Non-thermal dark matter at reheating: production & evolution

Avirup Ghosh

Indian Association for the Cultivation of Science Based on: Phys. Rev. D 106, 043519 in collaboration with S. Mukhopadhyay

Dark Matter: Evidences

- 1933, Coma Cluster: Virial Theorem suggests a mass larger than the luminous mass of the galaxy.
- 1970, Andromeda Galaxy: Rotational velocity of the stars orbiting the galaxy
- 2000, Bullet clusters: Centre-of-mass of colliding pair of galaxy clusters are away from the hot, luminous region of the gas
- CMB angular power spectrum, matter power spectrum etc.

Todays universe: $\Omega_{\Lambda} \simeq 0.70, \Omega_{\rm DM} \simeq 0.26, \Omega_{B} \simeq 0.04$.

Dark Matter: Classification

- Based on how the present density of the DM is set we have two broad classes:
 - Thermal:
 - Weakly Interacting Massive Particles (WIMPs),
 - Strongly Interacting Massive Particles (SIMPs),
 - ELastically DEcoupling Relics (ELDERs), and many more
 - Non-Thermal:
 - Freeze-in (FIMPs),
 - Misalignment mechanism,
 - Production from Inflaton, and many more
- Thermal paradigm is quite predictive
 - \rightarrow number density, phase-space distributions,
- Non-thermal DM candidates,
 - → properties are highly model dependent!

Here, we shall consider the DM production from inflaton decay during reheating

Inflation & Reheating

- Issues with hot big-bang cosmology:
 - Identical properties of causally disconnected regions of the CMB sky (Horizon Problem)
 - Universe is spatially flat on large scales: $|\Omega_K| = \frac{|K|}{2^2 H^2} \ll 1$ (Flatness Problem)
 - Production of primordial perturbations that lead to the structure formation
- Solved if the Universe has undergone a phase of exponential expansion → Inflation
 - Velocity of the scalar field ϕ (Inflaton) is much smaller than its Potential energy: $\frac{1}{2}\dot{\phi}^2\ll V(\phi)$
 - The potential is nearly constant: $V(\phi) \simeq {
 m const.}$
 - Followed by a phase of coherent oscillations of ϕ and it's decays to radiation: Reheating

Inflation & Reheating

Evolution of $\rho_{\phi}(t)$ and $\rho_{R}(t)$ during reheating

- ullet Reheating ends when $\Gamma_\phi \simeq H$
 - \Rightarrow reheating temperature: $T_{
 m R} = \left(rac{90}{\pi^2\,g_*(T_{
 m R})}
 ight)^{1/4} \sqrt{M_{
 m Pl}\Gamma_\phi}$
- Duration of reheating: In terms of $r = a(t_{\rm end})/a(t_R)$ we have,

$$r^3 e^{r^{3/2}} \simeq rac{g^*(T_{
m R}) \pi^2 e T_{
m R}^4}{
ho_\phi(t_{
m end})}$$

ightarrow with $ho_\phi(t_{
m end})\lesssim (10^{16}\,{
m GeV})^4$ and $T_{
m R}=1\,{
m TeV}$ we obtain, $r\geq 10^{-17}$

 \Rightarrow during reheating Universe may expand by \sim 40 e-foldings!!

Dark matter production during Reheating

- In addition to the SM particles the inflaton may also couple to the fermionic DM and produces both DM and SM particles during reheating
- The necessary part of the Lagrangian is:

$$\mathcal{L}_{\mathrm{int}} \supset -\mu_H H^{\dagger} H \phi - \lambda \bar{\psi} \psi \phi$$

Decay rates: $\Gamma_\phi \simeq \Gamma_H(\phi \to hh) \simeq \mu_H^2/32\pi \ m_\phi$, $\Gamma_\psi(\phi \to \psi \bar{\psi}) \simeq \lambda^2 \ m_\phi/8\pi$

