
Run-Time Reconfiguration of Hardware

João Canas Ferreira

CERN, 25-26 February 2010

Topics

Table of contents

1 Introduction to reconfigurable computing

2 Run-time reconfiguration of hardware
General aspects
Creating configurations
Potential advantages

3 Some devices with support for RTR

4 Flexible bitstream generation
General approach
Pragmatic aspects
Bitstream assembly
Bitstream assembly at run-time

5 Opportunities

João C Ferreira (Univ. Porto/INESCPorto) Run-Time Reconfiguration of Hardware CERN, 25-26 February 2010 2 / 89

Introduction to reconfigurable computing

1 Introduction to reconfigurable computing

2 Run-time reconfiguration of hardware
General aspects
Creating configurations
Potential advantages

3 Some devices with support for RTR

4 Flexible bitstream generation
General approach
Pragmatic aspects
Bitstream assembly
Bitstream assembly at run-time

5 Opportunities

João C Ferreira (Univ. Porto/INESCPorto) Run-Time Reconfiguration of Hardware CERN, 25-26 February 2010 3 / 89

Introduction to reconfigurable computing

Three ways to perform computations
flexibility

(programmability)

general-purpose
CPU

FPGA

ASIP

ASIC

hardware speed
+

software flexibility
?

performance, cost
development time

(No talk on reconfigurable computing is complete without this graphic!)
João C Ferreira (Univ. Porto/INESCPorto) Run-Time Reconfiguration of Hardware CERN, 25-26 February 2010 4 / 89

Introduction to reconfigurable computing

Reconfigurable computing
Reconfigurable computing (RC) vs. conventional (CPU) computing

Reconfigurable hardware infrastructure instead of CPU
Computation performed by a circuit rather than by executing
instructions

lw $t1, 0($s0) # load word
lw $t2, 4($s0)
lw $t3, 8($s0)
add $t6, $t2, $t3 # b + c
mult $t6, $t1 # a * ()
mflo $t1 # keep 32 msb
mult $t2, $t3 # b * c
mflo $t2
add $t1, $t1, $t2 # final addition
sw $t1, 0($s1) # store res

res = a * (b + c) + b*c

+

*

+

*

a b c

João C Ferreira (Univ. Porto/INESCPorto) Run-Time Reconfiguration of Hardware CERN, 25-26 February 2010 5 / 89

Introduction to reconfigurable computing

Advantages of RC
Key advantage 1
Naturally concurrent computation

“Natural” functioning mode of hardware
In the absence of resource constraints, only dependencies restrict
operation

Key advantage 2
Circuit can be tailored precisely to the requirements of application

Bit-width optimization
Partial evaluation

Example: embedding constants in the circuit
May improve latency and power consumption

Memory organization

João C Ferreira (Univ. Porto/INESCPorto) Run-Time Reconfiguration of Hardware CERN, 25-26 February 2010 6 / 89

Introduction to reconfigurable computing

Reconfigurable fabric architecture
Two large classes of reconfigurable fabrics:

Fine-grained:
Allow for the manipulation of data at the bit-level, both for processing
and for communication.
Most commercial FPGA fabrics fall in this category, although resources
are usually grouped in larger blocks (CLB: Configurable Logic Block).

Advantages: data of any size can be processed without wasting
reconfigurable resources; more versatile.

Coarse-grained:
Manipulate groups of bits via complex functional units (ALUs or
processing elements—PEs) and interconnect networks organized at
word level.

Advantages: speed (for large, complex calculations with uniform data
sizes); smaller amount of configuration data.

João C Ferreira (Univ. Porto/INESCPorto) Run-Time Reconfiguration of Hardware CERN, 25-26 February 2010 7 / 89

Introduction to reconfigurable computing

Many approaches to system organization
à RC hardware has appeared (or been proposed) in many sizes and shapes,
targeting different market segments:

only FPGAs
custom computing machines: PAM, Splash
accelerators (Teramac)

FPGA with CPU(s)
embedded CPU core / CPU soft core

SOCs with reconfigurable IP cores
CPU with reconfigurable units
supercomputers (Cray, Silicon Graphics)

à “Pure” FPGAs have evolved to reconfigurable platforms with dedicated
blocks for:

memory
multipliers, DSP functions
clock generation
input/output (high-speed serial communications)

João C Ferreira (Univ. Porto/INESCPorto) Run-Time Reconfiguration of Hardware CERN, 25-26 February 2010 8 / 89

Introduction to reconfigurable computing

The “curse” of programmability
The programmability issue
How do we go from algorithms to circuits?

Hardware designer: use hardware description languages
(+) Efficient at circuit design
(-) Lack integration with software, exposes hardware

Automatic translation from standard languages (C, Matlab)
(+) Leverages existing code
(-) How to express/extract parallelism? Data formats?
(-) Quality of the final results? (Design space exploration)

Use of new languages (e.g., Handel-C)
(+) Reduces the semantic gap (e.g., timing, pipelining, parallelism)
(-) Languages are new and embody a different computational model

Appropriateness
Are we using the appropriate algorithms for a given task in RC?

João C Ferreira (Univ. Porto/INESCPorto) Run-Time Reconfiguration of Hardware CERN, 25-26 February 2010 9 / 89

Run-time reconfiguration of hardware

1 Introduction to reconfigurable computing

2 Run-time reconfiguration of hardware
General aspects
Creating configurations
Potential advantages

3 Some devices with support for RTR

4 Flexible bitstream generation
General approach
Pragmatic aspects
Bitstream assembly
Bitstream assembly at run-time

5 Opportunities

João C Ferreira (Univ. Porto/INESCPorto) Run-Time Reconfiguration of Hardware CERN, 25-26 February 2010 10 / 89

Run-time reconfiguration of hardware General aspects

Implementation strategies for reconfigurable systems

Reconfigurable systems can follow two main strategies:

Configure-once: (ASIC-like operation)

Single, system-wide configuration
FPGAs configured prior to operation

Variant: For some applications, input data remains constant for hours or
days: the bitstream is regenerated occasionally.

