# BARYOGENESIS IN INVERSE SEESAW MODEL

## Ananya Mukherjee

AAPCOS 2023, 23-27th January Saha Institute of Nuclear Physics

26.01.2023

# BARYON ASYMMETRY: OBSERVATION AND MEASUREMENT

 Baryogenesis through leptogenesis (one kind of explanation behind the baryon asymmetry)

$$\eta_B^{\text{CMB}} = (6 - 6.18) \times 10^{-10}, Y_B = \frac{n_B - n_{\bar{B}}}{7n_{\gamma}} = \frac{\eta_B}{7} \text{ (PLANCK 2018)}$$

CMB and BBN measurement

Criteria for baryogensis through leptogenesis: Sakharov's conditions

- ▶ B violation, C and CP violation, an out of equilibrium decay ⇒ success of leptogenesis. Sakharov 1938
- ightharpoonup Out of equilibrium decay implies the decay rate has to be smaller than the Hubble expansion rate  $\Gamma < H$  (Our main focus)

How to calculate  $\eta_B$  in connection with neutrino mass generation :

Seesaw models  $(Y_v^{\ell i} \overline{L_\ell} \widetilde{H} N_{R_i}) \Longrightarrow$  Decay of Right handed neutrinos  $(N \to LH)$  and the conjugate process)

M. Fukugita and T. Yanagida, PL**B174**(1986)

Leptogenesis is an obvious consequence of the seesaw mechanisms.

However, the success is not always true.

# MOTIVATION: IMPORTANCE OF THE PROBLEM

A TeV scale leptogenesis is interesting, from the testability perspective. Inverse seesaw (ISS) is a natural example, which accommodates a TeV scale right handed neutrino.

- ▶ R. Volkas et al., JCAP06(2018)012, K. Agashe et al. JHEP04(2019)029 : ISS alone can't offer a successful leptogenesis. The reasons being:
  - Dirac CP violation does not yield enough lepton asymmetry ( $\varepsilon \approx 10^{-9}$ )
  - ② Due to huge washout ( $\Gamma/H \approx 10^{12}$ ) in ISS the final baryon asymmetry is diminished by several orders of magnitude
  - Remedy: (Inverse + Linear) seesaw together resolves the issue.
  - However the parameter space for leptogenesis yield  ${\rm Br}^{\mu \to e \gamma} < 10^{-30}$ .
- ▶ We found a large lepton asymmetry  $\varepsilon \sim \mathcal{O}(1)$  in a pure ISS scenario (economic!).
- ► Enhanced Br $^{\mu \to e \gamma}$  = 10<sup>-18</sup>, by several orders of magnitude.

## **BRIEFING INVERSE SEESAW MODEL**

Additional particles: 3 TeV right-handed neutrinos and 3 sterile fermions

$$-\mathcal{L}^{\text{ISS}} = Y_{\nu}^{\ell i} \overline{L_{\ell}} \widetilde{H} N_{R_i} + M_R \overline{(N_{R_i})^c} S_{L_i}^c + \frac{1}{2} \mu \overline{S_{L_i}} (S_L)^c + h.c.$$
 (1)

$$m_{\nu}^{3\times3} = m_D (M_R^T)^{-1} \mu M_R^{-1} m_D^T. \tag{2}$$

▶ The above ( $m_{v}\sim 0.1$  eV) demands:  $m_{D}\sim 100$ GeV,  $M_{R}\sim 10$ TeV, $\mu\sim 1$ keV.

$$M_{\nu}^{6\times6} = \begin{pmatrix} 0 & M_R \\ M_R^T & \mu \end{pmatrix},$$

The final Mass states:  $M_N = \frac{1}{2} \left( \mu \pm \sqrt{\mu^2 + 4M_R^2} \right)$ 

Extracting ISS Yukawa coupling : Thanks to Casas & Ibarra 2001

$$Y_v^{ISS} = \frac{1}{v} U m_n^{1/2} R \mu^{-1/2} M_R^T$$

N.B.:  $\mu \sim$  1keV results into a large washout of the order of 10<sup>12</sup>, erase most of the asymmetries created.

