VBS & SMEFT

Ilaria Brivio

Institut für Theoretische Physik, Universität Heidelberg and Niels Bohr Institute, University of Copenhagen

- intro & remarks on the SM EFT : motivation for a global analysis
- 2. VBS in the SM EFT focus on dimension 6
 - relevant operators in the Warsaw basis [qualitative considerations]
 - what can/should VBS be <u>combined</u> with?

For more quantitative and specific studies, see the next talk by Raquel+Kristin

The SMEFT

fundamental assumptions:

- new physics nearly decoupled: $\Lambda \gg (v, E)$
- ▶ at the accessible scale: **SM** fields + symmetries

a Taylor expansion in canonical dimensions (ν/Λ or E/Λ):

$$\mathcal{L}_{\mathrm{SMEFT}} = \mathcal{L}_{\mathrm{SM}} + \frac{1}{\Lambda} \mathcal{L}_5 + \frac{1}{\Lambda^2} \mathcal{L}_6 + \frac{1}{\Lambda^3} \mathcal{L}_7 + \frac{1}{\Lambda^4} \mathcal{L}_8 + \dots$$

 $\mathcal{L}_n = \sum_i C_i \mathcal{O}_i^{d=n}$ C_i free parameters (Wilson coefficients)

 \mathcal{O}_i invariant operators that form a complete, non redundant basis

Constructing a basis

Constructing a basis

Constructing a basis

a basis

minimal set of independent operators (parameters) for the most general classification of BSM effects

• the basis choice is **not unique** but the *physics* is basis-independent.

- the basis choice is not unique but the physics is basis-independent.
- customary choice with large consensus: Warsaw basis

The Warsaw basis

Grzadkowski, Iskrzynski, Misiak, Rosiek 1008.4884

	X^3		φ^6 and $\varphi^4 D^2$		$\psi^2 arphi^3$
Q_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	Q_{arphi}	$(arphi^\dagger arphi)^3$	$Q_{e\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{l}_{p}e_{r}\varphi)$
$Q_{\widetilde{G}}$	$f^{ABC} \widetilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$	$Q_{\varphi \Box}$	$(\varphi^{\dagger}\varphi)\Box(\varphi^{\dagger}\varphi)$	$Q_{u\varphi}$	$(arphi^{\dagger}arphi)(ar{q}_p u_r \widetilde{arphi})$
Q_W	$\varepsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$	$Q_{\varphi D}$	$\left(\varphi^{\dagger} D^{\mu} \varphi \right)^{\star} \left(\varphi^{\dagger} D_{\mu} \varphi \right)$	$Q_{d\varphi}$	$(arphi^{\dagger}arphi)(ar{q}_{p}d_{r}arphi)$
$Q_{\widetilde{W}}$	$\varepsilon^{IJK}\widetilde{W}^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$				
	$X^2 \varphi^2$		$\psi^2 X \varphi$		$\psi^2 \varphi^2 D$
$Q_{\varphi G}$	$\varphi^{\dagger}\varphiG^{A}_{\mu u}G^{A\mu u}$	Q_{eW}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{arphi l}^{(1)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{l}_{p}\gamma^{\mu}l_{r})$
$Q_{arphi \widetilde{G}}$	$\varphi^{\dagger} \varphi \widetilde{G}^{A}_{\mu u} G^{A \mu u}$	Q_{eB}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \varphi B_{\mu\nu}$	$Q^{(3)}_{arphi l}$	$(\varphi^{\dagger}i\overleftrightarrow{D}^{I}_{\mu}\varphi)(\bar{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$
$Q_{\varphi W}$	$arphi^\dagger arphi W^I_{\mu u} W^{I\mu u}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu u} T^A u_r) \widetilde{\varphi} G^A_{\mu u}$	$Q_{\varphi e}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{e}_{p}\gamma^{\mu}e_{r})$
$Q_{\varphi \widetilde{W}}$	$arphi^\dagger arphi \widetilde{W}^I_{\mu u} W^{I\mu u}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu u} u_r) \tau^I \widetilde{\varphi} W^I_{\mu u}$	$Q^{(1)}_{arphi q}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{q}_{p}\gamma^{\mu}q_{r})$
$Q_{\varphi B}$	$\varphi^{\dagger}\varphiB_{\mu u}B^{\mu u}$	Q_{uB}	$(\bar{q}_p \sigma^{\mu u} u_r) \widetilde{\varphi} B_{\mu u}$	$Q^{(3)}_{arphi q}$	$(\varphi^{\dagger}i\overleftrightarrow{D}^{I}_{\mu}\varphi)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$
$Q_{\varphi \widetilde{B}}$	$arphi^\dagger arphi \widetilde{B}_{\mu u} B^{\mu u}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu u} T^A d_r) \varphi G^A_{\mu u}$	$Q_{arphi u}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}u_{r})$
$Q_{\varphi WB}$	$arphi^\dagger au^I arphi W^I_{\mu u} B^{\mu u}$	Q_{dW}	$(\bar{q}_p \sigma^{\mu u} d_r) \tau^I \varphi W^I_{\mu u}$	$Q_{\varphi d}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{d}_{p}\gamma^{\mu}d_{r})$
$Q_{\varphi \widetilde{W}B}$	$arphi^\dagger au^I arphi \widetilde{W}^I_{\mu u} B^{\mu u}$	Q_{dB}	$(\bar{q}_p \sigma^{\mu u} d_r) \varphi B_{\mu u}$	$Q_{\varphi ud}$	$i(\widetilde{\varphi}^{\dagger}D_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}d_{r})$

Ilaria Brivio (ITP, Heidelberg)