Example: acceleration of the SNORT packet filter by translating regular
expressions into hardware [Hutchings et al., 2002].

Run-time reconfiguration:
Application consists of multiple configurations for each device.

During normal execution, the FPGA is potentially reconfigured many
times (configuration steps).

João C Ferreira (Univ. Porto/INESCPorto) Run-Time Reconfiguration of Hardware CERN, 25-26 February 2010 11 / 89

Run-time reconfiguration of hardware General aspects

General implementation strategies for RTR
Classification of RTR-based systems according to scope of reconfiguration:

Global RTR:
All resources are reconfigured in each configuration step.

Example: Back-propagation training of artificial neural network divided
in 3 mutually exclusive phases: idle circuitry in each phase is
eliminated [Eldredge and Hutchings, 1996].

Local RTR: (partial reconfiguration)
A subset of the resources is reconfigured in each step.

à Part of a single FPGA (or a whole FPGA in a multi-FPGA system)

à Ideally, the operation of the remainder of the system is not affected.

à Use of hardware resources adapts to run-time profile of application.

à Several tasks may be independently supported in hardware at the
same time (multiple hardware modules).

à Shorter reconfiguration time (individual hardware modules).

João C Ferreira (Univ. Porto/INESCPorto) Run-Time Reconfiguration of Hardware CERN, 25-26 February 2010 12 / 89

Run-time reconfiguration of hardware Creating configurations

1 Introduction to reconfigurable computing

2 Run-time reconfiguration of hardware
General aspects
Creating configurations
Potential advantages

3 Some devices with support for RTR

4 Flexible bitstream generation
General approach
Pragmatic aspects
Bitstream assembly
Bitstream assembly at run-time

5 Opportunities

João C Ferreira (Univ. Porto/INESCPorto) Run-Time Reconfiguration of Hardware CERN, 25-26 February 2010 13 / 89

Run-time reconfiguration of hardware Creating configurations

Creation of configuration data: basic scenario

Default scenario: local RTR for a single-context, fine-grained FPGA.

à In the simplest development scenarios, configuration data is created at
design time, together with the rest of system.

A

B

...

Z

A

...

+

If sequence of configuration steps is known: partial difference bitstreams can
be used to take the hardware from one configuration to another.
João C Ferreira (Univ. Porto/INESCPorto) Run-Time Reconfiguration of Hardware CERN, 25-26 February 2010 14 / 89

Run-time reconfiguration of hardware Creating configurations

Characteristics of the basic scenario

Main characteristics of the basic scenario:

Regular development flow and tools

Just a modification of the bitstream generation procedure to create
partial bitstreams.

Full design for each configuration

Advantage: Safe—each configuration can be validated independently,
including timing restrictions

Disadvantage: Time-consuming, with a great amount of redundant work.

Disadvantage: Any change of the common sections requires recreating
all the designs.

João C Ferreira (Univ. Porto/INESCPorto) Run-Time Reconfiguration of Hardware CERN, 25-26 February 2010 15 / 89

Run-time reconfiguration of hardware Creating configurations

Slot-based organization
à Exchangeable modules may be placed in one of various slots.

C
o
m
m
u
n
i
c
a
t
i
o
n

C
o
m
m
u
n
i
c
a
t
i
o
n

A B C D E F G

A D C CF E BB

t = T1 t = T2

João C Ferreira (Univ. Porto/INESCPorto) Run-Time Reconfiguration of Hardware CERN, 25-26 February 2010 16 / 89

Run-time reconfiguration of hardware Creating configurations

Characteristics of slot-based organization

More flexible than basic scenario
At any given time, a different combination of modules may be active.
Modules for the slots may be created after the initial design.

Mostly regular design flow
Partial bitstreams must be created before use:

(i) One version for each possible slot

(ii) Single version relocated at load time by software or hardware

Communication infrastructure:
Connections among slots, and between slots and the “fixed” circuitry.

Predefined slot size constrains design

Use of some non-homogeneous resources is restricted or impossible

Example: Block RAMs or dedicated DSP blocks.

João C Ferreira (Univ. Porto/INESCPorto) Run-Time Reconfiguration of Hardware CERN, 25-26 February 2010 17 / 89

Run-time reconfiguration of hardware Creating configurations

Example: 1D slot-based system
Used in automotive systems: run-time system assigns slots, may save state.

Source: [Becker et al., 2007]
João C Ferreira (Univ. Porto/INESCPorto) Run-Time Reconfiguration of Hardware CERN, 25-26 February 2010 18 / 89

Run-time reconfiguration of hardware Creating configurations

Example: Erlangen Slot Machine
BabyBoard: (4-CLB-wide) micro-slots, macro slots, access to external SRAM.

Source: [Majer et al., 2007]
João C Ferreira (Univ. Porto/INESCPorto) Run-Time Reconfiguration of Hardware CERN, 25-26 February 2010 19 / 89

Run-time reconfiguration of hardware Creating configurations

Flexible slot arrangement

Characteristics: 1D and 2D slot arrangements, multi-slot modules, and
reconfigurable routing modules for configuration.

Source: [Krasteva et al., 2007]

João C Ferreira (Univ. Porto/INESCPorto) Run-Time Reconfiguration of Hardware CERN, 25-26 February 2010 20 / 89

Run-time reconfiguration of hardware Potential advantages

1 Introduction to reconfigurable computing

2 Run-time reconfiguration of hardware
General aspects
Creating configurations
Potential advantages

3 Some devices with support for RTR

4 Flexible bitstream generation
General approach
Pragmatic aspects
Bitstream assembly
Bitstream assembly at run-time

5 Opportunities

João C Ferreira (Univ. Porto/INESCPorto) Run-Time Reconfiguration of Hardware CERN, 25-26 February 2010 21 / 89

Run-time reconfiguration of hardware Potential advantages

Increased hardware utilization
à More specialized circuits require less hardware and may run faster.

