Beam Optics Studies - Emittance Growth

Paul Bogdan Jurj
Imperial College London
paul.jurj13@imperial.ac.uk

February 21, 2019

Non-linear emittance growth

- Excluding the beam-material interactions in the cooling channel, the 4-D transverse RMS emittance of the beam can be affected by non-linear effects
- The non-linear effects that contribute to optical heating come in multiple flavours:
- High gradient/curvature field related effects
- Kinematic, due to non-paraxial motion
- Chromatic, due to non-zero spread in total momenta
- A map-based approach is currently explored, using the MaryLie/Impact code (Alex Dragt, Rob Ryne)

MaryLie/Impact code - Background

- Expands the Hamiltonian around the reference orbit:

$$
H=H_{0}+H_{1}+H_{2}+H_{3}+H_{4}+H_{5}+H_{6}
$$

where the indices represent the order in the deviation variables.

- H_{0} and H_{1} have no contribution, while H_{2} generates the linear dynamics.
- First non-linear term H_{3} is purely chromatic
- H_{4} predominantly contains geometric terms that are: independent of B_{z}, proportional to B_{z} and proportional $\partial^{2} B_{z} / \partial z^{2}$. There are some terms that also have chromatic dependence.
- H_{5} contains chromatic terms

Hamiltonian terms up to $H_{4}\left(K_{4}\right)$

$$
\begin{array}{rlrl}
K_{0}= & 1 /\left(\beta^{2} \gamma^{2} \ell\right), & & +\frac{3 B_{\mathrm{o}}^{2}\left(X^{2} P_{y}^{2}+Y^{2} P_{x}^{2}\right)}{16 \ell}- \\
K_{1}= & 0, & & +\frac{\left(B_{2}-B_{\mathrm{o}}^{3}\right)\left(X^{2}+Y^{2}\right)()}{16 \ell} \\
K_{2}= & \frac{P_{x}^{2}+P_{y}^{2}}{2 \ell}-\frac{B_{\mathrm{o}}}{2 \ell}\left(X P_{y}-Y P_{x}\right)+\frac{B_{\mathrm{o}}^{2}}{8 \ell}\left(X^{2}+Y^{2}\right) & & +\frac{\left(B_{\mathrm{o}}^{4}-4 B_{\mathrm{o}} B_{2}\right)\left(X^{4}+2 X\right.}{128 \ell} \\
& +\frac{P_{\tau}^{2}}{2 \beta^{2} \gamma^{2} \ell}, & & +\frac{\left(3-\beta^{2}\right) P_{\tau}^{2}\left(P_{x}^{2}+P_{y}^{2}\right)}{4 \beta^{2} \ell} \\
K_{3}= & \frac{P_{\tau}\left(P_{x}^{2}+P_{y}^{2}\right)}{2 \beta \ell}-\frac{B_{0} P_{\tau}\left(X P_{y}-Y P_{x}\right)}{2 \beta \ell} & & +\frac{\left(3-\beta^{2}\right) B_{\mathrm{o}} P_{\tau}^{2}\left(X P_{y}-Y\right.}{4 \beta^{2} \ell} \\
& +\frac{B_{\mathrm{o}}^{2} P_{\tau}\left(X^{2}+Y^{2}\right)}{8 \beta \ell}+\frac{P_{\tau}^{3}}{2 \beta^{3} \gamma^{2} \ell}, \\
K_{4}= & \frac{P_{x}^{4}+2 P_{x}^{2} P_{y}^{2}+P_{y}^{4}}{8 \ell}-\frac{B_{\mathrm{o}}\left(P_{x}^{2}+P_{y}^{2}\right)\left(X P_{y}-Y P_{x}\right)}{4 \ell} & & +\frac{\left(3-\beta^{2}\right) B_{\mathrm{o}}^{2} P_{\tau}^{2}\left(X^{2}+Y^{2}\right.}{16 \beta^{2} \ell} \\
& +\frac{B_{\mathrm{o}}^{2}\left(X^{2} P_{x}^{2}+Y^{2} P_{y}^{2}\right)}{16 \ell} & & \\
P_{\tau}=-\left(1 / \beta_{0}\right)\left\{\left[1+\left(2 \delta+\delta^{2}\right) \beta_{0}^{2}\right]^{1 / 2}-1\right\} \\
& =\beta_{0} \delta+\left(\delta^{2} / 2\right)\left(\beta_{0}^{3}-\beta_{0}\right)-\left(\delta^{3} / 2\right)\left(\beta_{0}^{5}-\beta_{0}^{3}\right)+\cdots
\end{array}
$$

