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Background and pert

@ It is convenient to distinguish between
information from the following two
phenomena:

@ The expansion rate of the background
Universe.

@ The evolution to the perturbations on this
background (structure formation).

@ This evolution is sensitive to the relative
abundances of all energy components in the
Universe, and their properties.
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Targeting survey for
next generation
spectroscopic
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Focus on primordial
non-Gaussianity
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Structure formation: The promise

What drove inflation? How did it end? Particle
spectrum during inflation?

Is DE consistent with being a cosmological
constant at a significantly higher level of
accuracy?

Test the effects of various DM models on
structure formation.

Pin down the total mass of the SM neutrinos. The
current bound from cosmology is tantalizingly
close to ruling out the inverted hierarchy of
neufrino masses.

Galaxy formation physics, substructure dynamics
within halos...

normal hierarchy (NH)

inverted hierarchy (IH)
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Relevant length scales

@ Since the density contrast & is small on large
scales, It is possible to use a perturbation
theory approach to describe the evolution of
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Relevant length scales

@ Since the density contrast & is small on large 5(3) = p(xX) = p
scales, It is possible to use a perturbation p
theory approach to describe the evolution of ! s
5 Continuity : 6 = ——V .V
a
ov P g
@ Holds down to ~ 40Mpc/h, but needs higher Euler : v ZV i, V¢

orders in perturbation theory. (For scales, the
size of our galaxy is about 20kpc/h).
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Cosmology from large scales

SDSS—II LRGs

@ Most cosmology analyses in the past and even

today focus on information from these large
scales.
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® We are close (but not quite) to exhausting
what we can learn about the Universe from
these large scales.

0

SDSS Collaboration
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Why consider smaller scales?

@ Many more independent regions within the
observable Universe, i.e. greater statistical
power.
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@ The total information naively scales as kglax. A

factor of 2 in scales implies a factor of 8 in
the total information.
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® These scales are already measured in
surveys, often at the highest signal-to-noise v
ratio. 0.1 1.0

comoving wavenumber & /h Mpc™

Rimes et al, 2005
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N-body simulations

® Generate initial conditions when perturbation
theory is still valid, and allow the system to
evolve under its own gravity. More particles in

a given volume = higher resolution.

@ Naively, such a computation scales as N>

However, techniques have been developed to
allow for a much shallower scaling

~ N log N.
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How do we quantify “structure”

*

@ Need to characterize the spatial
distribution of points, say positions of
galaxies, statistically. Need the concept of
“summary statistics”.

@ Changing cosmology will change the
clustering of data, and therefore the
summary.

@ More powerful summary statistics will
capture more information about the
underlying distribution.
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Comparing data and theoretical predictions: 2-point functions

5(3) = pxX) —p

i

@ The most widely used statistical measure in
cosmology is the power spectrum P(k), or its
Fourier transform &(r). E(r) = (0(X)0(X + 7)) 171=r

PUOSE — ) = ——(5000(")
(2n)3
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Comparing data and theoretical predictions: 2-point functions

@ The most widely used statistical measure in
cosmology is the power spectrum P(k), or its
Fourier transform &(7).

Baugh et al 2015
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2-point functions for discrete fracers
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2-point correlations

@ The power spectrum, or the 2pt correlation
function is the complete summary statistic of
a gaussian random field.

@ Does not capture all the information when
the density field becomes non-Gaussian.

@ To make full use of information on small
scales, we need to explore statistics beyond
the 2-pt functions.

19
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Beyond the 2PCF: Higher order N-point correlations

@ Consider higher N-point correlation
functions. The 3PCF (bispectrum) already has b
a lot of extra information, but R

x [Mpe/h]

computationally expensive to compute.

@ Becomes computationally prohibitive as we s L R TPR S
generalize fo higher N-PCF. ‘

Sefusatti and Scoccimarro, 2004
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Using a new statistical measure for discrete data: k Nearest
Neighbor distributions

® Sample the volume densely with a set of
query points.

500 750 1000
r(Mpc/h)
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Using a new statistical measure for discrete data: k Nearest
Neighbor distributions

® Sample the volume densely with a set of
query points.

@ For each of the query points, use a tree
structure to efficiently find the distance
to the 1st, 2nd, ... K-th nearest neighbor

data points.
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Using a new statistical measure for discrete data: k Nearest
Neighbor distributions

® Sample the volume densely with a set of
query points.

@ For each of the query points, use a tree
structure to efficiently find the distance
to the 1st, 2nd, ... K-th nearest neighbor

data points.

24



Using a new statistical measure for discrete data: k Nearest
Neighbor distributions

@ Sample the volume densely with a set of
query points.

@ For each of the query points, use a tree
structure to efficiently find the distance
to the 1st, 2nd, ... k-th nearest neighbor

data poinfts.

@ For a given K, sort the distances to get
the Empirical CDF of the distances.

@ Takeaway: a) A single measurement
procedure is sufficient for a range of
scales. b) Not computationally expensive
to measure higher k distributions. (720
seconds on a single core)

Swall scales

RE



What do the KNN distributions measure?

The measurement can be connected to cumulative counts: CDFy(R) = &, (V) |_y/5. 3

The generating function for the distributions can be written in terms of integrals over all (connected) N-point
correlations in the dafa:

o0 ”<Z—1>" (k)
l—=exp|) . EV(V) :
' ER(V) = J (L. ..o )
Jy Jy

Pz, V) =

|

Each KNN-CDF measures a different combination of the N-point correlation functions:

A C (_ﬁ)k
CDF (V) =1 —exp [Z EQWV)
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® CDFyn(V) = 1-exp L; SAVI & ( T cf(")(V)> exp ; £y
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What do the KNN distributions measure?