T: total operation time
T = Te + Tc Te: execution time; Tc: configuration time
f = Tc/Te: relative configuration time
A: total area required for the implementation

à Functional density D measures the computational throughput
(operations/s) of unit hardware resources [Wirthlin and Hutchings, 1998]:

D =
1
C
=

1
AT

Dmax =
1

ATe

à Improvement I in functional density of RTR circuit Dr over statically
configured alternative Ds:

I =
Dr − Ds

Ds
=

Dr

Ds
− 1 Imax =

Dmax

Ds
− 1

à To increase functional density over Ds: f ≤ Imax
João C Ferreira (Univ. Porto/INESCPorto) Run-Time Reconfiguration of Hardware CERN, 25-26 February 2010 22 / 89

Run-time reconfiguration of hardware Potential advantages

Using functional density
Quick estimate of the suitability of RTR:

1 estimate area and time (Te) of RTR version

2 calculate Imax

3 estimate Tc

4 find f and check condition f ≤ Imax

Source: [Wirthlin and Hutchings, 1998]
João C Ferreira (Univ. Porto/INESCPorto) Run-Time Reconfiguration of Hardware CERN, 25-26 February 2010 23 / 89

Run-time reconfiguration of hardware Potential advantages

Example: Extending hardware support
à RTR can be used to provide more hardware support than would fit in a
static configuration.
à Example: image processing for driver assistance [Claus et al., 2007]

João C Ferreira (Univ. Porto/INESCPorto) Run-Time Reconfiguration of Hardware CERN, 25-26 February 2010 24 / 89

Run-time reconfiguration of hardware Potential advantages

Advantage: Energy consumption
Study for Atmel FPGAs AT40K20 [Lorenz et al., 2004]:

Energy consumption during reconfiguration is dominated by short-circuit and
static power consumption (reconfiguration of interconnections), which
increase with reconfiguration time.
Reconfiguration should be made at the highest frequency (16 MHz).
João C Ferreira (Univ. Porto/INESCPorto) Run-Time Reconfiguration of Hardware CERN, 25-26 February 2010 25 / 89

Run-time reconfiguration of hardware Potential advantages

Reconfiguration may reduce power consumption
Under some simplifying assumptions (equal dynamic power consumption):

K: number of reconfigurations

N: factor by which the RTR circuit is smaller

Condition for reducing energy consumption:

Estatic + Edynamic + K × Ereconf − N × Estatic − Edynamic < 0

Therefore,

K
N − 1

Ereconfiguration < Estatic; typically
K

N − 1
≈ 1.4

For the Atmel FPGAs considered in the study, this results in:

Tprocess

Treconf
>

1.4 × Preconf

Pstatic
≈ 16

João C Ferreira (Univ. Porto/INESCPorto) Run-Time Reconfiguration of Hardware CERN, 25-26 February 2010 26 / 89

Run-time reconfiguration of hardware Potential advantages

Advantage: Increased flexibility

Increased flexibility afforded by RTR can be used to:

develop versatile framework field updates [Fong et al., 2003]

develop sophisticated adaptive systems

à SAFES—Secure Architecture For Embedded Systems:

Support for security standards and defence against hardware attacks by
using reconfigurable hardware [Gogniat et al., 2008]

à Autonomous System-on-a-Chip Adaptation

Uses Bayesian network to choose and activate appropriate filter to
mitigate changing RF interference [French et al., 2008].

Interference identification (96 %), correct filter selection (65% plus
16% partial mitigation). Virtex-4 FX100 FPGA.

Reaction time is 112 ms (against 3–5 s for human operator).

João C Ferreira (Univ. Porto/INESCPorto) Run-Time Reconfiguration of Hardware CERN, 25-26 February 2010 27 / 89

Run-time reconfiguration of hardware Potential advantages

SAFES
RTR security primitives: (i) speed up computation; (ii) allow switching
between different primitives; (iii) provide trade-offs.

The security primitive
controller selects the
bitstream correspond-
ing to the chosen al-
gorithm and parameters
(in the “configuration”
state).

Source: [Gogniat et al.,
2008]

João C Ferreira (Univ. Porto/INESCPorto) Run-Time Reconfiguration of Hardware CERN, 25-26 February 2010 28 / 89

Run-time reconfiguration of hardware Potential advantages

Example: Autonomous interference mitigation

Source: [French et al., 2008]
João C Ferreira (Univ. Porto/INESCPorto) Run-Time Reconfiguration of Hardware CERN, 25-26 February 2010 29 / 89

Run-time reconfiguration of hardware Potential advantages

Autonomous system feedback loop

Source:[French et al., 2008]

João C Ferreira (Univ. Porto/INESCPorto) Run-Time Reconfiguration of Hardware CERN, 25-26 February 2010 30 / 89

Run-time reconfiguration of hardware Potential advantages

Some difficulties and challenges
Assuming a robust design flow, the development of complex, (embedded)
systems involves the following RTR-related issues:

Devising a (adaptive) reconfiguration strategy.
Must take into account the algorithms to be used (choice?) and the
performance constraints. Hardware/software co-design.
Definition of the reconfiguration policy/scheduling.

Design of the (partial) configurations.
Includes the design of the logical infrastructure (for modular
approaches).

Validation of system operation with temporal change of hardware.
Includes validation of (all) possible module combinations.
Includes composition of information for each combination at various
levels (functional and post-layout simulation).

Debugging of a dynamically changing system.