# Ingredient of Lepton Asymmetry : A complex Yukawa

$$Y_v^{ISS} = \frac{1}{v} U m_n^{1/2} R \mu^{-1/2} M_R^T$$

with, U as the PMNS matrix. R can be any orthogonal matrix satisfying,  $RR^T = \mathbb{I}$ , if  $R = e^{iA}(e^A) \to \mathbf{A}$  is skew-symmetric matrix.

 $m_n \equiv \text{diag}(m_1, m_2, m_3), M_R \equiv \text{diag}(MR_1, MR_2, MR_3)$  Pascoli 2003

$$R = e^{i\mathbf{A}} = 1 - \frac{\cosh r - 1}{r^2} \mathbf{A}^2 + i \frac{\sinh r}{r} \mathbf{A}$$
, with  $r = \sqrt{a^2 + b^2 + c^2}$ .

Minimal number of parameter choice  $\implies a = b = c = \kappa$ .

$$U_{\text{PMNS}} = \left( \begin{array}{ccc} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{array} \right) U_{\text{M}},$$

where,  $U_M$  be the Majorana phase matrix,  $c_{ij}$ ,  $s_{ij}$  are the mixing angles for three generations,  $\delta$  the Dirac CP phase.



**Importance :** order of magnitude enhancement in the  $m_D$  and hence the light-heavy mixing.

#### LEPTON ASYMMETRY, DECAY WIDTH, HUBBLE RATE, WASHOUT..

$$\varepsilon_{i}^{\ell} = \frac{1}{8\pi \left(Y_{v}^{\dagger}Y_{v}\right)_{ii}} \sum_{j \neq i} \operatorname{Im}\left[\left(Y_{v}^{\dagger}Y_{v}\right)_{ij}\left(Y_{v}^{\dagger}\right)_{i\ell}\left(Y_{v}\right)_{\ell j}\right] \left[f(x_{ij}) + \frac{\sqrt{x_{ij}}\left(1 - x_{ij}\right)}{\left(1 - x_{ij}\right)^{2} + \frac{1}{64\pi^{2}}\left(Y_{v}^{\dagger}Y_{v}\right)_{jj}^{2}}\right] + \dots etc$$

F. Deppisch 2010, G. Bambhaniya 2016

- ▶ The generated lepton asymmetry  $\varepsilon_i^{\ell}$  is converted into baryon asymmetry.
- ► The washout factor  $K_i = \Gamma_i/H$ , determined mainly by the inverse decay, where, decay width :  $\Gamma_i = \frac{M_i}{8\pi} (Y_\nu Y_\nu^\dagger)_{ii}$
- ▶ The Hubble rate of expansion at temperature  $T \sim M_i$  (1 TeV here)

$$H = 1.66\sqrt{g^*} \frac{M_i^2}{M_{\rm Pl}}$$
 with  $g^* \simeq 106.75$  and  $M_{\rm Pl} = 1.29 \times 10^{19} \, {\rm GeV}$ .

$$\eta_{B} \simeq -3 \times 10^{-2} \sum_{\ell,i} \frac{\varepsilon_{i\ell}}{K_{\ell}^{\text{eff}} \text{min} \left[ z_{c}, 1.25 \text{Log} (25 K_{\ell}^{\text{eff}}) \right]}. \tag{3}$$

 $z_c = \frac{M_i}{T_c}$  and  $T_c \sim 149$  GeV (the critical temperature).

## Resonant condition, $\Delta N/\Gamma_N = 1$ leads to $\varepsilon \sim \mathcal{O}(1)$



➤ TeV scale leptogenesis relies on the resonant enhancement of lepton asymmetry, also called **Pilaftsis-Underwood resonance**.

$$M_i - M_k \approx \Gamma_i/2$$

▶  $\Delta N = (M_{N_2}^2 - M_{N_1}^2)/M_{N_1}$  and  $\Gamma_{N_j}$  is the decay width of the i-th pseudo-Dirac state (decaying particle).