VBS & SMEFT

The Warsaw basis

Grzadkowski, Iskrzynski, Misiak, Rosiek 1008.4884

	$(\bar{L}L)(\bar{L}L)$		$(ar{R}R)(ar{R}R)$		$(\bar{L}L)(\bar{R}R)$		
Q_{ll}	$(ar{l}_p \gamma_\mu l_r) (ar{l}_s \gamma^\mu l_t)$	Q_{ee}	$(ar{e}_p \gamma_\mu e_r) (ar{e}_s \gamma^\mu e_t)$	Q_{le}	$(ar{l}_p \gamma_\mu l_r) (ar{e}_s \gamma^\mu e_t)$		
$Q_{qq}^{(1)}$	$(ar{q}_p \gamma_\mu q_r) (ar{q}_s \gamma^\mu q_t)$	Q_{uu}	$(ar{u}_p \gamma_\mu u_r)(ar{u}_s \gamma^\mu u_t)$	Q_{lu}	$(ar{l}_p \gamma_\mu l_r) (ar{u}_s \gamma^\mu u_t)$		
$Q_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu \tau^I q_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{dd}	$(ar{d}_p \gamma_\mu d_r) (ar{d}_s \gamma^\mu d_t)$	Q_{ld}	$(ar{l}_p \gamma_\mu l_r) (ar{d}_s \gamma^\mu d_t)$		
$Q_{lq}^{(1)}$	$(ar{l}_p \gamma_\mu l_r) (ar{q}_s \gamma^\mu q_t)$	Q_{eu}	$(\bar{e}_p \gamma_\mu e_r) (\bar{u}_s \gamma^\mu u_t)$	Q_{qe}	$(ar{q}_p \gamma_\mu q_r) (ar{e}_s \gamma^\mu e_t)$		
$Q_{lq}^{(3)}$	$(\bar{l}_p\gamma_\mu\tau^I l_r)(\bar{q}_s\gamma^\mu\tau^I q_t)$	Q_{ed}	$(ar{e}_p \gamma_\mu e_r) (ar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(1)}$	$(ar{q}_p \gamma_\mu q_r) (ar{u}_s \gamma^\mu u_t)$		
		$Q_{ud}^{(1)}$	$(ar{u}_p \gamma_\mu u_r) (ar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{u}_s \gamma^\mu T^A u_t)$		
		$Q_{ud}^{(8)}$	$(\bar{u}_p \gamma_\mu T^A u_r) (\bar{d}_s \gamma^\mu T^A d_t)$	$Q_{qd}^{(1)}$	$(ar{q}_p \gamma_\mu q_r) (ar{d}_s \gamma^\mu d_t)$		
				$Q_{qd}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{d}_s \gamma^\mu T^A d_t)$		
$(\bar{L}R)$	$(\bar{R}L)$ and $(\bar{L}R)(\bar{L}R)$		<i>B</i> -violating				
Q_{ledq}	$(ar{l}_p^j e_r) (ar{d}_s q_t^j)$	Q_{duq}	$\varepsilon^{lphaeta\gamma}\varepsilon_{jk}\left[(d_p^{lpha}) ight.$	$^{T}Cu_{r}^{\beta}$	$\left[(q_s^{\gamma j})^T C l_t^k\right]$		
$Q_{quqd}^{(1)}$	$(ar{q}_p^j u_r) arepsilon_{jk} (ar{q}_s^k d_t)$	Q_{qqu}	$\varepsilon^{lphaeta\gamma}\varepsilon_{jk}\left[(q_p^{lpha j}) ight]$	$^{T}Cq_{r}^{\beta k}$	$\left[(u_s^{\gamma})^T C e_t \right]$		
$Q_{quqd}^{(8)}$	$(\bar{q}_p^j T^A u_r) \varepsilon_{jk} (\bar{q}_s^k T^A d_t)$	Q_{qqq}	$arepsilon^{lphaeta\gamma}arepsilon_{jk}arepsilon_{mn}\left[(q_p^{lpha j})^TCq_r^{eta k} ight]\left[(q_s^{\gamma m})^TCl_t^n ight]$				
$Q_{lequ}^{(1)}$	$(ar{l}_p^j e_r) arepsilon_{jk} (ar{q}_s^k u_t)$	Q_{duu}	$arepsilon^{lphaeta\gamma}\left[(d_p^lpha)^TCu_r^eta ight]\left[(u_s^\gamma)^TCe_t ight]$				
$Q_{lequ}^{(3)}$	$(\bar{l}_{p}^{j}\sigma_{\mu u}e_{r})arepsilon_{jk}(\bar{q}_{s}^{k}\sigma^{\mu u}u_{t})$						

Ilaria Brivio (ITP, Heidelberg)

VBS & SMEFT

- the basis choice is **not unique** but the *physics* is basis-independent.
- customary choice with large consensus: Warsaw basis
- physical interpretation always requires to define a complete basis
 → defining only subsets can be tricky!

- the basis choice is **not unique** but the *physics* is basis-independent.
- customary choice with large consensus: Warsaw basis
- physical interpretation always requires to define a complete basis
 → defining only subsets can be tricky!
 - $\ensuremath{^*}$ classification in sectors and relation to anomalous couplings is basis-dependent

 $W^{a}_{\mu\nu}D^{\mu}H^{\dagger}\sigma^{a}D^{\nu}H \xrightarrow{EOM} Q_{HW}, \ Q_{HWB}, \ Q^{(3)}_{Hq}, \ Q^{(3)}_{HI} + \text{Higgs ops.}$

- the basis choice is not unique but the physics is basis-independent.
- customary choice with large consensus: Warsaw basis
- physical interpretation always requires to define a complete basis
 → defining only subsets can be tricky!
 - $\ensuremath{^*}$ classification in sectors and relation to anomalous couplings is basis-dependent

$$D_{\mu}G^{a\mu\nu}D^{\rho}G^{a}_{\rho\nu} \xrightarrow{EOM} (\bar{q}T^{a}q + \bar{u}T^{a}u + \bar{d}T^{a}d)^{2}$$

- the basis choice is **not unique** but the *physics* is basis-independent.
- customary choice with large consensus: Warsaw basis
- physical interpretation always requires to define a complete basis
 → defining only subsets can be tricky!
 - $\ensuremath{^*}$ classification in sectors and relation to anomalous couplings is basis-dependent
 - * the physical meaning of an operator (\rightarrow value of C_i) generally depends on how <u>the rest</u> of the basis is chosen

- the basis choice is **not unique** but the *physics* is basis-independent.
- customary choice with large consensus: Warsaw basis
- physical interpretation always requires to define a complete basis
 → defining only subsets can be tricky!
 - $\ensuremath{^*}$ classification in sectors and relation to anomalous couplings is basis-dependent
 - * the physical meaning of an operator (\rightarrow value of C_i) generally depends on how <u>the rest</u> of the basis is chosen

- the basis choice is **not unique** but the *physics* is basis-independent.
- customary choice with large consensus: Warsaw basis
- physical interpretation always requires to define a complete basis
 → defining only subsets can be tricky!
 - $\ensuremath{^*}$ classification in sectors and relation to anomalous couplings is basis-dependent
 - * the physical meaning of an operator (\rightarrow value of C_i) generally depends on how <u>the rest</u> of the basis is chosen
- a complete basis also gives a universal, systematic parameterization of BSM effects

- the basis choice is **not unique** but the *physics* is basis-independent.
- customary choice with large consensus: Warsaw basis
- physical interpretation always requires to define a complete basis
 → defining only subsets can be tricky!
 - $\ensuremath{^*}$ classification in sectors and relation to anomalous couplings is basis-dependent
 - * the physical meaning of an operator (\rightarrow value of C_i) generally depends on how <u>the rest</u> of the basis is chosen
- a complete basis also gives a universal, systematic parameterization of BSM effects

a **global analysis** is strongly motivated and ultimately needed!

Here the SMEFT analysis will focus only on the leading SMEFT contributions:

tree level dimension 6 SM-SMEFT interference

Here the SMEFT analysis will focus only on the leading SMEFT contributions:

tree level dimension 6 SM-SMEFT interference

for a generic observable:

$$O_{SM}^{n-\text{loops}}\left[1+\frac{\Delta O_{SMEFT}^{\text{tree}}}{O_{SM}^{\text{tree}}}\right]$$

VBS is an EW process \rightarrow loop corrections are subleading.

Here the SMEFT analysis will focus only on the leading SMEFT contributions:

tree level dimension 6 SM-SMEFT interference

for a generic observable:

$$O_{SM}^{n-\text{loops}}\left[1+\frac{\Delta O_{SMEFT}^{\text{tree}}}{O_{SM}^{\text{tree}}}\right]$$

VBS is an EW process \rightarrow loop corrections are subleading.

