S_0$ and 3P_J , are significantly reduced." B.A. Kniehl, G. Kramer, EPJC 6:493,1999. \rightarrow a priori better agreement with γp where CO Dominance was excessive.
- Analysis of fixed target data (low P_T) also tends to a reduction of the CO LDMEs

• Computation at NLO for CO channels confirms this: data overshot

B. Gong, X. Q. Li, J.-X. Wang, PLB 673:197,2009.

F. Maltoni et al., PLB 638:202.2006.

- "Approximately taking into account the higher-order effects due to multiple-gluon initial-state radiation, [...] we find that the matrix elements [...] $^{2S+1}L_J = {}^1S_0$ and 3P_J , are significantly reduced." B.A. Kniehl, G. Kramer, EPJC 6:493,1999. \rightarrow a priori better agreement with γp where CO Dominance was excessive.
- Analysis of fixed target data (low P_T) also tends to a reduction of the CO LDMEs

• Computation at NLO for CO channels confirms this: data overshot

F. Maltoni et al., PLB 638:202.2006.

The P_T dependence is badly reproduced and cannot be properly fit

- "Approximately taking into account the higher-order effects due to multiple-gluon initial-state radiation, [...] we find that the matrix elements [...] $^{2S+1}L_J = {}^1S_0$ and 3P_J , are significantly reduced." B.A. Kniehl, G. Kramer, EPJC 6:493,1999. \rightarrow a priori better agreement with γp where CO Dominance was excessive.
- Analysis of fixed target data (low P_T) also tends to a reduction of the CO LDMEs

• Computation at NLO for CO channels confirms this: data overshot

B. Gong, X. Q. Li, J.-X. Wang, PLB 673:197,2009.

イロト 不得下 イヨト イヨト

F. Maltoni et al., PLB 638:202.2006.

The P_T dependence is badly reproduced and cannot be properly fit • $e^+e^- \rightarrow J/\psi X$ CS at NLO : no space for CO (1S_0 or 3P_J) in *B*-factory data Y. Q. Ma, et al., PRL 102 (2009)162002/ B. Gong and J. X. Wang, PRL 102 (2009) 162003

- "Approximately taking into account the higher-order effects due to multiple-gluon initial-state radiation, [...] we find that the matrix elements [...] $^{2S+1}L_J = S_0$ and ${}^{3}P_{I}$, are significantly reduced." B.A. Kniehl, G. Kramer, EPJC 6:493,1999. \rightarrow a priori better agreement with γp where CO Dominance was excessive.
- Analysis of fixed target data (low P_T) also tends to a reduction of the CO LDMEs
- Computation at NLO for CO channels confirms this: data overshot

B. Gong, X. Q. Li, J.-X. Wang, PLB 673:197.2009.

F. Maltoni et al., PLB 638:202.2006.

The P_T dependence is badly reproduced and cannot be properly fit

• $e^+e^- \rightarrow J/\psi X$ CS at NLO : no space for CO $({}^1S_0$ or ${}^3P_J)$ in *B*-factory data

Y. Q. Ma, et al., PRL 102 (2009)162002/ B. Gong and J. X. Wang, PRL 102 (2009) 162003

• $e^+e^- \rightarrow J/\psi X$ CO at NLO: Reduction by a factor of 3 of the LDMEs, Y. Zhang et al.arXiv:0911.2166 even if one neglects the CSM

J.P. Lansberg (Ecole Polytechnique-CPHT)

Associated J/ψ production

February 19, 2010 20 / 20