MaryLie/Impact code - Implementation

- ML/I numerically computes the Lie algebraic transfer maps.
- Uses the longitudinal coordinate z as the independent variable.
- Magnetic field computed from the on-axis field and its derivatives up to 4th order.
- On-axis field modelled same as in MAUS, using cylindrical current sheets.
- Provided the coil parameters from the run MAUS geometry under study.
- Read in the particles extracted from the run under study.

Data

- Analysis H57a, Run 10448
- 2017-02-7 setting
- Flip mode, 3T in SSU (M1, M2 on), 2T in SSD (M1 off, M2 on)
- LiH Empty (None)
- $140 \mathrm{MeV} / \mathrm{c}$, nominal emittance $3 \mathrm{~mm}, \beta_{\perp}=500 \mathrm{~mm}$

Cuts

- 1 SP in both TOF0 and TOF1
- TOF01 consistent with muon peak: 29-31 ns
- Energy loss between TOF1 and TKD consistent with μ
- TKU: $135 \mathrm{MeV} / \mathrm{c}<$ total momentum $<145 \mathrm{MeV} / \mathrm{c}$
- TKD: $110 \mathrm{MeV} / \mathrm{c}<$ total momentum $<170 \mathrm{MeV} / \mathrm{c}$
$-\chi^{2} / n d f<4$ (TKU \& TKD)
- Transmission cut: analyse only events with 1 track in each tracker
- Fiducial radius cut: $r<150 \mathrm{~mm}$ (TKU \& TKD)
- Diffuser radius cut: $\mathrm{r}<90 \mathrm{~mm}$

Preliminary data-driven MAUS simulations

- Used particles extracted from data, run 10448.
- a) Changed initial P_{z} such that initial $P_{\text {tot }}=140 \mathrm{MeV} / \mathrm{c}$.
- b) Changed their initial P_{z} to $140 \mathrm{MeV} / \mathrm{c}$.

Magnetic field

Emittance - ML/I vs MC Truth vs Data

Emittance growth ML/I

Emittance growth - Individual expansion terms

Emittance growth - Chromatic vs Geometric

Monochromatic P_{z} beam

- Used particles extracted from data, run 10448. Changed their initial P_{z} to $140 \mathrm{MeV} / \mathrm{c}$.

Monochromatic P_{z} beam - emittance growth ML/I

Monochromatic $P_{\text {tot }}$ beam - emittance growth ML/I

Summary

- Good agreement between Data, MAUS MC Truth and ML/I code
- Chromatic effects seem to dominate; the large curvature of the field (2nd derivative) just downstream of the absorber also has a significant contribution.
- Next steps
- Apply this study to other beam and channel settings.
- Study the decoupled x / y phase-space evolution in the channel.
- Include the coil misalignments in ML/I code.

Thank you!

Backup

Emittance growth ML/I

Analysis Procedure

- All the particles that survive the cuts are extracted at the first SciFi plane in station 5 of TKU \rightarrow fed them into the MC simulation
- Calculate beam optics of the MC simulated beam at a series of virtual planes along the cooling channel, between both stations 5 of TKU and TKD; also reconstruct the simulated data

Run 10445, 4mm

Emittance growth ML/I

Run 10450, 6 mm

Emittance growth ML/I