EFT expansion:

$$\Delta O_{SMEFT} = \frac{C_i^{(6)}}{\Lambda^2} a_i + \frac{C_i^{(6)} C_j^{(6)}}{\Lambda^4} b_{ij} + \frac{C_i^{(8)}}{\Lambda^4} c_i + \mathcal{O}(\Lambda^{-6})$$

Here the SMEFT analysis will focus only on the leading SMEFT contributions:

tree level dimension 6 SM-SMEFT interference

for a generic observable:

 $O_{SM}^{n-\text{loops}}\left[1+\frac{\Delta O_{SMEFT}^{\text{tree}}}{O_{SM}^{\text{tree}}}\right]$

VBS is an EW process \rightarrow loop corrections are subleading.

EFT expansion: $\Delta O_{SMEFT} = \frac{C_i^{(6)}}{\Lambda^2} a_i + \frac{C_i^{(6)} C_j^{(6)}}{\Lambda^4} b_{ij} + \frac{C_i^{(8)}}{\Lambda^4} c_i + \mathcal{O}(\Lambda^{-6})$ leading terms • linear d6 corrections to inferred Lag. parameters • vertex corrections: $\mathcal{A}_{SM} \times \mathcal{A}^{(6)}(1 \text{ ins.})$

Here the SMEFT analysis will focus only on the leading SMEFT contributions:

tree level dimension 6 SM-SMEFT interference

for a generic observable:

 $O_{SM}^{n-\text{loops}}\left[1+\frac{\Delta O_{SMEFT}^{\text{tree}}}{O_{SM}^{\text{tree}}}\right]$

VBS is an EW process \rightarrow loop corrections are subleading.

EFT expansion: $\Delta O_{SMEFT} = \frac{C_i^{(6)}}{\Lambda^2} a_i + \frac{C_i^{(6)} C_j^{(6)}}{\Lambda^4} b_{ij} + \frac{C_i^{(8)}}{\Lambda^4} c_i + \mathcal{O}(\Lambda^{-6})$ **leading terms** • linear d6 corrections to inferred Lag. parameters • vertex corrections: $\mathcal{A}_{SM} \times \mathcal{A}^{(6)}(1 \text{ ins.})$ $\mathcal{A}_{SM} \times \mathcal{A}^{(6)}(2 \text{ ins.})$

 $\mathcal{A}_{SM} \times \mathcal{A}^{(8)}(1 \text{ ins.})$

Here the SMEFT analysis will focus only on the leading SMEFT contributions:

tree level dimension 6 SM-SMEFT interference

Distinguishing flavors is not fundamental in VBS

 \rightarrow ok to use a simplifying $U(3)^5$ symmetry assumption

Here the SMEFT analysis will focus only on the leading SMEFT contributions:

tree level dimension 6 SM-SMEFT interference

Distinguishing flavors is not fundamental in VBS

 \rightarrow ok to use a simplifying $U(3)^5$ symmetry assumption

Light fermion masses are negligible @LHC

 \rightarrow interference terms $\propto m_f, f \neq t, b$ (e.g. from dipoles) can be neglected

Here the SMEFT analysis will focus only on the leading SMEFT contributions:

tree level dimension 6 SM-SMEFT interference

Distinguishing flavors is not fundamental in VBS

 \rightarrow ok to use a simplifying $U(3)^5$ symmetry assumption

Light fermion masses are negligible @LHC

 \rightarrow interference terms $\propto m_f, f \neq t, b$ (e.g. from dipoles) can be neglected

First approximation: limited sensitivity to CP

 \rightarrow CP odd effects can be neglected

Here the SMEFT analysis will focus only on the leading SMEFT contributions:

tree level dimension 6 SM-SMEFT interference

Distinguishing flavors is not fundamental in VBS

 \rightarrow ok to use a simplifying $U(3)^5$ symmetry assumption

Light fermion masses are negligible @LHC

 \rightarrow interference terms $\propto m_f, f \neq t, b$ (e.g. from dipoles) can be neglected

First approximation: limited sensitivity to CP

 \rightarrow CP odd effects can be neglected

4-fermion operators: relevant only with 4 left-handed quarks

 \rightarrow others can be neglected

Minimal set of operators relevant for VBS

With the above assumptions, in the Warsaw basis:

$$--\sqrt{=}$$
 Vff $(\Gamma_{W,Z})$ $--\sqrt{=}$ TGC/QGC $--\sqrt{=}$ hVV (Γ_h) $--\infty = m_W$ $= (\bar{f}f)(\bar{f}f)$

18 parameters

 \rightsquigarrow see talk by <code>Raquel+Kristin</code>

ZZ case: Gomez-Ambrosio 1809.04189

VBS alone can constrain only **combinations** of coefficients (still meaningful!) Combination with other measurements is needed to break further degeneracies.

$$\sim\sim\sim = V \operatorname{ff}(\Gamma_{W,Z}) \qquad \sim\sim = \operatorname{TGC}/\operatorname{QGC} \qquad \sim\sim = \operatorname{hVV}(\Gamma_h) \qquad \sim = m_W \qquad = (\overline{f}f)(\overline{f}f)$$

VBS alone can constrain only **combinations** of coefficients (still meaningful!) Combination with other measurements is needed to break further degeneracies.

$$\sim\sim \leq V \text{ ff } (\Gamma_{W,Z}) \qquad \sim\sim \leq T \text{ GC}/\text{QGC} \qquad \sim\sim \leq n \text{ hVV } (\Gamma_h) \qquad \sim \bullet \sim = m_W \qquad \swarrow = (\bar{f}f)(\bar{f}f)$$

step 0:
$$\kappa$$
 parametrization
(2 param.) $\leftrightarrow \begin{cases} \kappa_Z = 1 + \left(C_{H_{\Box}} - C_{H_{I}}^{(3)} + \frac{\sigma_I}{2}\right) + \frac{\sigma_{H_{I}}}{4} \\ \kappa_W = 1 + \left(C_{H_{\Box}} - C_{H_{I}}^{(3)} + \frac{C_{I}}{2}\right) - \frac{C_{H_{D}}}{4} \\ C_{HW}, C_{HB}, C_{HWB} \rightarrow 0 \end{cases}$

next steps: – reintroduce C_{HW} , C_{HB} , $C_{HWB} \rightarrow kin$. dependence – include effects in Vff vertices

VBS alone can constrain only **combinations** of coefficients (still meaningful!) Combination with other measurements is needed to break further degeneracies.

$$\sim\sim\sim = V \text{ff} (\Gamma_{W,Z}) \qquad \sim\sim = T \text{GC}/\text{QGC} \qquad \sim\sim = h \text{VV} (\Gamma_h) \qquad \sim = m_W \qquad \swarrow = (\bar{f}f)(\bar{f}f)$$

TGC and QGC are completely correlated at dimension 6 \Rightarrow interesting interplay

including corrections of other classes (Vff, hVV, 4f) makes the comparison less obvious

VBS alone can constrain only **combinations** of coefficients (still meaningful!) Combination with other measurements is needed to break further degeneracies.

$$\cdots = \mathsf{Vff}(\Gamma_{W,Z}) \qquad \cdots = \mathsf{TGC}/\mathsf{QGC} \qquad \cdots = \mathsf{m}_W \qquad \checkmark = (\bar{f}f)(\bar{f}f)$$

clean handle on Vff and m_W operators.

