Reconstruction of nuclear matter parameters in a Bayesian approach

Based on : https://doi.org/10.1103/PhysRevC.105.015806

Sk Md Adil Imam

Co-authors : N. K. Patra, T. Malik,C. Mondal, B.K. Agrawal

Introduction

Introduction

EOS

Equation of State

We consider n,p,e, μ in the core part of neutron star

Equation of State

- We consider $\mathrm{n}, \mathrm{p}, \mathrm{e}, \mu$ in the core part of neutron star
\square Conservation of baryon number : $\rho=\rho_{n}+\rho_{p}$

Equation of State

\square We consider $\mathrm{n}, \mathrm{p}, \mathrm{e}, \mu$ in the core part of neutron star
\square Conservation of baryon number : $\rho=\rho_{n}+\rho_{p}$
\square charge neutrality: $\rho_{p}=\rho_{e}+\rho_{\mu}$

Equation of State

\square We consider $\mathrm{n}, \mathrm{p}, \mathrm{e}, \mu$ in the core part of neutron star
\square Conservation of baryon number : $\rho=\rho_{n}+\rho_{p}$
\square charge neutrality: $\rho_{p}=\rho_{e}+\rho_{\mu}$
■ β-equllibrium : $\mu_{n}=\mu_{p}+\mu_{e}$ $\mu_{e}=\mu_{\mu}$

Equation of State

- We consider $\mathrm{n}, \mathrm{p}, \mathrm{e}, \mu$ in the core part of neutron star
- Conservation of baryon number : $\rho=\rho_{n}+\rho_{p}$
\square charge neutrality: $\rho_{p}=\rho_{e}+\rho_{\mu}$
■ β-equllibrium : $\mu_{n}=\mu_{p}+\mu_{e}$ $\mu_{e}=\mu_{\mu}$
- using these equations we can calculate the particle fraction and $\left(\rho_{n}-\rho_{p}\right) / \rho=\delta$:Isospin asymmetry parameter

Equation of State

■ $\varepsilon(\rho, \delta)=\varepsilon(\rho, 0)+J(\rho) \delta^{2}$

Equation of State

■ $\varepsilon(\rho, \delta)=\varepsilon(\rho, 0)+J(\rho) \delta^{2}$
■ $\varepsilon(\rho, 0)$: SNM EoS

Equation of State

■ $\varepsilon(\rho, \delta)=\varepsilon(\rho, 0)+J(\rho) \delta^{2}$
■ $\varepsilon(\rho, 0)$: SNM EoS
■ $J(\rho)=\varepsilon(\rho, 1)-\varepsilon(\rho, 0)$:Symmetry energy

Equation of State

$\square \varepsilon(\rho, \delta)=\varepsilon(\rho, 0)+J(\rho) \delta^{2}$
$\square \varepsilon(\rho, 0):$ SNM EoS
$\square J(\rho)=\varepsilon(\rho, 1)-\varepsilon(\rho, 0)$:Symmetry energy
■ $\delta=\left(\rho_{n}-\rho_{p}\right) /\left(\rho_{n}+\rho_{p}\right)$: Isospin asymmetry

Equation of State

$\square \varepsilon(\rho, \delta)=\varepsilon(\rho, 0)+J(\rho) \delta^{2}$
$\square \varepsilon(\rho, 0):$ SNM EoS
■ $J(\rho)=\varepsilon(\rho, 1)-\varepsilon(\rho, 0)$:Symmetry energy
■ $\delta=\left(\rho_{n}-\rho_{p}\right) /\left(\rho_{n}+\rho_{p}\right)$: Isospin asymmetry

- $\rho_{n}\left(\rho_{p}\right)$:Neutron(Proton) density

Variation of energy of SNM with baryon density

Taylor Expansion

■ $\varepsilon(\rho, 0)=\sum_{n} \frac{a_{n}}{n!} x^{n}$
■ $x=\left(\frac{\rho-\rho_{0}}{3 \rho_{0}}\right)$

Taylor Expansion

$\square \varepsilon(\rho, 0)=\sum_{n} \frac{a_{n}}{n!} x^{n}$
■ $x=\left(\frac{\rho-\rho_{0}}{3 \rho_{0}}\right)$
■ $J(\rho)=\sum_{n} \frac{b_{n}}{n!} x^{n}$

Taylor Expansion

$\square \varepsilon(\rho, 0)=\sum_{n} \frac{a_{n}}{n!} x^{n}$
■ $x=\left(\frac{\rho-\rho_{0}}{3 \rho_{0}}\right)$
■ $J(\rho)=\sum_{n} \frac{b_{n}}{n!} x^{n}$
■ $\varepsilon(\rho, \delta)=\sum_{n} \frac{1}{n!}\left(a_{n}+b_{n} \delta^{2}\right) x^{n}$

