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Also jets and outflows are observed to be associated with these

objects i.e., a fraction of the accreting matter are redirected as
bipolar jets
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L] Accretion onto black hole is trans-relativistic, in nature,
I.e., at large distance the flow is non-relativistic but close
to the horizon the flow is relativistic.

[ The jets are thermally relativistic near the base, but
relativistic speeds far away

U The important point to note is that, jets are launched
from the accretion disc and that the matter is quite hot!
(T, > 10°K). But further out the T would be non-
relativisitic.

J Therefore, the plasma around compact object are full
ionized and thermally relativistic i.e., KT ~ mc?

Generally we consider the gas particles to obey Newtonian
kinetic theory (I' — constant), even if we use relativistic
equations of motion, to describe the dynamics of flow around
compact objects.
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ivistic EoS can be computed from first
ering energy of each gas particles as

£ = \/mﬁcil + ¢*c*llowing a distribution Pyoxexp (— AMT)

Gives the energy density

J3K3(1/0)+ Ki(1/0)
e- = pc”
4K-(1/®)

This is the famous Chandrashekhar EoS
p_ € +p  Ks(pc*/p) andis being abbreviated as RP (relativistic
pCQ ]{2(}062/1)) perfect)! Wh.ere, K2 & K3 are moo!nﬁed
Bessels function of the 29 & 31 kind.
(Chandrashekhar 1938, Synge 1957,
Cox&Giuli 1968)
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The problem with RP EoS is that,
1 it is expensive to implement in numerical simulation codes.

** We used an algebraic relativistic EoS a close approximate of
RP to implement in numerical codes.

s* We extended it from single species to multiple species
ionized fluid. -
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The problem with RP EoS is that,
1 it is expensive to implement in numerical simulation codes.

** We used an algebraic relativistic EoS a close approximate of
RP to implement in numerical codes.
s* We extended it from single species to multiple species

ionized fluid. -
& TheEoSis: € = Hag—MpC™ |

[CR EoS]
f—e-sli+o (‘;‘-‘H + 3" . 1 o ( 0B + E,.-"r})
T 36 + 2 ) Tln  \30+2/y,
@ = kT/(m ) 1 df (polytropic & adiabatic
— ! [ /

|
N = —: le=1+ ?/indices)




We use relativistic EoS proposed by Chattopadhyay & Ryu (ApJ, 2009). Which makes
the adiabatic index, temperature and composition dependent.
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s we obtain the generalized,
.. @ constant of motion, even in
metricitis

E = hyexpX¢
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X = ./ [ N(f+20) {E—l—p]u"g”ﬁ (e+p)2 dr

Xf :Xfl —I—Xﬁ= T — Hrw’rgnp
In absence of dissipation ~ "eXpXy = —U: -



] As angular

momentum is varied;

1 different solutions

_.J are obtained. The
flow solutions are
transonic. This is a
typical GR or strong

| gravity effect.

N, Multiple sonic

* " 7@ points are due to the

1 interplay of gravity

1 and rotation
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Fig. 2. The domain for multiple-critical points in £ — X space, 1s the MCP region (e). M —log(r.)
plot of the O type (a); I type (b); W type (c); and A type (d). Solutions are presented. The
solution type are also marked above each figure. The arrows mark the smooth global accretion

solutions. All the figures are for e~ —p™flow (¢ = 1.0). The dotted vertical lines mark the positions
of physical critical points.
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Fig. 5. (a) The £—X\ parameter space for multiple critical point (the MCP region) for £ = 1

(solid), 0.8 (dotted), 0.6 (dashed) and 0.4 (long dashed). (b) The MCP region for £ = 0.2 (solid),
0.1 (dotted), 0.05 (dashed) and 0.01 (long dashed). The circled-dot is located at £ = 1.0004 and

A = 3.4 of the parameter space. LMP 1s not explicitly written to avoid clumsiness.



