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Background and perturbations

It is convenient to distinguish between 
information from the following two 
phenomena:


The expansion rate of the background 
Universe.


The evolution to the perturbations on this 
background (structure formation).
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Structure formation: The promise

What drove inflation? How did it end? Particle 
spectrum during inflation?


Is DE consistent with being a cosmological 
constant at a significantly higher level of 
accuracy?


Test the effects of various DM models on 
structure formation.


Pin down the total mass of the SM neutrinos. The 
current bound from cosmology is tantalizingly 
close to ruling out the inverted hierarchy of 
neutrino masses.


Galaxy formation physics, substructure dynamics 
within halos…
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Relevant length scales

The Universe is assumed to be increasingly 
homogeneous and isotropic on large scales. 
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Relevant length scales

The Universe is assumed to be increasingly 
homogeneous and isotropic on large scales. 


Different regions of the Universe will have 
small fluctuations around the mean, when the 
volume considered is large.
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Relevant length scales

The Universe is assumed to be increasingly 
homogeneous and isotropic on large scales. 


Different regions of the Universe will have 
small fluctuations around the mean, when the 
volume considered is large.


This is true even at z=0 (current time).
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Relevant length scales

Since the density contrast δ is small on large 
scales, it is possible to use a perturbation 
theory approach to describe the evolution of 
δ.
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Relevant length scales

Since the density contrast δ is small on large 
scales, it is possible to use a perturbation 
theory approach to describe the evolution of 
δ.


Holds down to , but needs higher 
orders in perturbation theory. (For scales, the 
size of our galaxy is about 20kpc/h).

∼ 40Mpc/h
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Cosmology from large scales

Most cosmology analyses in the past and even 
today focus on information from these large 
scales.


We are close (but not quite) to exhausting 
what we can learn about the Universe from 
these large scales.
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Why consider smaller scales?

Many more independent regions within the 
observable Universe, i.e. greater statistical 
power. 


The total information naively scales as . A 
factor of 2 in scales implies a factor of 8 in 
the total information.


These scales are already measured in 
surveys, often at the highest signal-to-noise 
ratio.

k3
max
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Small scales: The challenge

Density contrast , so perturbation 
techniques are not applicable.


Have to use numerical techniques.

δ ≳ 1
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N-body simulations

Generate initial conditions when perturbation 
theory is still valid, and allow the system to 
evolve under its own gravity. More particles in 
a given volume  higher resolution.


Naively, such a computation scales as . 
However, techniques have been developed to 
allow for a much shallower scaling 

.

⇒

N2

∼ N log N
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How do we quantify “structure”?
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Need to characterize the spatial 
distribution of points, say positions of 
galaxies, statistically. Need the concept of 
“summary statistics”.


Changing cosmology will change the 
clustering of data, and therefore the 
summary.


More powerful summary statistics will 
capture more information about the 
underlying distribution.



Comparing data and theoretical predictions: 2-point functions
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The most widely used statistical measure in 
cosmology is the power spectrum , or its 
Fourier transform .

P(k)
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Comparing data and theoretical predictions: 2-point functions
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The most widely used statistical measure in 
cosmology is the power spectrum , or its 
Fourier transform .

P(k)
ξ(r)

Baugh et al 2015



2-point functions for discrete tracers
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ξ(r) =
⟨DD(r)⟩
⟨RR(r)⟩
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2-point correlations

The power spectrum, or the 2pt correlation 
function is the complete summary statistic of 
a gaussian random field.


Does not capture all the information when 
the density field becomes non-Gaussian.


To make full use of information on small 
scales, we need to explore statistics beyond 
the 2-pt functions.
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Beyond the 2PCF: Higher order N-point correlations

Consider higher N-point correlation 
functions. The 3PCF (bispectrum) already has 
a lot of extra information, but 
computationally expensive to compute.


Becomes computationally prohibitive as we 
generalize to higher N-PCF.
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Using a new statistical measure for discrete data: k Nearest 
Neighbor distributions

Sample the volume densely with a set of 
query points.
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Sample the volume densely with a set of 
query points.
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Sample the volume densely with a set of 
query points.


For each of the query points, use a tree 
structure to efficiently find the distance 
to the 1st, 2nd, … k-th nearest neighbor 
data points.
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Sample the volume densely with a set of 
query points.


For each of the query points, use a tree 
structure to efficiently find the distance 
to the 1st, 2nd, … k-th nearest neighbor 
data points.
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Sample the volume densely with a set of 
query points.


For each of the query points, use a tree 
structure to efficiently find the distance 
to the 1st, 2nd, … k-th nearest neighbor 
data points.


For a given k, sort the distances to get 
the Empirical CDF of the distances.


Takeaway: a) A single measurement 
procedure is sufficient for a range of 
scales. b) Not computationally expensive 
to measure higher k distributions. (~20 
seconds on a single core)
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What do the kNN distributions measure?