Taylor Expansion

■ SNM parameters :

- $a_{0}=e_{0} \equiv$ Binding Energy at ρ_{0}

■ $a_{1}=0$

- $a_{2}=K_{0} \equiv$ Incompressibility Coefficient at ρ_{0}
$\square a_{3}\left(a_{4}\right)=Q_{0}\left(Z_{0}\right) \equiv$ Third(Fourth)order Derivative at ρ_{0}
■ Symmetry Energy parameters :
- $b_{0}=J_{0} \equiv$ Symmetry Energy at ρ_{0}
- $b_{1}=L_{0} \equiv$ Slope of Symmetry Energy at ρ_{0}
- $b_{2}=K_{\text {sym }, 0} \equiv$ Symmetry Energy Curvature at ρ_{0}
- $b_{3}\left(b_{4}\right)=Q_{\text {sym }, 0}\left(Z_{\text {sym }, 0}\right) \equiv$ Third(Fourth)order Derivative at ρ_{0}

n/3 Expansion

- $\frac{n}{3}$ Expansion: $\varepsilon(\rho, \delta)=\sum_{n=2}^{6}\left(a_{n}^{\prime}+b_{n}^{\prime} \delta^{2}\right)\left(\frac{\rho}{\rho_{0}}\right)^{n / 3}$

n/3 Expansion

■ $\frac{n}{3}$ Expansion: $\varepsilon(\rho, \delta)=\sum_{n=2}^{6}\left(a_{n}^{\prime}+b_{n}^{\prime} \delta^{2}\right)\left(\frac{\rho}{\rho_{0}}\right)^{n / 3}$

$$
\begin{aligned}
\left(\begin{array}{c}
e_{0} \\
0 \\
K_{0} \\
Q_{0} \\
Z_{0}
\end{array}\right) & =\left(\begin{array}{ccccc}
1 & 1 & 1 & 1 & 1 \\
2 & 3 & 4 & 5 & 6 \\
-2 & 0 & 4 & 10 & 18 \\
8 & 0 & -8 & -10 & 0 \\
-56 & 0 & 40 & 40 & 0
\end{array}\right)\left(\begin{array}{c}
a_{0}^{\prime} \\
a_{1}^{\prime} \\
a_{2}^{\prime} \\
a_{3}^{\prime} \\
a_{4}^{\prime}
\end{array}\right) \\
\left(\begin{array}{c}
J_{0} \\
L_{0} \\
K_{\text {sym }, 0} \\
Q_{\text {sym }, 0} \\
Z_{\text {sym }, 0}
\end{array}\right) & =\left(\begin{array}{ccccc}
1 & 1 & 1 & 1 & 1 \\
2 & 3 & 4 & 5 & 6 \\
-2 & 0 & 4 & 10 & 18 \\
8 & 0 & -8 & -10 & 0 \\
-56 & 0 & 40 & 40 & 0
\end{array}\right)\left(\begin{array}{c}
b_{0}^{\prime} \\
b_{1}^{\prime} \\
b_{2}^{\prime} \\
b_{3}^{\prime} \\
b_{4}^{\prime}
\end{array}\right) .
\end{aligned}
$$

Knowledge about the NMPs

- The parameters which are known within a few percent: e_{0} and ρ_{0}.

Knowledge about the NMPs

- The parameters which are known within a few percent: e_{0} and ρ_{0}.
- The parameters which are known within about 10 percent: J_{0}, K_{0}

Knowledge about the NMPs

- The parameters which are known within a few percent: e_{0} and ρ_{0}.
- The parameters which are known within about 10 percent: J_{0}, K_{0}
- The parameters which are known within about 50 percent: L_{0}.

Knowledge about the NMPs

- The parameters which are known within a few percent: e_{0} and ρ_{0}.
- The parameters which are known within about 10 percent: J_{0}, K_{0}
- The parameters which are known within about 50 percent: L_{0}.
- The parameters which are almost unknown: $Q_{0}, Z_{0}, K_{\text {sym }, 0}, Q_{\text {sym }, 0}, Z_{\text {sym }, 0}$

Aim:

$$
\square \varepsilon(\rho, \delta)=\varepsilon(\rho, 0)+J(\rho) \delta^{2}=f(\theta)
$$

Aim:

$\square \varepsilon(\rho, \delta)=\varepsilon(\rho, 0)+J(\rho) \delta^{2}=f(\theta)$

- We want to reconstruct these parameters from a given EoS(known precisely)

Bayesian estimation

- This approach is mainly based on the Bayes theorem which states that,
- $P(\boldsymbol{\theta} \mid D)=\frac{\mathcal{L}(D \mid \boldsymbol{\theta}) P(\boldsymbol{\theta})}{\mathcal{Z}}$