João C Ferreira (Univ. Porto/INESCPorto) Run-Time Reconfiguration of Hardware CERN, 25-26 February 2010 31 / 89

Some devices with support for RTR

1 Introduction to reconfigurable computing

2 Run-time reconfiguration of hardware
General aspects
Creating configurations
Potential advantages

3 Some devices with support for RTR

4 Flexible bitstream generation
General approach
Pragmatic aspects
Bitstream assembly
Bitstream assembly at run-time

5 Opportunities

João C Ferreira (Univ. Porto/INESCPorto) Run-Time Reconfiguration of Hardware CERN, 25-26 February 2010 32 / 89

Some devices with support for RTR

Configuration architectures

Two main configuration architectures:

Single-context
Device has only one configuration: most common in commercial FPGAs.

Some devices: partial reconfiguration (addressable configuration
memory).

Multi-context
Each configuration point is controlled by a multiplexer that chooses
between several controlling values.

background loading of configurations
very fast switching between configurations
but reduces physical capacity (for the same chip area)
spikes in dynamic power consumption

João C Ferreira (Univ. Porto/INESCPorto) Run-Time Reconfiguration of Hardware CERN, 25-26 February 2010 33 / 89

Some devices with support for RTR

Example: Multi-context FPGA I
Time-sharing operation of 8-context FPGA: variant of Xilinx X4000E.
à Extend capacity by adding reconfiguration bits, not CLBs.

Source [Trimberger, 1997]
João C Ferreira (Univ. Porto/INESCPorto) Run-Time Reconfiguration of Hardware CERN, 25-26 February 2010 34 / 89

Some devices with support for RTR

Example: Multi-context FPGA II
“Logic engine” mode: “user cycle” goes through several contexts

Source [Trimberger, 1997]

João C Ferreira (Univ. Porto/INESCPorto) Run-Time Reconfiguration of Hardware CERN, 25-26 February 2010 35 / 89

Some devices with support for RTR

Example: Multi-context FPGA CLB

Source [Trimberger, 1997]
João C Ferreira (Univ. Porto/INESCPorto) Run-Time Reconfiguration of Hardware CERN, 25-26 February 2010 36 / 89

Some devices with support for RTR

Partial reconfigurability: Xilinx XC6200
Fine-grained family from Xilinx

D Q

/Q

Clr

Clk

N
S
E
W
N4
S4
E4
W4

N
S
E
W
N4
S4
E4
W4

N
S
E
W
N4
S4
E4
W4

Nout

Eout

Sout

Wout

N
E

W

N

S

E

S

E

W

N

S

W

Magic

RP

João C Ferreira (Univ. Porto/INESCPorto) Run-Time Reconfiguration of Hardware CERN, 25-26 February 2010 37 / 89

Some devices with support for RTR

XC6200: FastMap interface

The FastMap interface of the XC6200 allows:

random access to configuration memory
fast partial device configuration
only program the bits that affect specific LE or interconnections (no
frames)

direct access to user registers

memory-mapped interface is “like SRAM”

wildcard registers allow don’t cares in the address bits
same data can be written to several locations in one cycle
fast configuration of bit-slice type designs
broadcast of data to registers

João C Ferreira (Univ. Porto/INESCPorto) Run-Time Reconfiguration of Hardware CERN, 25-26 February 2010 38 / 89

Some devices with support for RTR

XC6200: Map register
Map register maps user register onto external data bus (8, 16, 32 bits):

João C Ferreira (Univ. Porto/INESCPorto) Run-Time Reconfiguration of Hardware CERN, 25-26 February 2010 39 / 89

Some devices with support for RTR

Reconfigurable fabric as peripheral
Atmel AVR 8-bit RISC microcontroller + AT40K SRAM FPGA:

João C Ferreira (Univ. Porto/INESCPorto) Run-Time Reconfiguration of Hardware CERN, 25-26 February 2010 40 / 89

Some devices with support for RTR

Interface AVR/FPGA

AVR treats FPGA as a large I/O device

AVR can configure the FPGA (Cache Logic)

Source: Atmel datasheet

João C Ferreira (Univ. Porto/INESCPorto) Run-Time Reconfiguration of Hardware CERN, 25-26 February 2010 41 / 89

Some devices with support for RTR

Morpheus

Source [Voros et al., 2009]

João C Ferreira (Univ. Porto/INESCPorto) Run-Time Reconfiguration of Hardware CERN, 25-26 February 2010 42 / 89

Flexible bitstream generation

1 Introduction to reconfigurable computing

2 Run-time reconfiguration of hardware
General aspects
Creating configurations
Potential advantages

3 Some devices with support for RTR

4 Flexible bitstream generation
General approach
Pragmatic aspects
Bitstream assembly
Bitstream assembly at run-time

5 Opportunities

João C Ferreira (Univ. Porto/INESCPorto) Run-Time Reconfiguration of Hardware CERN, 25-26 February 2010 43 / 89

Flexible bitstream generation General approach

General context

Objective: flexible bitstream generation

Approach inspired by traditional software development:

Partial configurations are produced by assembling components from a
previously created library

Rationale: reduction of the effort involved in creating many partial
bitstreams for RTR

Additionally: Support for generation of bitstreams at run-time

à Target platform: Virtex-II Pro + external memory

Additionally: Insight into pragmatic aspects of RTR and implementation
trade-offs.

João C Ferreira (Univ. Porto/INESCPorto) Run-Time Reconfiguration of Hardware CERN, 25-26 February 2010 44 / 89

Flexible bitstream generation General approach

Bitstream generation by component assembly

Problem: How to generate many similar configurations efficiently?

à Assemble configurations from partial bitstreams of smaller components.

Example: Creation of pipelines where each stage may have several variants.