The measurement can be connected to cumulative counts: 


The generating function for the distributions can be written in terms of integrals over all (connected) N-point 
correlations in the data: 




Each kNN-CDF measures a different combination of the N-point correlation functions:





CDF1NN(R) = 𝒫>0(V ) |V=4/3πR3

P(z, V ) =
1 − exp [∑∞

k=1
n̄k(z − 1)k

k! ξ(k)(V )]
1 − z

ξ(k)(V ) = ∫V
. . . ∫V

d3r1 . . . rkξC(r1, . . . , rk)

CDF1NN(V ) = 1 − exp [
∞

∑
k=1

(−n̄)k

k!
ξ(k)(V )]

CDF2NN(V ) = 1 − exp [
∞

∑
k=1

(−n̄)k

k!
ξ(k)(V )] − ( (−n̄)(k−1)

(k − 1)!
ξ(k)(V )) exp [

∞

∑
k=1

(−n̄)k

k!
ξ(k)(V )]
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What do the kNN distributions measure?

The measurement can be connected to cumulative counts: 


The generating function for the distributions can be written in terms of integrals over all (connected) 
N-point correlations in the data: 




Each kNN-CDF measures a different 1 point averages of the underlying continuous field smoothed on 
scale R:





CDF1NN(R) = 𝒫>0(V) |V=4/3πR3

P(z, V) =
1 − exp [∑∞

k=1
n̄k(z − 1)k

k! ξ(k)(V)]
1 − z

ξ(k)(V) = ∫V
. . . ∫V

d3r1 . . . rkξC(r1, . . . , rk)

CDF1NN(V) = 1 − ⟨exp [−n̄V (1 + δR)]⟩
CDF2NN(V) = 1 − ⟨exp [−n̄V (1 + δR)]⟩ − ⟨(n̄V (1 + δR)) exp [−n̄V (1 + δR)]⟩
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• Sample the volume densely with a 
set of random points.
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• Sample the volume densely with a 
set of query points.
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- Sample the volume densely with 
a set of query points.

- For each query point, find the 
distance to the nearest data 
point of each dataset.

- For each query point, pick the 
larger distance.
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- Sample the volume densely with 
a set of query points.

- For each query point, find the 
distance to the nearest data 
point of each dataset.

- For each query point, pick the 
larger distance.
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- Sample the volume densely with 
a set of query points.

- For each query point, find the 
distance to the nearest data 
point of each dataset.

- For each query point, pick the 
larger distance.
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- Sample the volume densely with 
a set of query points.

- For each query point, find the 
distance to the nearest data 
point of each dataset.

- For each query point, pick the 
larger distance.
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- Sample the volume densely with 
a set of query points.

- For each query point, find the 
distance to the nearest data 
point of each dataset.

- For each query point, pick the 
larger distance.

- Sort distances, get the empirical 
(joint) CDF.

- Generalize to the (k1,k2) nearest 
neighbor distributions.
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For a single set of particles, . Similarly, .

The generating function for  is given by 

The generating function for  is 

CDFk(r) = 𝒫>k−1(V) CDFk1,k2
(r) = 𝒫>k1−1,>k2−1(V)

𝒫k1,k2
(V)

𝒫>k1,>k2
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It is quite easy to isolate the parts of these measurements which depends only on the cross-
correlations.

For completely uncorrelated datasets, .

When this is 0, the two sets are uncorrelated.                                                  

𝒫>k1,>k2
(V) = 𝒫>k1

(V) × 𝒫>k2
(V)
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Physical intuition for the kNNs

More clustered the data points (at fixed 
number density), the more prominent the 
voids, i.e. the CDF extends out to larger 
distances.

37

Banerjee & Abel, 2020



Cosmological information with kNN distributions

We use a Fisher matrix analysis to test how 
sensitive kNN statistics are to various 
cosmological parameters, compared to the 2-
point function.


We use the same underlying simulation data 
to compute the two sets of statistics, and 
compare their change as a function of 
change in the values of the cosmological 
parameters.
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Improvements in parameter constraints
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Banerjee et al, 2022 

Factor of 3 improvement



Detection of cross-correlations for sparse samples
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Banerjee & Abel, 2021

n̄ = 10−6h3Mpc−3



Detection of cross-correlations for sparse samples

41

25 50 100 200
¬2

0.00

0.01

0.02

0.03

0.04

0.05

P
° ¬

2¢

ª

kNN

Banerjee & Abel, 2021



First application to data
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First application to data
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Point-field cross correlations
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Summary

Understanding structure formation in the Universe can help answer some of the most 
fundamental questions in physics (inflation, DM, DE, massive neutrinos, additional light species, 
…)


Large amounts of untapped information on small, nonlinear scales.


Need to go beyond 2 point statistics. kNN distributions offer a computationally cheap and 
interpretable path to higher-order statistics. Shows much greater statistical constraining power.


Many potential applications in cosmology (also GW clustering) and beyond. Deep connections to 
geometrical and topological measures of clustering such as Minkowski functionals and Betti 
numbers.
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Thank you!