The measurement can be connected to cumulative counts: CDF \n(R) = P, o(V) ‘V:4/37ZR3

The generating function for the distributions can be written in terms of integrals over all (connected)
N-point correlations in the data:

1 —exp [ZOO i 1)kf(k)(V)]

1 —z

B(z, Vi =

ER (V) =J J dir,. gEE. ... T,)
Vo i

Each KNN-CDF measures a different 1 point averages of the underlying continuous field smoothed on
scale R:

o CDE (Vi1 — <exp [—ﬁV(l “ 5R)]>

o CDEA ) =1- <exp [—r‘zV(l 4 5R)]> 3 <(sz(1 ; 5R)> exp [—ﬁV(l 4 5R)]>
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Cross-correlations with nearest neighbors

Sample the volume densely with a
set of random points.

200 500 750 1000
r(Mpc/h)
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Cross-correlations with nearest neighbors

Sample the volume densely with a
set of query points.

D



Cross-correlations with nearest neighbors

- Sample the volume densely with
a set of query points.

- For each query point, find the
distance to the nearest data
point of each dataset.

- For each query point, pick the
larger distance.
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Cross-correlations with nearest neighbors
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Cross-correlations with nearest neighbors

- Sample the volume densely with
a set of query points.

- For each query point, find the
distance to the nearest data
point of each dataset.

Joint

- For each query point, pick the
larger distance.

- Sort distances, get the empirical
(joint) CDF.

10
r (h~'"Mpc)

- Generalize to the (k;,kz) nearest
neighbor distributions.
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Cross-correlations with nearest neighbors

@ For a single set of particles, CDF (r) = &_,_{(V). Similarly, CDFkl,kz(’” )= >k1—1,>k2—1(V)'

‘“(.,, 1)* iy} (23 — 1)%2
ko!

@ The generating function for &, ; (V) is given by [FIeHeERompe i i

2.7 ’ 2
x/‘;d3r|...d3rkld~rl...d3rk2§("'°k-)

@ The generai'ing function for “@>k1,>k2 IS C(z1.z22|V) = — —PialV) = Py(zlV) + Pz 221V)

(I =z1)(1 -27)
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Cross-correlations with nearest neighbors

@ It is quite easy to isolate the parts of these measurements which depends only on the cross-
correlations.

D For completely uncorrelated datasets, ‘@>k1,>k2(v) = ggkl(V) X g)>k2(V)-

¢'(r) = CDFy, 4, (r) - CDF} (r)CDE,”(r)

I 2

@ When this is O, the two sets are uncorrelated.
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Physical intuition for the kKNNs

® More clustered the data points (at fixed

number density), the more prominent the | Poisson 1NN
voids, i.e. the CDF extends out to larger s Particles INN
O w— Halos INN

distances.
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Cosmological information with KNN distributions

® We use a Fisher matrix analysis to test how
sensitive KNN statistics are fo various
cosmological parameters, compared to the 2-
point function.

@ We use the same underlying simulation data
to compute the two sets of statistics, and
compare their change as a function of
change in the values of the cosmological
parameters.

THE QUIJOTE SIMULATIONS

FRANCISCO VILLAESCUSA-NAVARROM?T CHANGHOON HAHN?*, ELENA MASSARA''®, ARKA BANERJEE®"® ANA MARIA
DELGADO?!, DoOGESH Kopl RAMANAH'®!! ToMm CHARNOCK!'?, ELENA GrusarRMA™!'?) YIN Lit3413:31  ErwaN ALLys'?,
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ALSINGZ%! ROMAN ScOCCIMARRO?!, LiciA VERDE??2® MATTEO VIEL?%2%26:27 SurLEY HOM??®, STEPHANE MALLAT?9:3°,
BENJAMIN WANDELT'®!1! DavID N. SPERGEL?!
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Improvements in parameter constraints

P(k) analysis
B P(k)+ kNN analysis

Factor of 3 improvement =~$%

Banerjee et al, 2022

0.84 0.30
a8
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Detection of cross-correlations for sparse samples

Banerjee & Abel, 2021
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Detection of cross-correlations for sparse samples

=
.
A

Banerjee & Abel, 2021
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First application fo data

— — redMaPPer
| Randoms (2000)

Detection of spatial clustering in the 1000 richest SDSS DRS
redMaPPer clusters with Nearest Neighbor distributions

— — redMaPPer
[ 1 Randoms (2000)

Yunchong Wang,!** Arka Banerjee 4 and Tom Abel 123
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First application fo data

— = (Gaussian field prediction
.| Measurement Jackknife (200)

Detection of spatial clustering in the 1000 richest SDSS DRS
redMaPPer clusters with Nearest Neighbor distributions

Yunchong Wang,!** Arka Banerjee 4 and Tom Abel 123

PDF (3NN @ 4NN)

3NN CDF & [50 Mpc, 160 Mpc|
4NN CDF & [60 Mpc, 160 Mpc]

43



Point-field cross correlations

of the
ROYAL ASTRONOMICAL SOCIETY

MNRAS 519, 48564868 (2023) https://doi.org/10.1093/mnras/stac3813
Advance Access publication 2022 December 30

Tracer-field cross-correlations with k-nearest neighbour distributions

Arka Banerjee “''* and Tom Abel***
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Summary

Understanding structure formation in the Universe can help answer some of the most
fundamental questions in physics (inflation, DM, DE, massive neutrinos, additional light species,

i)

Large amounts of untapped information on small, nonlinear scales.

Need to go beyond 2 point statistics. KNN distributions offer a computationally cheap and
interpretable path to higher-order statistics. Shows much greater statistical constraining power.

Many potential applications in cosmology (also GW clustering) and beyond. Deep connections to
geometrical and topological measures of clustering such as Minkowski functionals and Betti
numbers.
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