- Instantaneous decay approximation: Inflaton decays to DM instantaneously at $t = t_R$
 - ightarrow DM number density at t_R : $n_{\psi}(t_R) = 2 imes \mathrm{Br}(\phi
 ightarrow \psi) \, n_{\phi}(t_R) \simeq 2 imes rac{\Gamma_{\psi}}{\Gamma_{\phi}} imes rac{
 ho_R(t_R)}{m_{\phi}}$
- The momentum distribution of the produced DM particles at $t = t_R$:

$$f_{\psi}(k,t_R) = rac{16\pi^2}{g_{\psi}^2 m_{\phi}^3} rac{\Gamma_{\psi}}{\Gamma_{\phi}}
ho_R(t_R) \delta(m_{\phi}/2 - k)$$

- \rightarrow Dirac-delta function
- Here, radiation energy density at reheating: $ho_R(t_R) = \frac{\pi^2 \, g_{*,\rho}(T_{
 m R})}{30} \, T_{
 m R}^4$

Dark matter production during Reheating

If we relax the 'instantaneous' approximation:

• Three possible cases (t_p) is time of production:

Case 1: $f_{\psi(1)}(t_p,t) = \bar{f}(t_p) \Theta(m_{\phi}/2 - k(t))$ (Back reaction and quantum statistics not included)

Case 2: $f_{\psi(2)}(t_p,t) = \tanh(\bar{f}(t_p)) \Theta(m_\phi/2 - k(t))$ (Only back reaction included)

Case 3: $f_{\psi(3)}(t_p,t)=\frac{1}{2}\left(1-e^{-2\tilde{f}(t_p)}\right)\Theta(m_\phi/2-k(t))$ (Back reaction and quantum statistics both included)

Avirup Ghosh (Indian Association for the Cultivation on the Country of Non-thermal dark matter at reheating: production & e

Evolution of f_{ψ} : effect of inflaton mediated scatterings

- It is usually assumed that the phase-space distribution of ψ is "frozen" at reheating \Rightarrow It only redshifts till matter-radiation equality ($t_{\rm EQ}$)
- Inflaton couples to both SM and DM
 - ⇒ Inflaton mediated s-channel and t-channel scatterigs are inevitable
 - ightarrow Such scatterings may redistribute energies between DM and SM and affect f_{ψ}
 - $ightarrow f_{\psi}$ has important implications for structure formation
- Three possible scattering processes:
 - s-channel inelastic: $h\,h \leftrightarrow \psi \bar{\psi} \Rightarrow n_{\psi}$ increases and energy transfer with SM t-channel inelastic: $h\,\psi(\bar{\psi}) \leftrightarrow h\,\psi(\bar{\psi}) \Rightarrow$ energy transfer with SM self-scatterings: $\psi \bar{\psi} \leftrightarrow \psi \bar{\psi}$: \Rightarrow energy redistribute among DM particles
- ullet DM-SM scatterings are only active in the range $m_h \lesssim T \lesssim T_{
 m R}$
 - \Rightarrow below this temperature h does not remain in the thermal bath
- Self scatterings may be effective even for $T \lesssim m_h$, for large values of λ

Evolution of f_{ψ} : effect of inflaton mediated scatterings

Evolution of f_{ψ} due to inflaton mediated scatterings

- Scatterings change the shape of the distribution: populate lower as well as higher momentum modes
 - $ightarrow f_{\psi}$ is still non-thermal, i.e., DM is non-thermal
- Effects are most prominent for larger duration of reheating (r); since more lower momentum modes are populated at T_R: scattering probability increases
 - $\Rightarrow \Omega_{\psi}$ increases ~ 58 times for $r = 5 \times 10^{-5}$
- Ω_{ψ} increases ~ 23 times for $r=5 imes 10^{-3}$