Analogy: Linking several procedures to create one executable.

library of basic components (medium granularity) with
bitstream format (black box)
interface information

bitstream manipulation to create new assemblies
relocation of component bitstreams + merging
interconnection: simplest (but less flexible) is by abutment
no additional restrictions on the internal organization of the dynamic area

fast process

João C Ferreira (Univ. Porto/INESCPorto) Run-Time Reconfiguration of Hardware CERN, 25-26 February 2010 45 / 89

Flexible bitstream generation General approach

Example of bitstream assembly

Source: [Silva and Ferreira, 2006]
João C Ferreira (Univ. Porto/INESCPorto) Run-Time Reconfiguration of Hardware CERN, 25-26 February 2010 46 / 89

Flexible bitstream generation General approach

Implementation context

Device with support for RTR (partial reconfiguration)

Closely-coupled CPU

Internal partial reconfiguration control
ICAP: Internal Configuration Access Port
for downloading and reading-back of configurations

the system can be self-reconfigurable

FPGA divided in two areas:
Static area:
CPU, memory, reconfiguration control, data transfer control

Dynamic area: Time-shared to support multiple tasks

Includes interface to the fixed-area (the “dock”)

João C Ferreira (Univ. Porto/INESCPorto) Run-Time Reconfiguration of Hardware CERN, 25-26 February 2010 47 / 89

Flexible bitstream generation General approach

Generic system organization
à Software application running on the CPU manages run-time tasks on the
dynamic area.

João C Ferreira (Univ. Porto/INESCPorto) Run-Time Reconfiguration of Hardware CERN, 25-26 February 2010 48 / 89

Flexible bitstream generation Pragmatic aspects

1 Introduction to reconfigurable computing

2 Run-time reconfiguration of hardware
General aspects
Creating configurations
Potential advantages

3 Some devices with support for RTR

4 Flexible bitstream generation
General approach
Pragmatic aspects
Bitstream assembly
Bitstream assembly at run-time

5 Opportunities

João C Ferreira (Univ. Porto/INESCPorto) Run-Time Reconfiguration of Hardware CERN, 25-26 February 2010 49 / 89

Flexible bitstream generation Pragmatic aspects

32-bit system implementation
32-bit OPB used for communication with: external memory (data), dynamic
area through OPB Dock, configuration controller.

João C Ferreira (Univ. Porto/INESCPorto) Run-Time Reconfiguration of Hardware CERN, 25-26 February 2010 50 / 89

Flexible bitstream generation Pragmatic aspects

64-bit system implementation
64-bit PLB used for communication with: external memory (data), dynamic
area through PLB Dock.

João C Ferreira (Univ. Porto/INESCPorto) Run-Time Reconfiguration of Hardware CERN, 25-26 February 2010 51 / 89

Flexible bitstream generation Pragmatic aspects

System comparison

32-bit system

Xilinx XC2VP7

36% slices used

CPU at 200 MHz

Buses at 50 MHz

Dynamic area: 25% slices

1 CPU

64-bit system

Xilinx XC2VP30

31% slices used

CPU at 300 MHz

Buses at 100 MHz

Dynamic area: 22.4% slices

1 of 2 CPUs used

João C Ferreira (Univ. Porto/INESCPorto) Run-Time Reconfiguration of Hardware CERN, 25-26 February 2010 52 / 89

Flexible bitstream generation Pragmatic aspects

Data and configuration transfers

Data transfers to/from dynamic area may limit performance

CPU-controlled transfers are inefficient and don’t use 64 bits
load/store instructions operate on 32 bits

DMA can use 64-bit width and frees CPU for other tasks

DMA transfers restrict:
data organization
access patterns
have a high setup overhead

Speed of configuration transfers to the ICAP can also be improved by
DMA

João C Ferreira (Univ. Porto/INESCPorto) Run-Time Reconfiguration of Hardware CERN, 25-26 February 2010 53 / 89

Flexible bitstream generation Pragmatic aspects

More versatile 64-bit dock with DMA

João C Ferreira (Univ. Porto/INESCPorto) Run-Time Reconfiguration of Hardware CERN, 25-26 February 2010 54 / 89

Flexible bitstream generation Pragmatic aspects

Baseline performance for data transfers

0,0

2,0

4,0

6,0

8,0

10,0

12,0

14,0

1 10 100 1000 10000 100000

Number of Operations

Write/Read interleaved

32-bit CPU controlled 64-bit CPU controlled 64-bit DMA controlled

2.2

0.1
0.6

tCPU32

tCPU64
= 3.7 to 6.5

tCPU64

tDMA64
= 4.7 to 6.7

João C Ferreira (Univ. Porto/INESCPorto) Run-Time Reconfiguration of Hardware CERN, 25-26 February 2010 55 / 89

Flexible bitstream generation Pragmatic aspects

Speeding up reconfiguration

Original ICAP driver is inefficient (EDK 8.2)

Reconfiguration of the dynamic area takes 0.17 s

The bottleneck lies not in the ICAP, but in the transfer process from
memory to the HWICAP (wrapper around ICAP).

Driver that uses the DMA controller improves reconfiguration

João C Ferreira (Univ. Porto/INESCPorto) Run-Time Reconfiguration of Hardware CERN, 25-26 February 2010 56 / 89

Flexible bitstream generation Pragmatic aspects

Case study: pattern matching (images)

Pattern matching task for bilevel images:
(i) Search pattern, 8x8 pixels; (ii) Implemented as an 8 stage pipeline; (iii)
8-bit transfers (Write/Read interleaved).