can be also compared to LEP data

VBS alone can constrain only **combinations** of coefficients (still meaningful!) Combination with other measurements is needed to break further degeneracies.

$$\sim\sim \checkmark = V \text{ff} (\Gamma_{W,Z}) \qquad \sim\sim \sim \sim \sim \sim = T \text{GC}/\text{QGC} \qquad \sim\sim \sim \sim \sim \sim = h \text{VV} (\Gamma_h) \qquad \sim \bullet \sim = m_W \qquad \swarrow = (\bar{f}f)(\bar{f}f)$$

pure quark currents in Vff and 4-fermion

QCD loops in the SMEFT can be relevant
large # operators contributing vs. poor flavor/charge sensitivity
can have EFT validity issues and/or very large th. unc. at high E

▶ The **SMEFT** is a well-defined, general framework for BSM effects

- The SMEFT is a well-defined, general framework for BSM effects
- It is worth using its full power with a truly global analysis •
 - most general <u>BSM characterization</u> (assuming SM sym + fields)
 - universal parameterization for data interpretation

- ► The **SMEFT** is a well-defined, general framework for BSM effects
- It is worth using its full power with a truly global analysis
 - most general <u>BSM characterization</u> (assuming SM sym + fields)
 - universal parameterization for data interpretation
- VBS receives leading SMEFT corrections at dimension 6
 - \blacktriangleright qualitatively ~ 18 operators in the most minimal case.

The exact number can vary depending on selected channel / distributions

 \rightsquigarrow see talk by <code>Raquel+Kristin</code>

 VBS alone can only constrain <u>linear combinations</u> of coefficients. Combining with other channels in required to break degeneracies: e.g. Higgs, diboson, Drell-Yan, dijet...

- ► The **SMEFT** is a well-defined, general framework for BSM effects
- It is worth using its full power with a truly global analysis
 - most general <u>BSM characterization</u> (assuming SM sym + fields)
 - universal parameterization for data interpretation
- VBS receives leading SMEFT corrections at dimension 6
 - \blacktriangleright qualitatively ~ 18 operators in the most minimal case.

The exact number can vary depending on selected channel / distributions

 \rightsquigarrow see talk by <code>Raquel+Kristin</code>

- VBS alone can only constrain <u>linear combinations</u> of coefficients. Combining with other channels in required to break degeneracies: e.g. Higgs, diboson, Drell-Yan, dijet...
- Iots to do! Sequential steps to include more and more terms

VBS & SMEFT

Backup slides

Field redefinitions

Gauge bosons

$$\begin{split} \mathcal{L}_{\rm SMEFT} &\supset -\frac{1}{4} B_{\mu\nu} B^{\mu\nu} - \frac{1}{4} W^{I}_{\mu\nu} W^{I\mu\nu} - \frac{1}{4} G^{a}_{\mu\nu} G^{a\mu\nu} + \\ &+ C_{HB} (H^{\dagger} H) B_{\mu\nu} B^{\mu\nu} + C_{HW} (H^{\dagger} H) W^{I}_{\mu\nu} W^{I\mu\nu} + C_{HWB} (H^{\dagger} \sigma^{I} H) W^{I}_{\mu\nu} B^{\mu\nu} \\ &+ C_{HG} (H^{\dagger} H) G^{a}_{\mu\nu} G^{a\mu\nu} \end{split}$$

to have canonically normalized kinetic terms we need to

1. redefine fields and couplings keeping (gV_{μ}) unchanged:

$$\begin{split} \mathcal{B}_{\mu} &\rightarrow \mathcal{B}_{\mu}(1+\mathcal{C}_{HB}v^2) & g_1 \rightarrow g_1(1-\mathcal{C}_{HB}v^2) \\ \mathcal{W}_{\mu}^{I} &\rightarrow \mathcal{W}_{\mu}^{I}(1+\mathcal{C}_{HW}v^2) & g_2 \rightarrow g_2(1-\mathcal{C}_{HW}v^2) \\ \mathcal{G}_{\mu}^{a} \rightarrow \mathcal{G}_{\mu}^{a}(1+\mathcal{C}_{HG}v^2) & g_s \rightarrow g_s(1-\mathcal{C}_{HG}v^2) \end{split}$$

2. correct the rotation to mass eigenstates:

$$\begin{pmatrix} \mathcal{W}_{\mu}^{3} \\ \mathcal{B}_{\mu} \end{pmatrix} = \begin{pmatrix} 1 & -v^{2}C_{HWB}/2 \\ -v^{2}C_{HWB}/2 & 1 \end{pmatrix} \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} Z_{\mu} \\ A_{\mu} \end{pmatrix}$$

(equivalent to a shift of the Weinberg angle)

Grinstein, Wise Phys.Lett.B265(1991)326 Alonso, Jenkins, Manohar, Trott 1312.2014

Higgs

$$\mathcal{L}_{\text{SMEFT}} \supset \frac{1}{2} D_{\mu} H^{\dagger} D^{\mu} H + C_{H_{\square}} (H^{\dagger} H) (H^{\dagger} \square H) + C_{HD} (H^{\dagger} D_{\mu} H)^{*} (H^{\dagger} D^{\mu} H)$$

to have a canonically normalized kinetic term, in unitary gauge, we need to replace

$$h \rightarrow h \left(1 + v^2 C_{H_{\Box}} - rac{v^2}{4} C_{HD}
ight)$$

Grinstein, Wise Phys.Lett.B265(1991)326 Alonso, Jenkins, Manohar, Trott 1312.2014

SM case.

Parameters in the canonically normalized Lagrangian : $ar{v}, ar{g}_1, ar{g}_2, s_{ar{ heta}}$

The values can be inferred from the measurements e.g. of $\{\alpha_{em}, m_Z, G_f\}$:

in the SM at tree-level $\bar{\kappa}=\hat{\kappa}$

SMEFT case.

Parameters in the canonically normalized Lagrangian : $ar{v}, ar{g}_1, ar{g}_2, s_{ar{ heta}}$

The values can be inferred from the measurements e.g. of $\{\alpha_{em}, m_Z, G_f\}$:

$$\begin{aligned} \hat{v}^2 &= \frac{1}{\sqrt{2}G_f} \\ \alpha_{\rm em} &= \frac{\bar{g}_1 \bar{g}_2}{\bar{g}_1^2 + \bar{g}_2^2} \begin{bmatrix} 1 + \bar{v}^2 C_{HWB} \frac{\bar{g}_2^3 / \bar{g}_1}{\bar{g}_1^2 + \bar{g}_2^2} \end{bmatrix} & \sin \hat{\theta}^2 &= \frac{1}{2} \left(1 - \sqrt{1 - \frac{4\pi \alpha_{\rm em}}{\sqrt{2}G_f m_Z^2}} \right) \\ m_Z &= \frac{\bar{g}_2 \bar{v}}{2c_{\bar{\theta}}} + \delta m_Z(C_i) & \rightarrow \\ G_f &= \frac{1}{\sqrt{2}\bar{v}^2} + \delta G_f(C_i) & \hat{g}_1 &= \frac{\sqrt{4\pi \alpha_{\rm em}}}{\cos \hat{\theta}} \\ \hat{g}_2 &= \frac{\sqrt{4\pi \alpha_{\rm em}}}{\sin \hat{\theta}} \end{aligned}$$

in the SM at tree-level $\bar{\kappa} = \hat{\kappa}$ in the SMEFT $\bar{\kappa} = \hat{\kappa} + \delta \kappa(C_i)$

To have numerical predictions it is necessary to replace $\bar{\kappa} \rightarrow \hat{\kappa} + \delta \kappa(C_i)$ for all the parameters in the Lagrangian.