Lyman- α forest constraints

- Photons emitted by distant galaxies and quasars
 - → redshift while passing through the neutral H_2 gas constituting the inter-galactic medium (IGM)
 - \rightarrow When reaches $\lambda = 1216 \text{\AA}$, get absorbed by IGM
 - \rightarrow Series of absorption lines are observed in the quasar spectra
 - \Rightarrow Lyman- α forest
- The intensities of these absorption lines
 - \rightarrow the column density of H_2 along the line of sight
 - ⇒ used to measure the matter power spectrum or matter density fluctuations along the line of sight

Dark matter free-streaming

- Observation suggests that power is suppressed at low scale
 - ⇒ DM may not be completely cold
- Warm dark matter (WDM) decouples when they are relativistic
 - \Rightarrow decoupled WDM particles traverse large distances by matter-radiation equality $(t_{
 m EQ})$
 - ⇒ Such DM particles move from overdense to underdense regions, thereby smoothing out inhomogeneities
 - ⇒ Causes suppression of power on small scales
- This is characterized by the comoving free-streaming horizon:

$$\lambda_{ ext{FSH}} = \int_{t_{ ext{dec}}}^{t_{ ext{EQ}}} rac{\langle v(t)
angle}{\mathsf{a}(t)} dt$$

where, $t_{
m dec}$ is the time of decoupling

 \Rightarrow For a WDM species we have $0.01\,\mathrm{Mpc} \lesssim \lambda_\mathrm{FSH} \lesssim 0.1\,\mathrm{Mpc}$

Dark matter free-streaming

The average velocity,

$$\langle v(t)
angle = \left(\int rac{d^3ec{p}}{(2\pi)^3} rac{p}{\sqrt{p^2+m_\psi^2}} f_\psi(p,t)
ight) \bigg/ \left(\int rac{d^3ec{p}}{(2\pi)^3} f_\psi(p,t)
ight)$$

determines λ_{FSH} and is dependent on $f_{\psi}(p,t)$

- For non-thermal DM this $f_{\psi}(p,t)$ has no particular form
 - $\Rightarrow \lambda_{\rm FSH}$ for non-thermal DM may be quite different from thermal WDM
- Effects of the inflaton mediated scatterings:
 - DM become non-relativistic earlier
 - More than an order of magnitude decrease in $\lambda_{\rm FSH}$
 - \Rightarrow Lyman- α constraint on $m_{\eta b}$ weakens

Evolution of the DM average velocity ...

Conclusions

- Perturbative decay of inflaton to SM radiation "reheats" the Universe and in a minimalistic scenario capable to explain dark matter: ⇒ DM is also produced from inflaton decay during reheating
- Usually the DM is assumed to be "non-thermal" whose phase-space distribution is assumed to be frozen and simply redshifts with the expansion of the Universe
- Since the inflaton couples to both the DM and the SM, inflaton mediated scatterings between DM and SM are inevitable
- For certain choices of the associated parameters such scatterings may increase the comoving number density of the DM by a factor of ~ 60 !!
- \bullet Change in the shape of the phase-space distribution may reduce the free-streaming horizon by a factor of \sim 40 !!
 - \Rightarrow Weaking of the Lyman- α constraint on the DM mass

Conclusions

- Perturbative decay of inflaton to SM radiation "reheats" the Universe and in a minimalistic scenario capable to explain dark matter: ⇒ DM is also produced from inflaton decay during reheating
- Usually the DM is assumed to be "non-thermal" whose phase-space distribution is assumed to be frozen and simply redshifts with the expansion of the Universe
- Since the inflaton couples to both the DM and the SM, inflaton mediated scatterings between DM and SM are inevitable
- For certain choices of the associated parameters such scatterings may increase the comoving number density of the DM by a factor of ~ 60 !!
- \bullet Change in the shape of the phase-space distribution may reduce the free-streaming horizon by a factor of \sim 40 !!
 - \Rightarrow Weaking of the Lyman- α constraint on the DM mass