Average speedup = 27 Average speedup=19

João C Ferreira (Univ. Porto/INESCPorto) Run-Time Reconfiguration of Hardware CERN, 25-26 February 2010 57 / 89

Flexible bitstream generation Pragmatic aspects

Case study: SHA1 algorithm

Implementation of SHA1 algorithm (RFC 3174)

Only fits in the dynamic area of the 64-bit system

32-bit transfers (N writes, 5 reads)

João C Ferreira (Univ. Porto/INESCPorto) Run-Time Reconfiguration of Hardware CERN, 25-26 February 2010 58 / 89

Flexible bitstream generation Pragmatic aspects

Case study: Simple image processing
32-bit system: (no DMA)

64-bit system: (no DMA)

João C Ferreira (Univ. Porto/INESCPorto) Run-Time Reconfiguration of Hardware CERN, 25-26 February 2010 59 / 89

Flexible bitstream generation Pragmatic aspects

Case study: Simple image processing with DMA

64-bit system with DMA:

Average values for image sizes 256×256, 256×512, 512×512 and
1024×1024.

João C Ferreira (Univ. Porto/INESCPorto) Run-Time Reconfiguration of Hardware CERN, 25-26 February 2010 60 / 89

Flexible bitstream generation Bitstream assembly

1 Introduction to reconfigurable computing

2 Run-time reconfiguration of hardware
General aspects
Creating configurations
Potential advantages

3 Some devices with support for RTR

4 Flexible bitstream generation
General approach
Pragmatic aspects
Bitstream assembly
Bitstream assembly at run-time

5 Opportunities

João C Ferreira (Univ. Porto/INESCPorto) Run-Time Reconfiguration of Hardware CERN, 25-26 February 2010 61 / 89

Flexible bitstream generation Bitstream assembly

Bitstream organization of the Virtex-II Pro

Configuration data organized in frames
Frames are grouped in different sections
Frame: 1.bit column that spans to the total height of the device
Limitations imposed by host board don’t allow the dynamic area to be
of full height

João C Ferreira (Univ. Porto/INESCPorto) Run-Time Reconfiguration of Hardware CERN, 25-26 February 2010 62 / 89

Design flow
Base system implementation

fixed logic
interface to dynamic area
dynamic area must be unused

Hardware component
implementation

One project per component
Components must follow a
common pattern for I/O
placement

Flexible bitstream generation Bitstream assembly

Configuration assembly
Individual components assembled together to produce loaded
configuration
Communication between components done through fixed connection
macros
Multiple possible arrangements
Modules can be relocated and replicated to different positions of the
device
Multiple configurations can be built on the fly from existing modules
without needing to synthesize a new design
BitLinker

Configuration information of hardware components extracted from
complete bitstream
Component relocation to compatible areas
Ensures assembly created compatible with dynamic area
Produce correct partial bitstream for whole area affected by the
reconfiguration

João C Ferreira (Univ. Porto/INESCPorto) Run-Time Reconfiguration of Hardware CERN, 25-26 February 2010 64 / 89

Flexible bitstream generation Bitstream assembly

BitLinker: basic tasks

João C Ferreira (Univ. Porto/INESCPorto) Run-Time Reconfiguration of Hardware CERN, 25-26 February 2010 65 / 89

Flexible bitstream generation Bitstream assembly

Small partial bitstreams

When there are sections common to a set of partial bitstreams:

Partial bitstream corresponds to assembled configuration or to a vertical
section

Extracting parts of an assembly creates smaller bitstreams

Decreases time to switch between assemblies with common sections

João C Ferreira (Univ. Porto/INESCPorto) Run-Time Reconfiguration of Hardware CERN, 25-26 February 2010 66 / 89

Flexible bitstream generation Bitstream assembly

Example: sub-word operations for image processing

All assemblies mentioned before were produced in this way.
João C Ferreira (Univ. Porto/INESCPorto) Run-Time Reconfiguration of Hardware CERN, 25-26 February 2010 67 / 89

Flexible bitstream generation Bitstream assembly

IP cores in RTR systems

In a traditional development flow, IP cores are closely connected to a
base system.
Requirements for using IP cores in RTR systems

The IP cores must fit in the dynamic area
Area, aspect ratio, resource usage
IP cores must have a compatible connection interface

We assume the IP core is a completely implemented design
The IP core has been synthesized, placed and routed
No knowledge about the implementation details

Assumptions about data availability (black box)
Configuration bitstream
I/O and bounding-box information

João C Ferreira (Univ. Porto/INESCPorto) Run-Time Reconfiguration of Hardware CERN, 25-26 February 2010 68 / 89

Flexible bitstream generation Bitstream assembly

Using bitstream IP cores

Problem: How can we make third-party cores with different physical
characteristics time-share the same area?

Extension: more flexible connections between components.
Bitstream IP cores can adapted to the dynamic area by

Limited place and route operations
and bitstream manipulation

The same bitstream can be used
with different base systems
combined with other cores in different arrangements

Output: Partial bitstreams that can be loaded at run-time into a given
base system.

João C Ferreira (Univ. Porto/INESCPorto) Run-Time Reconfiguration of Hardware CERN, 25-26 February 2010 69 / 89

Flexible bitstream generation Bitstream assembly

Bitstream IP Cores (Examples)

João C Ferreira (Univ. Porto/INESCPorto) Run-Time Reconfiguration of Hardware CERN, 25-26 February 2010 70 / 89

Flexible bitstream generation Bitstream assembly

Another supported scenario
multiple IP core combinations differ by only in one core
only one core must be swapped at run-time

João C Ferreira (Univ. Porto/INESCPorto) Run-Time Reconfiguration of Hardware CERN, 25-26 February 2010 71 / 89

Flexible bitstream generation Bitstream assembly

Layout of the system

à Another extension: The dynamic area is not a single rectangle.
João C Ferreira (Univ. Porto/INESCPorto) Run-Time Reconfiguration of Hardware CERN, 25-26 February 2010 72 / 89

Flexible bitstream generation Bitstream assembly

Example: cores for sound processing

João C Ferreira (Univ. Porto/INESCPorto) Run-Time Reconfiguration of Hardware CERN, 25-26 February 2010 73 / 89