Flows with protons may
harbour multiple sonic
points, BUT electron-
positron pair plasma can
e harbor only one sonic

Fig. 5. (a) The £—\ parameter space for multiple critical point (the MCP region) for £ = 1
(solid), 0.8 (dotted), 0.6 (dashed) and 0.4 (long dashed). (b) The MCP region for & = 0.2 (solid),

0.1 (dotted), 0.05 (dashed) and 0.01 (long dashed). The circled-dot is located at & = 1.0004 and

A = 3.4 of the parameter space. LMP is not explicitly written to avoid clumsiness. L] I
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Fig. 6. The Mach number M is plotted with log(r) for {£€, A} ={1.0004, 3.4}. (a) e~ —pT flow i.e.
£ = 1.0, the dotted curve through rg; is the wind type solution and the o type solution is through
Teo- (b) A flow with £ = 0.5, the dotted curve through r., is the wind type solution and the
reflected-a type solution is through 7. (c) e —e™ flow i.e. £ = 0.0 and the dotted curve through
Tei 18 a wind type solution. In all the figures, the solid curve with arrows, are the smooth global
accretion solutions.
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Thick disc configurations




Thick disc configurations

logp, € =0.5




Thick disc configurations




Accretion Disc

Figure 1. Representation of a magnetized accretion flow. The disk radius is
marked as rq, sonic point as r¢, primary shock as rpg and r, is the radius of
the star.
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solutions and a
how the accretion
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Figure 9. (a) B-P parameter space, in which MCP region is demarcated for & = 0.05 (long-dashed. magenta), £ = 0.5 (dashed, blue). and & = 1.0 (solid. black).
P, is the minimum P beyond which MCP is possible. Two coordinate points are marked as “or” and €', the values of I8, P corresponding to these points are used
to obtain accretion solutions in Figs 10 and 11, respectively. (b) P, plotted as a function of £. Here, Mg, = 0.35 x 10 gs_l — Mipp, =35 % 10'6 gs_'.
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Figure 6. Outflow solutions with variable adiabatic index CR EoS (solid, black) with & = 1, fixed adiabatic index EoS with I' = 5/3 (dashed, red), and I =
4/3 (long dashed, green). All curves are plotted for p = 2.824 20, xi =0.25, 3y =32, Wy =55, and F = 0.8. Panel (a) Stream line on the xz-plane, (b)
log M, (c) vp, (d) vg, (e) log T, and (f) I" versus log (z).
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s the solution even without

r greater effect when gravity is

purely special relativistic fluid
dynamics, but the effect is also significiant in STR

 Itis now important to figure out the observational
imprint of composition
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ations of motion.
mmary:
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ot +7r' or i Oz —I_ST p@rZ’r?”
(i) Bondi— Advective transonic, but no angular momentum, and no

dissipation.

Object * ~
Lost favour due to low . N J/ Y
luminosity ; |

LN ® %l' Radial acecretion

! flow
v 1 \/

-
-

Bondi Accrelion

(ii) Keplerian Disc - No advection, no pressure gradient term, cold
(iii)  Thick Disc — No advection, hot...




Over the years various models were developed by considering
various terms of the equations
Accretion disc model summary:

A po, 1 9(rpv? N pvpv. P ob  pl?
(pvr) £ Lw) L Opvrve) | OF P

= or or ¥

(i) Bondi — Advectivie transonig;’but no angulgr momentum, and no dissipation.

(i) KD - No advecttion, no pressu/e gradient term (so thin)

Disc Compuact
-1 Ohject
Sl :;:-:_:-:;:.;--._. e .// I e e

Keplerian Accretion Disc

Luminosity high, but no high energy power law emission.



models were developed by considering
guations
summary:

(,';p’uf) a(pvrt’z) oP B @ p_er
or T 0z T or _‘Oafr ™ 3

19

T

(ii) KD - No advectipn,/ngpressure gradient term

(iii) Thick Disc

Unstable.

Later Advective discs, ADAF discs... etc
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* Finding a transonic solution without pairs :

@® Find sonic points:
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* Finding a transonic solution without pairs :

* Finding a transonic solution with pairs :
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* Finding a transonic solution without pairs :

* Finding a transonic solution with pairs :
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Till it converge to a solution.
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Figure 2: (a) M, [ and (b) £ vs log r plotted for different accretion r4tes of the system. Their
corresponding spectrum is plotted in panel (c). The accretion rafés used are: M = U.lﬂ:fedd
(red, dotted), M = 0.4Mcqq (green, dashed) and M = 0.8Mgqq
parameters are £ = 1.001, A;, = 2.60, o, = 0.01 and Mpy =

For higher accretion rates, pair proddction is perceptible
enough to affect a difference in Mach number M and u¢ of the
flow and the annihilation line is‘more pronounced.
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