#### ORDER OF THE YUKAWA COUPLING AND WASHOUT

# Survival of the final asymmetry requires

- Large lepton asymmetry (resonantly enhanced)
- reduction of washout order.

| Case                  | $Y_{\nu}$        |                               |                        |                                 |
|-----------------------|------------------|-------------------------------|------------------------|---------------------------------|
| $R = e^{i\mathbf{A}}$ | 10 <sup>-3</sup> | 0.275 <i>–</i> 0.568 <i>i</i> | 0.474 + 0.038 <i>i</i> | 0.171 + 0.253 <i>i</i>          |
|                       |                  | -0.848 - 2.704i               | 1.202 – 1.59 <i>i</i>  | 2.047 + 0.299 <i>i</i>          |
|                       |                  | -0.929 - 1.188i               | -0.106 - 1.269i        | 1.469 <i>–</i> 0.373 <i>i  </i> |
| $R = e^{\mathbf{A}}$  | 10 <sup>-3</sup> | / 0.492 – 0.202 <i>i</i>      | 0.344 - 0.143 <i>i</i> | 0.137 – 0.164 <i>i</i> \        |
|                       |                  |                               | 1.207 - 0.04 <i>i</i>  |                                 |
|                       |                  | 0.853 - 0.053i                | 0.476 - 0.037i         | 0.783 <i>–</i> 0.021 <i>i</i>   |

$$K_1^{complex} pprox rac{m_{
u} M_N}{\mu} M_{Pl} \left( 0.926 \, \text{cosh}(2\sqrt{3} \, \kappa) + 0.073 
ight)$$

$$\begin{split} K_1^{\text{real}} \approx & \frac{m_{\nu} M_N}{\mu} M_{\text{Pl}} \Big( 3.32 + 0.8 \sin(\sqrt{3}\kappa) (1 - \cos(\sqrt{3}\kappa)) - \cos^2(\sqrt{3}\kappa) \\ & - 1.58 \cos(\sqrt{3}\kappa) + 0.18 \cos(2\sqrt{3}\kappa) \Big) \end{split}$$

### Washout $K = \Gamma_i/H$ and final baryon asymmetry w.r.t. the model parameters

• Magenta points indicate  $\eta_B$  = (6 – 6.2)  $\times$  10<sup>-10</sup> (PLANCK 2018) satisfied region



- $\bullet$   $\kappa = 0.1 1.46$  (the *R*-matrix parameter space)
- $\mu = 10^{-4} 10^{-3}$  (ISS LNV scale)
- $\delta \sim \pi/2$  (Dirac CP phase)

#### INDIRECT PROBE THROUGH LEPTON FLAVOR VIOLATION

$$\mathsf{BR}(\mu \to e \gamma) = \frac{\alpha_W^3 s_W^2}{256 \pi^2} \frac{m_\mu^5}{M_{M'}^4} \frac{1}{\Gamma_\mu} \left| \sum_i^9 V_{\mu i}^* V_{ei} G(y_i) \right|^2 \boxed{\mathsf{Abada}, \, \mathsf{et \, al. \, 2011}}$$

light-heavy mixing :  $V_{\mu i} \propto (Y^{\nu} v) M_B^{-1}$ 



 $V_{\mu i}$ s are the Light-heavy mixing having a functional dependency on " $\kappa$ " of R.

- Future sensitivity from **MEG II**: BR( $\mu \rightarrow e\gamma$ ) < 5 × 10<sup>-14</sup> [MEG II collab. 2017].
- We still need a rise of the branching ratio by the another 5 orders of magnitude.

**AM**, NN, arXiv: 2204.08820

#### CONCLUSION AND OTHER POSSIBILITIES TO LOOK FOR

- A pure ISS scenario can offer successful leptogenesis for a higher  $\mu$  value with Dirac CP violation.
- Decrease the washout by several orders of magnitude (increasing the Hubble expansion rate ? modified Hubble!)

#### That led to:

- **③** Such scenario would alter the predictions for  $\mu \to e \gamma$  sensitivity.
- We expect a larger branching with the canonical  $\mu$  scale (1 keV) of the ISS.
- **a** Another probe of the ISS-leptogenesis parameter space would be to look for the RHN mixing ( $|U|^2$ ) at HL-LHC, SHiP, FCC-ee *etc*!



Let us plant trees!

Thank You!

13/13