Flexible bitstream generation Bitstream assembly at run-time

1 Introduction to reconfigurable computing

2 Run-time reconfiguration of hardware
General aspects
Creating configurations
Potential advantages

3 Some devices with support for RTR

4 Flexible bitstream generation
General approach
Pragmatic aspects
Bitstream assembly
Bitstream assembly at run-time

5 Opportunities

João C Ferreira (Univ. Porto/INESCPorto) Run-Time Reconfiguration of Hardware CERN, 25-26 February 2010 74 / 89

Flexible bitstream generation Bitstream assembly at run-time

The next step

à Approach: application modifies dedicated hardware according to needs
determined at execution time
Reasons for on–line generation:

Increasing system “flexibility”, while preserving good performance

Allowing trade-off between performance / hardware usage

If some function is done often in software, create a corresponding
hardware version

Avoid the need to pre-generate large numbers of partial configurations

Increased application “portability” (different dynamic area layouts)

à Bitstream assembly must use relatively little CPU power (embedded
systems) and be “fast”.

João C Ferreira (Univ. Porto/INESCPorto) Run-Time Reconfiguration of Hardware CERN, 25-26 February 2010 75 / 89

Flexible bitstream generation Bitstream assembly at run-time

Component connection
à Enable flexible connections between components in adjacent columns

A route table contains information about all possible connections.

João C Ferreira (Univ. Porto/INESCPorto) Run-Time Reconfiguration of Hardware CERN, 25-26 February 2010 76 / 89

Flexible bitstream generation Bitstream assembly at run-time

Preprocessing flow

João C Ferreira (Univ. Porto/INESCPorto) Run-Time Reconfiguration of Hardware CERN, 25-26 February 2010 77 / 89

Flexible bitstream generation Bitstream assembly at run-time

Route table information
A complete route table contains three sets of data:

connection identification: relative coordinates of the connection
endpoints;

route specification: list of frame and bit indexes of all switching points
in the route;

incompatibility information: set of routes that are mutually
incompatible

One-time-only generation (per device and dynamic area).

João C Ferreira (Univ. Porto/INESCPorto) Run-Time Reconfiguration of Hardware CERN, 25-26 February 2010 78 / 89

Flexible bitstream generation Bitstream assembly at run-time

Avoiding some connection limitations

à Feed-through modules are inserted automatically.

João C Ferreira (Univ. Porto/INESCPorto) Run-Time Reconfiguration of Hardware CERN, 25-26 February 2010 79 / 89

Flexible bitstream generation Bitstream assembly at run-time

Examples for arithmetic expressions

Example 1: 24 ms Example2: 22 ms
Both partial bitstreams have 528 frames; reconfiguration time is 7.5 ms.
Source: [Silva and Ferreira, 2008]
João C Ferreira (Univ. Porto/INESCPorto) Run-Time Reconfiguration of Hardware CERN, 25-26 February 2010 80 / 89

Opportunities

1 Introduction to reconfigurable computing

2 Run-time reconfiguration of hardware
General aspects
Creating configurations
Potential advantages

3 Some devices with support for RTR

4 Flexible bitstream generation
General approach
Pragmatic aspects
Bitstream assembly
Bitstream assembly at run-time

5 Opportunities

João C Ferreira (Univ. Porto/INESCPorto) Run-Time Reconfiguration of Hardware CERN, 25-26 February 2010 81 / 89

Opportunities

Limitations of commercial devices and tools

Addressability of configuration memory

Accessing configuration memory is time-consuming and complex

Good: Basic unit of configuration access is getting smaller (Virtex-4)

Side note: Bitstream formats are generally not public.

Large bitstream size

Power consumption

Reconfiguration costs a (relatively) large amount of energy.

Commercial tool support is limited

Low-level support is available (experimentally), but no higher-level
tools.

Positive: Large number of academic tools, flows and methodologies.

For many examples, see: [Hauck and DeHon, 2008], [Voros et al., 2009]

No portability to different device families (let alone vendors)

João C Ferreira (Univ. Porto/INESCPorto) Run-Time Reconfiguration of Hardware CERN, 25-26 February 2010 82 / 89

Opportunities

Opportunities (formerly known as obstacles)
Including hardware change (temporal dimension) in
design,implementation and validation.
High-level, general-purpose models for specification and verification are
not (yet!) available.
Debugging adaptive systems is difficult.
Design space exploration is more complex (but can achieve better
results).
Benefits of RTR are (currently) application-dependent, but RTR may
enable new classes of systems.

à Trend towards complex, autonomous, adaptive embedded systems makes
RTR more attractive:

Increased use of heterogeneous, many-core SoCs (including RTR fine-
and coarse-grained fabrics).
Areas: domestic robots, smart camera networks, cars, mobile broadband
wireless access (IEEE 802.16j) . . .

à And wouldn’t hardware JIT compilation be nice?
João C Ferreira (Univ. Porto/INESCPorto) Run-Time Reconfiguration of Hardware CERN, 25-26 February 2010 83 / 89

Opportunities

Challenges in complex embedded systems

HIPEAC identified several challenges associated with RTR [Bosschere et al.,
2007]:

Mapping computations on accelerators
The problem is especially challenging for less conventional computing
nodes such as FPGAs.

Run-time support for reconfiguration
Multi-tasking
Transparent hardware/software boundaries

Improved run-time reconfiguration
Novel configuration memories (fewer soft errors, multi-context)

Dynamically adaptable network-on-chip technologies and main memory
interfaces

Tool chains (again. . .)

João C Ferreira (Univ. Porto/INESCPorto) Run-Time Reconfiguration of Hardware CERN, 25-26 February 2010 84 / 89

Opportunities

High-level algorithms to hardware
à REFLECT: Rendering FPGAs to Multi-Core Embedded Computing (FP7 Strep)

à Objective: To develop, implement and evaluate a novel compilation and
synthesis system approach for FPGA-based platforms.

