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**GW Detection Problem

**Optimisation Detection Statistics

**Particle Swarm Optimisation(PSO)
*Usefulness of PSO in GW detection problem
“*Applying PSO based application on real data

s»*Results and Conclusions



GW Detectiol

The output from a GW detector, a time series S(t) can be written as:

(1) n(t) in absence of GW signal
° n(t) + h(t) in presence of GW signal

Here, n(t) is detector noise and h(t) is GW signal from astrophysical sources.

Signal is astrophysical modelled based on Einstein or alternative theory which we call a
signal template, q(t; 6)
We expect that the model signal/template match with astrophysical GW signal for specific

model parameter say 0.

Our goal is to pick the part of detector output with astrophysical signal



Neyman-Pearson criterion

The detection probability is given by the match or weighted correlation with noise PSD,

S(f), is given by,
o fres (1) - (/)
RO =4 [ SDGE

It can be shown that R(0) is optimal statistic for Guassian noise.
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It can be shown that R () is optimal statistic for Guassian noise.

1Threshold

- I
&
- S - .
S

Detection prob

Noise statistics Signal Statistics



Neyman-Pearson criterion
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Neyman-Pearson criterion: Maximise the detection statistic over model parameters 8 using
a threshold provided by a given false-alarm probability.



Some interesting points!

Match-making is expensive!

R(9) = 4 /fm (1) - alF:9) o

min S(f)

eEven for the simple waveformes.

eComplex waveforms contribute
additional difficulty

Noise brings in local peaks and
maximisation scheme can get
trapped
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Particle Swarm optimisation!

In this method, a set of particles makes a “controlled” random walk in given parameter space
to optimise a given function. Members share helpful information with the entire swarm and
converge to an optimal point in the parameter space.

We start with an uniform distribution of particles in a N —dimensional parameters with

—_

position of a particle at n — th step is given by Xn

The velocity of Vn at n — th step evolves as per rule

— —

Vn—l—l — T ‘772, T ﬁrl (Xpbest — )Zn) T Y T2 (ngest — Xn)

a, Bandy are parameters of the algorithm, (7, 7y, 1) are set of random number
between (0,1).

-

X

pbest 1S the best location sampled by a given particle
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Particle Swarm optlmlsatlon'

We start with a uniform distribution of particles in a N —dimensional parameters with

—_

position of a particle at N — th step is given by Xn

—_

The velocity of Vn at N — th step evolves as per rule
Vn—l—l — 'TQ ‘772, T 6T1 (Xpbest — Xn) -+ Y T2 (ngest — Xn)

Qa, ,Bandy are parameters of the algorithm, (7"0, Ty, 7"2) are set of random number between |

-

Xpbest is the best location sampled by a given particle till current step

KXgpest is the best location sampled by entire swarm

- - -

The position evolution at 1 — th step is given by
An+1 = An + Vitq



Particle Swarm optimisation!

I — th Particle

I Gl LiILViIC

v

We are applying for CBC search, hence parameter‘pace is CBC signal model parameters,

~

while optimising the statistics L(0) = fff:;xs(f) I;(hf(;))) df




10 Particle in 20 steps
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Estimated Massl

BBH3 search: input vs output plot for Massl
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BBH3 search: input vs output plot for Massl
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Error Estimated M;andM,, aligned-spin

Error histogram
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Real Detector data

Real detector data is far more complex.

Noise glitch

Unlike simulated noise, real noise generated lots of high SNR triggers

Here we need )(2 for discriminating noise from signal and we use new-SNR.
However, for reducing the computational cost, we compute new-SNR only if SNR cross a threshc
As PSO evolves in the parameters space while optmising SNR, whenever the SNR cross a certain

Remaining trigger’s are stored
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Significance estimation - Coincidence mode!

**We use standard time-sliding mechanism to compute the false alarm.
»*All the trigger (with new-SNR) are collected from each IFO

»* Trigger are grouped (with arrival time) to generate a event. Simple time-clustering and
averaging is currently employed. This may be developed further in future.

»*Triggers forming a coincidence give foreground candidates that may be further constrained
by network SNR (somewhere 8-9).

»*Triggers shifted in time by more than time-of-flight ( ~ 10 ms for HL) plus a timing error
(some 5ms) between two detectors give rise to background events.



Example: GW190503 185404

® We use only H1, L1 data (no trigger in V1).

® Analysis duration ~ 4096 sec around each event.

® Time-shift interval ~ 50 ms.

® Background time generated ~ 10 yr [ = 4096 sec X
4096 sec) / (50 ms)]

® FAR (of a foreground event) = (No. of background

events louder than the given foreground event) /
(Total background time generated).

© If the (no. of background events louder than the
given foreground event) < 1, then assign a FAR: < 1
/ (Total background time generated).
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Concluding remarks

** PSO based search pipe-line is implemented and successfully applied on real data. Not
need for a prior template bank.

*** Useful when when it becomes hard or impossible to compute template bank.

*»* Better source parameter are by-product of search pipe-line, no need for additional rapid
PE

»* Extremely useful if search parameter have to extended.

*** Fully precessing search [Varun Srivastava K Rajesh Nayak Sukanta Bose: arXiv:1811.02401]
** Eccentric search [LIGO-G2200981]}



https://arxiv.org/search/astro-ph?searchtype=author&query=Srivastava%2C+V
https://arxiv.org/search/astro-ph?searchtype=author&query=Nayak%2C+K+R
https://arxiv.org/search/astro-ph?searchtype=author&query=Bose%2C+S
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