■ $\boldsymbol{\theta}$:model parameters and D :Data
■ Z:Evidence

Bayesian estimation

- This approach is mainly based on the Bayes theorem which states that,
- $P(\boldsymbol{\theta} \mid D)=\frac{\mathcal{L}(D \mid \boldsymbol{\theta}) P(\boldsymbol{\theta})}{\mathcal{Z}}$

■ $\boldsymbol{\theta}$:model parameters and D :Data

- Z:Evidence

■ $P(\boldsymbol{\theta})$: Prior for the model parameters

Bayesian estimation

- This approach is mainly based on the Bayes theorem which states that,
- $P(\boldsymbol{\theta} \mid D)=\frac{\mathcal{L}(D \mid \boldsymbol{\theta}) P(\boldsymbol{\theta})}{\mathcal{Z}}$

■ $\boldsymbol{\theta}$:model parameters and D :Data

- Z:Evidence

■ $P(\boldsymbol{\theta})$: Prior for the model parameters
$\square \mathcal{L}(D \mid \boldsymbol{\theta})$: Likelihood function $=\prod_{j} \frac{1}{\sqrt{2 \pi \sigma_{j}^{2}}} e^{-\frac{1}{2}\left(\frac{d_{j}-m_{j}(\boldsymbol{\theta})}{\sigma_{j}}\right)^{2}}$

Bayesian estimation

- This approach is mainly based on the Bayes theorem which states that,
- $P(\boldsymbol{\theta} \mid D)=\frac{\mathcal{L}(D \mid \boldsymbol{\theta}) P(\boldsymbol{\theta})}{\mathcal{Z}}$

■ $\boldsymbol{\theta}$:model parameters and $D:$ Data

- Z:Evidence
- $P(\boldsymbol{\theta})$: Prior for the model parameters
$\square \mathcal{L}(D \mid \boldsymbol{\theta}):$ Likelihood function $=\prod_{j} \frac{1}{\sqrt{2 \pi \sigma_{j}^{2}}} e^{-\frac{1}{2}\left(\frac{d_{j}-m_{j}(\boldsymbol{\theta})}{\sigma_{j}}\right)^{2}}$
■ $P\left(\boldsymbol{\theta}_{\boldsymbol{i}} \mid D\right)$: Marginalised posterior distribution of the parameters $\left(\theta_{i}\right)=\int P(\boldsymbol{\theta} \mid D) \prod_{k \neq i} d \theta_{k}$

Bayesian estimation

- So for Bayesian parameter estimation we need:

■ Data (D): EoS

Bayesian estimation

- So for Bayesian parameter estimation we need:

■ Data (D): EoS
$\square \operatorname{Model}(M(\theta))$

Bayesian estimation

- So for Bayesian parameter estimation we need:

■ Data (D): EoS
$\square \operatorname{Model}(M(\theta))$

- Prior $(P(\theta))$

Model

■ Taylor Expansion: $\varepsilon(\rho, \delta)=\sum_{n=0}^{4} \frac{1}{n!}\left(a_{n}+b_{n} \delta^{2}\right) x^{n}$

Model

- Taylor Expansion: $\varepsilon(\rho, \delta)=\sum_{n=0}^{4} \frac{1}{n!}\left(a_{n}+b_{n} \delta^{2}\right) x^{n}$

■ $\frac{n}{3}$ Expansion: $\varepsilon(\rho, \delta)=\sum_{n=2}^{6}\left(a_{n}^{\prime}+b_{n}^{\prime} \delta^{2}\right)\left(\frac{\rho}{\rho_{0}}\right)^{n / 3}$

Construction of EoS(Data)

we choose a fixed set of parameters to create the mock data

Construction of EoS(Data)

\square we choose a fixed set of parameters to create the mock data

Table: The values of nuclear matter parameters (in MeV) which are employed to construct various pseudo data using the Taylor and $\frac{n}{3}$ expansions.

N	Symmetric nuclear matter	Symmetry energy		
0	e_{0}	-16.0	J_{0}	32.0
1		L_{0}	50.0	
2	K_{0}	230	$K_{\text {sym }, 0}$	-100
3	Q_{0}	-400	$Q_{\text {sym }, 0}$	550
4	Z_{0}	1500	$Z_{\text {sym }, 0}$	-750

- Thermodynamic Stability

Construction of EoS(Data)

- we choose a fixed set of parameters to create the mock data

Table: The values of nuclear matter parameters (in MeV) which are employed to construct various pseudo data using the Taylor and $\frac{n}{3}$ expansions.