 $\{\alpha_{\rm em}, m_Z, G_f\}$ scheme

$$\begin{split} \delta m_Z^2 &= m_Z^2 \hat{v}^2 \left(\frac{c_{HD}}{2} + 2c_{\hat{\theta}} s_{\hat{\theta}} c_{HWB} \right) \\ \delta G_f &= \frac{\hat{v}^2}{\sqrt{2}} \left((c_{HI}^{(3)})_{11} + (c_{HI}^{(3)})_{22} - (c_{II})_{1221} \right) \\ \delta g_1 &= \frac{s_{\hat{\theta}}^2}{2(1 - 2s_{\hat{\theta}}^2)} \left(\sqrt{2} \delta G_f + \delta m_Z^2 / m_Z^2 + 2 \frac{c_{\hat{\theta}}^3}{s_{\hat{\theta}}} c_{HWB} \hat{v}^2 \right) \\ \delta g_2 &= -\frac{c_{\hat{\theta}}^2}{2(1 - 2s_{\hat{\theta}}^2)} \left(\sqrt{2} \delta G_f + \delta m_Z^2 / m_Z^2 + 2 \frac{s_{\hat{\theta}}^3}{c_{\hat{\theta}}} c_{HWB} \hat{v}^2 \right) \\ \delta s_{\theta}^2 &= 2c_{\hat{\theta}}^2 s_{\hat{\theta}}^2 (\delta g_1 - \delta g_2) + c_{\hat{\theta}} s_{\hat{\theta}} (1 - 2s_{\hat{\theta}}^2) c_{HWB} \hat{v}^2 \\ \delta m_h^2 &= m_h^2 \hat{v}^2 \left(2c_{H_{\alpha}} - \frac{c_{HD}}{2} - \frac{3c_H}{2lam} \right) \end{split}$$

To have numerical predictions it is necessary to replace $\bar{\kappa} \rightarrow \hat{\kappa} + \delta \kappa(C_i)$ for all the parameters in the Lagrangian.

 $\{m_W, m_Z, G_f\}$ scheme

$$\begin{split} \delta m_Z^2 &= m_Z^2 \hat{v}^2 \left(\frac{c_{HD}}{2} + 2c_{\hat{\theta}} s_{\hat{\theta}} c_{HWB} \right) \\ \delta G_f &= \frac{\hat{v}^2}{\sqrt{2}} \left((c_{Hl}^{(3)})_{11} + (c_{Hl}^{(3)})_{22} - (c_{ll})_{1221} \right) \\ \delta g_1 &= -\frac{1}{2} \left(\sqrt{2} \delta G_f + \frac{1}{s_{\hat{\theta}}^2} \frac{\delta m_Z^2}{m_Z^2} \right) \\ \delta g_2 &= -\frac{1}{\sqrt{2}} \delta G_f \\ \delta s_{\theta}^2 &= 2c_{\hat{\theta}}^2 s_{\hat{\theta}}^2 (\delta g_1 - \delta g_2) + c_{\hat{\theta}} s_{\hat{\theta}} (1 - 2s_{\hat{\theta}}^2) c_{HWB} \hat{v}^2 \\ \delta m_h^2 &= m_h^2 \hat{v}^2 \left(2c_{H_{\Box}} - \frac{c_{HD}}{2} - \frac{3c_H}{2lam} \right) \end{split}$$

The SMEFTsim package

an UFO & FeynRules model with*:

Brivio, Jiang, Trott 1709.06492 feynrules.irmp.ucl.ac.be/wiki/SMEFT

✓ backup

- the complete B-conserving Warsaw basis for 3 generations, including all complex phases and CP terms
- 2. automatic field redefinitions to have canonical kinetic terms

3. automatic parameter shifts due to the choice of an input parameters set

Main scope:

estimate tree-level $|A_{SM}A^*_{d=6}|$ interference terms \rightarrow theo. accuracy $\gtrsim 1\%$

* at the moment only LO, unitary gauge implementation

The SMEFTsim package

irmn ucl ac bo /wiki /SMEET
ITTID.UCI.dC.DE/WIKI/SIVIEFT

Pre-exported UFO files (include restriction cards)

Standard Model Effective Field Theory -- The SMEFTsim package

Authors

wk: SMEFT

Ilaria Brivio, Yun Jiang and Michael Trott

ilaria.brivio@nbi.ku.dk, yunjiang@nbi.ku.dk, michael.trott@cern.ch

NBIA and Discovery Center, Niels Bohr Institute, University of Copenhagen

	Set A		Set B	
	a scheme	m _W scheme	α scheme	m _W scheme
Flavor general SMEFT	SMEFTsim_A_general_alphaScheme_UFO.tar.gz	↓SMEFTsim_A_general_MwScheme_UFO.tar.gz	↓SMEFT_alpha_UFO.zip ↓.	SMEFT_mW_UF0.zip 🕁
MFV SMEFT	SMEFTsim_A_MFV_alphaScheme_UFO.tar.gz	SMEFTsim_A_MFV_MwScheme_UFO.tar.gz 🕁	SMEFT_alpha_MFV_UFO.zip	SMEFT_mW_MFV_UFO.zip
U(3) ⁵ SMEFT	SMEFTsim_A_U35_alphaScheme_UFO.tar.gz 🕁	SMEFTsim_A_U35_MwScheme_UFO.tar.gz 🛃	SMEFT_alpha_FLU_UFO.zip	SMEFT_mW_FLU_UFO.zip 🕁

We implemented **6** different frameworks: 3 flavor structures $\begin{cases}
general \\
U(3)^5 \text{ symmetric} \\
linear MFV
\end{cases} \times 2 \begin{array}{c}
input \\
schemes
\end{cases} \begin{pmatrix}
\hat{\alpha}_{em}, \hat{m}_Z, \hat{G}_f \\
\hat{m}_W, \hat{m}_Z, \hat{G}_f
\end{cases}$

We implemented 6 different frameworks: 3 flavor structures $\begin{cases}
general \\
U(3)^5 \text{ symmetric} \\
linear MFV
\end{cases} \times 2 \begin{array}{c}
input \\
schemes \\
 & \hat{m}_W, \hat{m}_Z, \hat{G}_f \\
& \hat{m}_W, \hat{m}_Z, \hat{G}_f
\end{cases}$

completely general flavor indices:

2499 parameters including all complex phases

We implemented **6** different frameworks:

3 flavor
structures
$$\begin{cases} \text{general} \\ U(3)^{5} \text{ symmetric} \\ \text{linear MFV} \end{cases} \times 2 \begin{array}{c} \text{input} \\ \text{schemes} \end{cases} \begin{cases} \hat{\alpha}_{em}, \hat{m}_{Z}, \hat{G}_{f} \\ \hat{m}_{W}, \hat{m}_{Z}, \hat{G}_{f} \end{cases}$$

assume an exact flavor symmetry

$$U(3)^5 = U(3)_q \times U(3)_u \times U(3)_d \times U(3)_I \times U(3)_e$$

under which: $\psi \mapsto U_{\psi}\psi$ for $\psi = \{u, d, q, l, e\}$

• The Yukawas are the only **spurions** breaking the symmetry:

$$Y_u \mapsto U_u Y_u U_q^{\dagger} \qquad Y_d \mapsto U_d Y_d U_q^{\dagger} \qquad Y_l \mapsto U_e Y_l U_l^{\dagger}.$$

• flavor indices contractions are fixed by the symmetry \rightarrow less parameters

Examples:

$$\begin{aligned} \mathcal{Q}_{Hu} &= (H^{\dagger}i \stackrel{\leftrightarrow}{D_{\mu}} H)(\bar{u}_{r}\gamma^{\mu}u_{s}) \, \delta_{\text{rs}} \\ \mathcal{Q}_{eB} &= B_{\mu\nu}(\bar{l}_{r}H\sigma^{\mu\nu}e_{s}) \, (\mathbf{Y}_{1})_{\text{rs}} \end{aligned}$$

We implemented **6** different frameworks:

$$3 \text{ flavor}_{\text{structures}} \left\{ \begin{array}{l} \text{general} \\ U(3)^5 \text{ symmetric} \\ \text{linear MFV} \end{array} \times 2 \begin{array}{l} \text{input}_{\text{schemes}} \left\{ \begin{array}{l} \hat{\alpha}_{\text{em}}, \hat{m}_Z, \hat{G}_f \\ \hat{m}_W, \hat{m}_Z, \hat{G}_f \end{array} \right. \right.$$

assume $U(3)^5$ symmetry + CKM only source of \mathcal{LP}

- \blacktriangleright all Wilson coefficients $\in \mathbb{R}$
- \blacktriangleright CP odd bosonic operators are absent ($\propto J_{CP} \simeq 10^{-5})$
- includes the first order in flavor violation expansion. E.g.:

$$\begin{aligned} \mathcal{Q}_{Hu} &= (H^{\dagger}i \stackrel{\leftrightarrow}{D_{\mu}} H)(\bar{u}_{r}\gamma^{\mu}u_{s}) \left[\mathbb{1} + (\mathbf{Y}_{u}\mathbf{Y}_{u}^{\dagger})\right]_{rs} \\ \mathcal{Q}_{Hg}^{(1)} &= (H^{\dagger}i \stackrel{\leftrightarrow}{D_{\mu}} H)(\bar{q}_{r}\gamma^{\mu}q_{s}) \left[\mathbb{1} + (\mathbf{Y}_{u}^{\dagger}\mathbf{Y}_{u}) + (\mathbf{Y}_{d}^{\dagger}\mathbf{Y}_{d})\right]_{rs} \\ &\hookrightarrow \bar{u}_{L}\gamma^{\mu} \left[\mathbb{1} + Y_{u}^{\dagger}Y_{u} + V_{\mathrm{CKM}}Y_{d}^{\dagger}Y_{d}V_{\mathrm{CKM}}^{\dagger}\right] u_{L} \\ &+ \bar{d}_{L}\gamma^{\mu} \left[\mathbb{1} + V_{\mathrm{CKM}}^{\dagger}Y_{u}^{\dagger}Y_{u}V_{\mathrm{CKM}} + Y_{d}^{\dagger}Y_{d}\right] d_{L} \end{aligned}$$

VBS & SMEFT

1. Internal validation: 2 independent versions (A, B)

`		· ·	-					
proc	ess	coefficient	general α	general Mw	U(3)^5 α	U(3)^5 Mw	MFV α	MFV Mw
e+ e- >	W+ W-	SMlimit	2.6156 0.059793	2.6788 0.061373	2.6156 0.059793	2.6788 0.061373	2.6156 0.059793	2.6788 0.061373
e+ e- > w	+ w- NP=1	Hl3	-	-	4.3384 0.10296	4.4249 0.094337	4.3384 0.10296	4.4249 0.094337
e+ e- > w	+ w- NP=1	Hl311	4.6686 0.098776	4.7797 0.10282	-	-	-	-
e+ e- > w	+ w- NP=1	W	4.9648 0.10804	5.06 0.11063	4.9648 0.10804	5.06 0.11063	4.9648 0.10804	5.06 0.11063
e+ e- > w	+ w- NP=1	Wtil	4.9895 0.10855	5.0848 0.1111	4.9895 0.10855	5.0848 0.1111	-	-
e+ e-	> z h	SMlimit	0.013009 0.000032914	0.01302 0.000033124	0.013009 0.000032914	0.01302 0.000033124	0.013009 0.000032914	0.01302 0.000033124
e+ e- > 2	z h NP=1	eW	-	-	0.013009 0.000032914	0.01302 0.000033124	0.013009 0.000032914	0.01302 0.000033124
e+ e- > 2	z h NP=1	eW11	1.9983 0.0050475	0.01302 0.000033124	-	-	-	-
e+ e- > 2	z h NP=1	He	-	-	1.1756 0.0031	1.1838 0.0031194	1.1756 0.0031	1.1838 0.0031194
e+ e- > 2	z h NP=1	Hell	1.1756 0.0031	1.1838 0.0031194	-	-	-	-
e+ e- > 2	z h NP=1	HWB	0.040274 0.00009404	0.036476 0.000084148	0.040274 0.00009404	0.036476 0.000084148	0.040274 0.00009404	0.036476 0.000084148
p p >	d s~	SMlimit	688390. 11858.	688390. 11858.	688390. 11858.	688390. 11858.	688390. 11858.	688390. 11858.
p p > d	s~ NP=1	Delta2qd1	-	-	-	-	690240. 9319.7	690240. 9319.7
p p > d	s~ NP=1	DeltadHq3	-	-	-	-	703760. 9607.7	703760. 9607.7
p p > d	s∼ NP=1	DeltadW	-	-	-	-	690240. 9319.7	690240. 9319.7
p p > d	s~ NP=1	dW	-	-	690240. 9319.7	690240. 9319.7	-	-
p p > d	s~ NP=1	dW12	692740. 9950.4	690240. 9319.7	-	-	-	-
p p > d	s~ NP=1	Hq312	706050. 9205.5	706050. 9205.5	xsec [pb]	MG5 r	esults with	n set A
					err			