à Aspect-Oriented specifications will convey domain knowledge to a
mapping engine

à Keep the advantages of a high-level imperative programming paradigm

à How: extensible intermediate mapping language

exploration of alternative architectures and run-time adaptive strategies

generation of flexible hardware cores that can be easily incorporated
into larger multi-core designs

Demonstrators: audio/video processing and real-time avionics

Start date: January 2010
Details at: http://www.reflect-ist.org/

João C Ferreira (Univ. Porto/INESCPorto) Run-Time Reconfiguration of Hardware CERN, 25-26 February 2010 85 / 89

Opportunities

RTR is not just circuits

Modular and dynamically
reconfigurable

Self-reconfigurable

Thank you!
João C Ferreira (Univ. Porto/INESCPorto) Run-Time Reconfiguration of Hardware CERN, 25-26 February 2010 86 / 89

References I

J. Becker, M. Hubner, G. Hettich, R. Constapel, J. Eisenmann, and J. Luka. Dynamic and
partial FPGA exploitation. Proceedings of the IEEE, 95(2):438 –452, Feb. 2007. ISSN
0018-9219.

Koen De Bosschere, Wayne Luk, Xavier Martorell, Nacho Navarro, Mike O’Boyle, Dionisios
Pnevmatikatos, Alex Ramirez, Pascal Sainrat, André Seznec, Per Stenström, and Olivier
Temam. High-Performance embedded architecture and compilation roadmap, pages 5–29.
Number 4050 in LNCS. Springer Verlag, 2007.

Christopher Claus, Johannes Zeppenfeld, Florian Müller, and Walter Stechele. Using
partial-run-time reconfigurable hardware to accelerate video processing in driver
assistance system. In Proceedings of the conference on Design, automation and test in
Europe, pages 498–503, Nice, France, 2007. EDA Consortium.

James G. Eldredge and Brad L. Hutchings. Run-Time reconfiguration: A method for enhancing
the functional density of SRAM-based FPGAs. The Journal of VLSI Signal Processing, 12(1):
67–86, 1996.

R. J. Fong, S. J. Harper, and Peter M. Athanas. A versatile framework for FPGA field updates:
an application of partial self-reconfiguration. In Propc. 14th IEEE International Workshop
on Rapid Systems Prototyping, pages 117 – 123, June 2003.

João C Ferreira (Univ. Porto/INESCPorto) Run-Time Reconfiguration of Hardware CERN, 25-26 February 2010 87 / 89

References II

Matthew French, Erik Anderson, and Dong-In Kang. Autonomous system on a chip adaptation
through partial runtime reconfiguration. In 16th International Symposium on
Field-Programmable Custom Computing Machines (FCCM ’08), pages 77–86, 2008.

G. Gogniat, T. Wolf, W. Burleson, J.-P. Diguet, L. Bossuet, and R. Vaslin. Reconfigurable
hardware for High-Security/ High-Performance embedded systems: The SAFES perspective.
IEEE Trans.Very Large Scale Integration (VLSI) Systems, 16(2):144 –155, February 2008.
ISSN 1063-8210.

S. Hauck and André DeHon, editors. Reconfigurable Computing. Morgan Kaufmann, 2008.

B. L. Hutchings, R. Franklin, and D. Carver. Assisting network intrusion detection with
reconfigurable hardware. In Proc. 10th Annual IEEE Symp. Field-Programmable Custom
Computing Machines, pages 111–120, 2002.

Yana Esteves Krasteva, Eduardo de la Torre, and Teresa Riesgo. Reconfigurable heterogeneous
communications and core reallocation for dynamic HW task management. In Proc. ISCAS
2007, pages 873–876. IEEE, 2007.

Michael G. Lorenz, Luis Mengibar, Mario G. Valderas, and Luis Entrena. Power consumption
reduction through dynamic reconfiguration. In Field Programmable Logic and Application,
pages 751–760. 2004.

João C Ferreira (Univ. Porto/INESCPorto) Run-Time Reconfiguration of Hardware CERN, 25-26 February 2010 88 / 89

References III

Mateusz Majer, Jürgen Teich, Ali Ahmadinia, and Christophe Bobda. The Erlangen Slot
Machine: A dynamically reconfigurable FPGA-based computer. VLSI Signal Processing, 47
(1):15–31, 2007.

Miguel L. Silva and João C. Ferreira. Support for partial run-time reconfiguration of platform
FPGAs. Journal of Systems Architecture, 52(12):709–726, 2006.

Miguel L. Silva and João Canas Ferreira. Generation of partial FPGA configurations at
run-time. In Field Programmable Logic and Applications, 2008. FPL 2008. International
Conference on, pages 367–372, 2008. ISBN 978-1-4244-1960-9.

S. Trimberger. A time-multiplexed FPGA. In Proc. 5th Annual IEEE Symposium on FPGAs for
Custom Computing Machines, pages 22 –28, April 1997.

N. S. Voros, A. Rosti, and M. Hübner, editors. Dynamic System Reconfiguration in
Heterogeneous Platforms. Springer, 2009.

M. J. Wirthlin and B. L. Hutchings. Improving functional density using run-time circuit
reconfiguration. IEEE Trans. Very Large Scale Integration (VLSI) Systems, 6(2):247–256,
1998. ISSN 1063-8210. doi: 10.1109/92.678880.

João C Ferreira (Univ. Porto/INESCPorto) Run-Time Reconfiguration of Hardware CERN, 25-26 February 2010 89 / 89

	Topics
	Introduction to reconfigurable computing
	Run-time reconfiguration of hardware
	General aspects
	Creating configurations
	Potential advantages

	Some devices with support for RTR
	Flexible bitstream generation
	General approach
	Pragmatic aspects
	Bitstream assembly
	Bitstream assembly at run-time

	Opportunities
	Appendix
	References