N	Symmetric nuclear matter	Symmetry energy		
0	e_{0}	-16.0	J_{0}	32.0
1		L_{0}	50.0	
2	K_{0}	230	$K_{\text {sym }, 0}$	-100
3	Q_{0}	-400	$Q_{\text {sym }, 0}$	550
4	Z_{0}	1500	$Z_{\text {sym }, 0}$	-750

- Thermodynamic Stability

■ Symmetry Energy, $J(\rho)$ should not be negative

Construction of EoS(Data)

\square we choose a fixed set of parameters to create the mock data

Table: The values of nuclear matter parameters (in MeV) which are employed to construct various pseudo data using the Taylor and $\frac{n}{3}$ expansions.

N	Symmetric nuclear matter	Symmetry energy		
0	e_{0}	-16.0	J_{0}	32.0
1		L_{0}	50.0	
2	K_{0}	230	$K_{\text {sym }, 0}$	-100
3	Q_{0}	-400	$Q_{\text {sym }, 0}$	550
4	Z_{0}	1500	$Z_{\text {sym }, 0}$	-750

■ Thermodynamic Stability
■ Symmetry Energy, $J(\rho)$ should not be negative

- Causality $\left(\frac{d P}{d \epsilon} \leq 1\right)$

Construction of EoS(Data)

- we choose a fixed set of parameters to create the mock data

Table: The values of nuclear matter parameters (in MeV) which are employed to construct various pseudo data using the Taylor and $\frac{n}{3}$ expansions.

N	Symmetric nuclear matter	Symmetry energy		
0	e_{0}	-16.0	J_{0}	32.0
1		L_{0}	50.0	
2	K_{0}	230	$K_{\text {sym }, 0}$	-100
3	Q_{0}	-400	$Q_{\text {sym }, 0}$	550
4	Z_{0}	1500	$Z_{\text {sym }, 0}$	-750

- Thermodynamic Stability

■ Symmetry Energy, $J(\rho)$ should not be negative

- Causality $\left(\frac{d P}{d \epsilon} \leq 1\right)$
- Maximum Mass for that EoS $\geq 2 M_{\odot}$

Table: Two different sets P1 and P2 for the prior distributions of the nuclear matter parameters (in MeV). The saturation density ρ_{0} is taken to be $0.16 \mathrm{fm}^{-3}$.

Parameters	P 1				P2		
	Pr-Dist	μ \min	σ \max	Pr-Dist.	μ \min	σ 	
	G	-16	0.3	G	-16	0.3	
e_{0}	G	240	100	G	240	50	
K_{0}	U	-2000	2000	G	-400	400	
Q_{0}	U	-3000	3000	U	-3000	3000	
Z_{0}	G	32	5	G	32	5	
J_{0}	U	20	150	G	50	50	
L_{0}	U	-1000	1000	G	-100	200	
$K_{\text {sym }, 0}$	U	-2000	2000	G	-550	400	
$Q_{\text {sym }, 0}$	U	-3000	3000	U	-3000	3000	
$Z_{\text {sym }, 0}$							

Posterior Distribution of the Parameters ($\mathbf{n} / \mathbf{3}$ model,P2):

$$
\varepsilon(\rho, \delta)=\varepsilon(\rho, 0)+J(\rho) \delta^{2}
$$

■ Posterior distribution of the EoS (n/3 model,P2):

■ Confidence ellipse ($\mathrm{n} / \mathbf{3}$ model, P2) :

Summary

■ we have used Bayesian Inference to reconstruct NMPs from EoS of NS matter.

Summary

■ we have used Bayesian Inference to reconstruct NMPs from EoS of NS matter.

- The median values of second or higher order NMPs show sizeable deviations from their true values and associated uncertainties are larger.

Summary

■ we have used Bayesian Inference to reconstruct NMPs from EoS of NS matter.

- The median values of second or higher order NMPs show sizeable deviations from their true values and associated uncertainties are larger.
- The sources of these uncertainties are intrinsic in nature, identified as:

Summary

■ we have used Bayesian Inference to reconstruct NMPs from EoS of NS matter.

- The median values of second or higher order NMPs show sizeable deviations from their true values and associated uncertainties are larger.
- The sources of these uncertainties are intrinsic in nature, identified as:
- (i) Correlations among various NMPs and

Summary

■ we have used Bayesian Inference to reconstruct NMPs from EoS of NS matter.

- The median values of second or higher order NMPs show sizeable deviations from their true values and associated uncertainties are larger.
- The sources of these uncertainties are intrinsic in nature, identified as:
- (i) Correlations among various NMPs and
- (ii) The balance between the EoS of symmetric nuclear matter, symmetry energy, and the neutron-proton asymmetry

Thank You!
 For Your Attention