σ (SM+int+quadratic) for $C_i = 1$, $\Lambda = 1$ TeV

1. Internal validation: 2 independent versions 3 flavor assum. × 2 schemes

$\sigma(SM+int+quar)$	dratic) for ($C_i = 1, \Lambda =$	1 TeV		↓ I	\mathbf{A}	\mathbf{N}
process	coefficient	general α	general Mw	U(3)^5 α	U(3)^5 Mw	MFV α	MFV Mw
e+ e- > w+ w-	SMlimit	2.6156 0.059793	2.6788 0.061373	2.6156 0.059793	2.6788 0.061373	2.6156 0.059793	2.6788 0.061373
e+ e- > w+ w- NP=1	Hl3	-	-	4.3384 0.10296	4.4249 0.094337	4.3384 0.10296	4.4249 0.094337
e+~e-~>~w+~w-~NP=1	Hl311	4.6686 0.098776	4.7797 0.10282	-	-	-	-
$e+\ e-\ >\ w+\ w-\ NP=1$	W	4.9648 0.10804	5.06 0.11063	4.9648 0.10804	5.06 0.11063	4.9648 0.10804	5.06 0.11063
$e+\ e-\ >\ w+\ w-\ NP=1$	Wtil	4.9895 0.10855	5.0848 0.1111	4.9895 0.10855	5.0848 0.1111	-	-
$e_{+} e_{-} > z h$	SMlimit	0.013009 0.000032914	0.01302 0.000033124	0.013009 0.000032914	0.01302 0.000033124	0.013009 0.000032914	0.01302 0.000033124
$e+\ e-\ >\ z\ h\ NP=1$	eW	-	-	0.013009 0.000032914	0.01302 0.000033124	0.013009 0.000032914	0.01302 0.000033124
$e+\ e-\ >\ z\ h\ NP=1$	eW11	1.9983 0.0050475	0.01302 0.000033124	-	-	-	-
$e+\ e-\ >\ z\ h\ NP=1$	He	-	-	1.1756 0.0031	1.1838 0.0031194	1.1756 0.0031	1.1838 0.0031194
$e+\ e-\ >\ z\ h\ NP=1$	Hell	1.1756 0.0031	1.1838 0.0031194	-	-	-	-
$e+\ e-\ >\ z\ h\ NP=1$	HWB	0.040274 0.00009404	0.036476 0.000084148	0.040274 0.00009404	0.036476 0.000084148	0.040274 0.00009404	0.036476 0.000084148
$p p > d s \sim$	SMlimit	688390. 11858.	688390. 11858.	688390. 11858.	688390. 11858.	688390. 11858.	688390. 11858.
$p \hspace{0.1cm} p \hspace{0.1cm} > \hspace{0.1cm} d \hspace{0.1cm} s \sim \hspace{0.1cm} NP = \texttt{1}$	Delta2qd1	-	-	-	-	690240. 9319.7	690240. 9319.7
$p \hspace{0.1cm} p \hspace{0.1cm} > \hspace{0.1cm} d \hspace{0.1cm} s \sim \hspace{0.1cm} NP {=} 1$	DeltadHq3	-	-	-	-	703760. 9607.7	703760. 9607.7
$p \hspace{0.1cm} p \hspace{0.1cm} > \hspace{0.1cm} d \hspace{0.1cm} s \sim \hspace{0.1cm} NP {=} 1$	DeltadW	-	-	-	-	690240. 9319.7	690240. 9319.7
$p \hspace{0.1cm} p \hspace{0.1cm} > \hspace{0.1cm} d \hspace{0.1cm} s \sim \hspace{0.1cm} NP {=} 1$	dW	-	-	690240. 9319.7	690240. 9319.7	-	-
E 10 cooff	".12	692740. 9950.4	690240. 9319.7	-	-	-	-
5-10 COEff.	× 312	706050. 9205.5	706050. 9205.5	xsec [pb]	MG5 m	sults with	set A
~ 20 proces	ses			err	10001		50071

Ilaria Brivio (ITP, Heidelberg)

VBS & SMEFT

1. Internal validation: 2 independent versions (A, B)

2. Validation against dim6top

feynrules.irmp.ucl.ac.be/wiki/dim6top – G.Durieux,C.Zhang Top WG note: Aguilar-Saavedra et al. 1802.07237

			$pp \rightarrow t\bar{t}$	$pp \rightarrow t\bar{t}b\bar{b}$	$pp \rightarrow t\bar{t} t\bar{t}$	$\rho p \rightarrow t \bar{t} e^+ \nu$	$\rho p \rightarrow t \bar{t} e^+ e^-$	$\rho \rho \rightarrow t \bar{t} \gamma$	$\rho p \rightarrow t \bar{t} h$	$pp \rightarrow tj$	$pp \rightarrow t e^- p$	$pp \rightarrow tj e^+e^-$	$\rho p \rightarrow t j \gamma$	$pp \rightarrow tj h$
Φ	SM	25	5.2 × 10" pb	1.9 pb	0.0098 pb	0.02 pb	0.016 pb	1.4 pb	0.4 pb	55 pb	2.5 pb	0.0054 pb	0.39 pb	0.016 pb
=	°ĝq	cQQ1	-0.25	-1.9	-1×10^{4}		-1.6	-0.67	-0.71					
· =	- çç q	cQQS	-0.16	-3.2	-34		-0.91	-0.5	-0.27					
1	°ĝ:	cQt1	-0.15	-5.6	1 × 10°		-0.76	-0.19	-0.55					
÷	-q.	cQt8	-0.053	-1.8	-41		-0.18	-0.095	-0.15					
2	°gs	cQb1	-0.0055	0.72	-0.052		-0.015	-0.007	-0.026					
¥	- Qu	cQb8	0.14	3.9	0.12		0.35	0.16	0.56					
0	¢.	cttl			-1.8×10^{4}									
_	- <u>6</u>	ctbl	-0.0095	0.46	-0.059		-0.02	-0.026	-0.039					
~	÷.	ctos	0.15	3.5	0.11		0.20	0.51	0.50					
~	-Grdv	cutuoi												
d)	~gras	cutuos												
<u> </u>	~Q1Q6	cutuoli												
	- 0:00	cutupas												
	694	cQq83	2.7	-0.11	4.7	-85	-20	8.5	15	-3.4×10^{-10}		-0.4 × 10 ⁻¹⁰	-5.2×10^{-10}	-4.1 × 10 ⁻¹⁰
-	CQ4	cQq81	12	7.1	25	2.6×10^{2}	71	40	75					
	cla	ctq8	13	8.2	27	2.6×10^{2}	62	51	74					
	co.	cQu8	7.4	4.4	18		21	41	44					
	4	ctuB	7.4	3	16		14	22	45					
~	ega .	cQd8	5	3	11		17	7.3	29					
<u> </u>	c.,	ctdB	5	2.1	10		12	10	28					
	C04	cQq13	3.3	3	5.8	1.1×10^{2}	22	11	18	-3.8×10^{2}		-7.9×10^{2}	-6.1×10^{2}	-4.6×10^{2}
-	c0.1	cQq11	0.94	-1.4	-7.7	-5.9	-5	3	5.4					
	cl.	ctql	0.65	2.4	-7.9	8.7	0.84	3.7	4.8					
11	and the second sec	cPu1	0.57	1.5	-5.2		1.5	2.9	4.3					
	2	ctul	1.1	-0.29	-3.8		2.3	3.3	6.6					
	en.	cQd1	-0.19	0.55	-4		-0.66	-0.3	-1.4					
(5	ch	ctd1	-0.37	-1.3	-5		-0.91	-1.3	-2.1					
\circ	$c_{e\varphi}$	ctp		-0.00035	-9.1	-0.034	-0.0093		-1.2×10^{2}					-68
	- a	cpQK	-0.063	1	-41	-0.76	-1×10^{2}	-0.13	-0.29			21		
5	-3.5	cpQ3	0.68	22	0.065	0.46	3.7	1.5	1.8	1.2×10^{2}	1.2×10^{2}	2.2×10^{2}	1.2×10^{2}	1.3×10^{2}
.0	Cµ c	cpt	-0.024	2.8	42	-0.36	68	-0.058	-0.16			5.2		
4	Cµ cb	cptb												
\sim	StW.	ctW	0.98	1	-34	13	1.1	60	9.4	84	-76	45	50	9.1×10^{-1}
<u> </u>	C _{NW}	cbW	-0.54	0.020	21	-0.040	-3.0	-33	-4.3			-10	-0	
>	50G	ctG	2.7×10^{2}	2.5×10^{2}	3.8×10^{2}	2.4×10^{2}	3.1×10^{2}	2.4×10^{2}	8.4×10^{2}		59			
-	cl.	ctpI		-7.3×10^{-7}	0.045	-0.00064	-0.00029		0.045					-0.21
0)	Sum	cptbI												
\sim	L.w	ctWI	4.8×10^{-6}	0.032	-1.6	-0.19	0.29	0.91	0.031	1.6×10^{-16}	-1.4	0.47	0.022	-0.13
6	e.7	ctZI	-1.4×10^{-6}	0.1	-1.2	0.0098	3.2	-0.56	-0.057			-0.87	0.67	
~	c _{bw}	cbWI												
\sim	c'rc	ctGI	-0.00098	0.48	0.66	0.031	-0.7	0.019	-2.4		0.4			
	c0/	cQ131				0.011	0.06				4.1	6		
4	co(1)	cQ1H1				-0.0062	-9.8					2.2		
2	c(1)	cDe1					-1.5					-0.39		
	200 _(1)					0.00022	2.6					-0.0%		
\sim	10					-0.0023	-3.0					0.064		
0	Cre	ctel					-6.7					0.004		

