Beam Optics Studies - Emittance Growth

Paul Bogdan Jurj

Imperial College London

paul.jurj13@imperial.ac.uk

February 21, 2019

- Excluding the beam-material interactions in the cooling channel, the 4-D transverse RMS emittance of the beam can be affected by non-linear effects
- The non-linear effects that contribute to optical heating come in multiple flavours:
 - High gradient/curvature field related effects
 - Kinematic, due to non-paraxial motion
 - Chromatic, due to non-zero spread in total momenta
- A map-based approach is currently explored, using the MaryLie/Impact code (Alex Dragt, Rob Ryne)

• Expands the Hamiltonian around the reference orbit:

 $H = H_0 + H_1 + H_2 + H_3 + H_4 + H_5 + H_6$

where the indices represent the order in the deviation variables.

- *H*₀ and *H*₁ have no contribution, while *H*₂ generates the linear dynamics.
- First non-linear term H_3 is purely chromatic
- H_4 predominantly contains geometric terms that are: independent of B_z , proportional to B_z and proportional $\partial^2 B_z / \partial z^2$. There are some terms that also have chromatic dependence.
- H₅ contains chromatic terms

Hamiltonian terms up to H_4 (K_4)

$$\begin{split} &K_{0} = 1/(\beta^{2}\gamma^{2}\ell), \\ &K_{1} = 0, \\ &+ \frac{3B_{o}^{2}(\chi^{2}P_{y}^{2} + Y^{2}P_{x}^{2})}{16\ell} - \frac{B_{o}^{2}XP_{x}YP_{y}}{4\ell} \\ &K_{2} = \frac{P_{x}^{2} + P_{y}^{2}}{2\ell} - \frac{B_{o}}{2\ell}(XP_{y} - YP_{x}) + \frac{B_{o}^{2}}{8\ell}(X^{2} + Y^{2}) \\ &+ \frac{P_{\tau}^{2}}{2\beta^{2}\gamma^{2}\ell}, \\ &K_{3} = \frac{P_{\tau}(P_{x}^{2} + P_{y}^{2})}{2\beta\ell} - \frac{B_{o}P_{\tau}(XP_{y} - YP_{x})}{2\beta\ell} \\ &+ \frac{B_{o}^{2}P_{\tau}(X^{2} + Y^{2})}{2\beta\ell} - \frac{B_{o}P_{\tau}(XP_{y} - YP_{x})}{2\beta\ell} \\ &+ \frac{B_{o}^{2}P_{\tau}(X^{2} + Y^{2})}{8\beta\ell} + \frac{P_{\tau}^{3}}{2\beta^{3}\gamma^{2}\ell}, \\ &K_{4} = \frac{P_{x}^{4} + 2P_{x}^{2}P_{y}^{2} + P_{y}^{4}}{8\ell} - \frac{B_{o}(P_{x}^{2} + P_{y}^{2})(XP_{y} - YP_{x})}{4\ell} \\ &+ \frac{B_{o}^{2}(X^{2}P_{x}^{2} + Y^{2})}{16\beta^{2}\ell} + \frac{B_{o}^{2}(X^{2}P_{x}^{2} + Y^{2})}{8\beta^{4}\gamma^{2}\ell} \\ \end{split}$$

$$P_{\tau} = -(1/\beta_0) \{ [1 + (2\delta + \delta^2)\beta_0^2]^{1/2} - 1 \} \\ = -\beta_0 \delta + (\delta^2/2)(\beta_0^3 - \beta_0) - (\delta^3/2)(\beta_0^5 - \beta_0^3) + \cdots$$

MaryLie/Impact code - Implementation

- ML/I numerically computes the Lie algebraic transfer maps.
- Uses the longitudinal coordinate z as the independent variable.
- Magnetic field computed from the on-axis field and its derivatives up to 4th order.
- On-axis field modelled same as in MAUS, using cylindrical current sheets.
- Provided the coil parameters from the run MAUS geometry under study.
- Read in the particles extracted from the run under study.

- Analysis H57a, Run 10448
- 2017-02-7 setting
- Flip mode, 3T in SSU (M1, M2 on), 2T in SSD (M1 off, M2 on)
- LiH Empty (None)
- 140 MeV/c, nominal emittance 3 mm, $\beta_{\perp}=$ 500 mm

- 1 SP in both TOF0 and TOF1
- TOF01 consistent with muon peak : 29 31 ns
- Energy loss between TOF1 and TKD consistent with μ
- TKU: 135 MeV/c < total momentum < 145 MeV/c
- TKD: 110 MeV/c < total momentum < 170 MeV/c
- $\chi^2/ndf < 4$ (TKU & TKD)
- Transmission cut: analyse only events with 1 track in each tracker
- Fiducial radius cut: r < 150 mm (TKU & TKD)
- Diffuser radius cut: r < 90 mm

Preliminary data-driven MAUS simulations

- Used particles extracted from data, run 10448.
- a) Changed initial P_z such that initial $P_{tot} = 140 \text{ MeV/c}$.
- b) Changed their initial P_z to 140 MeV/c.

Magnetic field

Emittance - ML/I vs MC Truth vs Data

Emittance growth - Individual expansion terms

Paul Bogdan Jurj (ICL)

February 21, 2019 12 / 25

Emittance growth - Chromatic vs Geometric

Paul Bogdan Jurj (ICL)

MICE CM53

Monochromatic P_z beam

• Used particles extracted from data, run 10448. Changed their initial P_z to 140 MeV/c.

Monochromatic P_z beam - emittance growth ML/I

Monochromatic P_{tot} beam - emittance growth ML/I

- Good agreement between Data, MAUS MC Truth and ML/I code
- Chromatic effects seem to dominate; the large curvature of the field (2nd derivative) just downstream of the absorber also has a significant contribution.
- Next steps
 - Apply this study to other beam and channel settings.
 - Study the decoupled x/y phase-space evolution in the channel.
 - Include the coil misalignments in ML/I code.

Thank you!

Backup

Paul Bogdan Jurj (ICL)

• All the particles that survive the cuts are extracted at the first SciFi plane in station 5 of TKU \rightarrow fed them into the MC simulation

• Calculate beam optics of the MC simulated beam at a series of virtual planes along the cooling channel, between both stations 5 of TKU and TKD; also reconstruct the simulated data

Run 10450, 6mm