- 1. Internal validation: 2 independent versions (A, B)
- 2. Validation against dim6top

feynrules.irmp.ucl.ac.be/wiki/dim6top – G.Durieux,C.Zhang Top WG note: Aguilar-Saavedra et al. 1802.07237

	_		$pp \rightarrow t\bar{t}$	$pp \rightarrow t\bar{t}b\bar{b}$	$pp \rightarrow t\bar{t} t\bar{t}$	$\rho p \rightarrow t \bar{t} e^+ \nu$	$\rho p \rightarrow t \bar{t} e^+ e^-$	$\rho \rho \rightarrow t \bar{t} \gamma$	$pp \rightarrow t\bar{t} h$	$pp \rightarrow tj$	$\rho p \rightarrow t e^- p$	$pp \rightarrow tj e^+e^-$	$\rho p \rightarrow t j \gamma$	$pp \rightarrow tjh$	
<u> </u>	SM	20	5.2×10^{2} pb	1.9 pb	0.0098 pb	0.02 pb	0.016 pb	1.4 pb	0.4 pb	55 pb	2.5 pb	0.0054 pb	0.39 pb	0.016 pb	
=	°gq	cQQ1	-0.25	-1.9	-1×10^{4}		-1.6	-0.67	-0.71						
.=	~qq	cuus	-0.16	-3.2	-34			-0.5	-0.27						
E	~g:	cuti -Dell	-0.15	-5.0	1 × 10		-0.19	-0.19	-0.55					10 +	
-	-0:	- 20-1	0.0055	0.73	0.053		0.015	0.007	0.006					12 LOD	brocesses
0	- 94	-0-5	0.14	2.0	0.13		0.35	-0.007	0.55						P
õ	-94		0.14	2.*	1.9 - 102		0.35		0.30						
<u> </u>	7	cthi	-0.0095	0.46	-0.059		-0.02	-0.02	-0.039						
	2	ctb8	0.13	3.5	0.11		0.26	0.31	0.56						
>	Sarah	cQtQb1													
-	50100	cQtQb8													
.Ψ	C0106	cQtQb1I													
	- CO100	cQtQb8I													
	cQ4	cQq83	2.7	-0.11	4.7	-85	-20	8.5	15	4×10^{-15}		-6.4×10^{-15}	-5.2×10^{-15}	-4.1×10^{-15}	
	en a	cQq81													
	200	ctq8		$n \rightarrow t\bar{t}$		$n \rightarrow t\bar{t}$	566		++++		$\rightarrow t\bar{t} q$	+,,		+++++++++++++++++++++++++++++++++++++++	$nn \rightarrow t\bar{t} \alpha$
	es.	cQuB	PI	$\rightarrow 11$	P	$p \rightarrow u$	00	$pp \rightarrow$		PP		ν	$pp \rightarrow$	LLE E	$pp \rightarrow ll \gamma$
	4	ctuB		. + - - 1	4		+:		+		· +i o-	+		s tion	nn tih
<	°ĝa	cQd8	PP	$\rightarrow ll l$	/	$pp \rightarrow$	IJ	$pp \rightarrow$	Le v	pp ·	- ije	e	PP	$\rightarrow ij'\gamma$	$pp \rightarrow ij n$
`	- SI	ctd8													
•	691	cQq13	3.3	1. C	5.0	A.A. A. AM	**								
	°94	cQq11	0.94	-1.4	-7.7	-5.9	-5	3	5.4						
	c _{he}	ctql	0.65	2.4	-7.9	8.7	0.84	3.7	4.8						
	ςφ.	cQu1	0.57	1.5	-5.2		1.5	2.9	4.3						
	° p	ctul	1.1	-0.29	-3.8		2.3	3.3	0.0						
1.7	°04	cual	-0.19	0.55			-0.00	-0.3	-1.4						
0		cto	-0.31	-0.00035	-9.1	-0.034	-0.0093	-1.3	-1.2×10^{2}					-68	
		cr08	-0.063	1	-41	-0.76	-1×10^{2}	-0.18	-0.29			21			
~	39	cr03	0.68	22	0.065	0.46	3.7	1.5	1.8	1.2 - 102	1.2 - 102	$2.2 - 10^2$	1.2 - 102	1.2 - 102	
.0	-44	cpt	-0.024	2.8	42	-0.36	68	-0.058	-0.16	1.4 × 10	1.4 × 10	5.2	1.2 × 10	1.3 × 10	
4	Cy cb	cptb													
-	CeW/	ctW	0.98	1	-34	13	1.1	69	9.4	84	-76	45	50	9.1×10^{2}	
	C _{TZ}	ctu	-0.54	0.028	21	-0.046	-3.0	-50	-4.5			-10	-0		
>	600	ctG	2.7×10^{2}	2.5×10^{2}	3.8×10^{2}	2.4×10^{2}	3.1×10^{2}	2.4×10^{2}	8.4×10^{2}		59				
5	el.	ctpI		-7.3×10^{-7}	0.045	-0.00064	-0.00029		0.045					-0.21	
0)	- 1°	cptbI													
\sim	L.w	CUNI	4.8×10^{-6}	0.032	-1.6	-0.19	0.29	0.91	0.031	1.6×10^{-16}	-1.4	0.47	0.022	-0.13	
6	e ^r iz	ctZI	-1.4×10^{-6}	0.1	-1.2	0.0098	3.2	-0.56	-0.057			-0.87	0.67		
	chw	cbWI													
\sim	eng.	ctGI	-0.00098	0.48	0.66	0.031	-0.7	0.019	-2.4		0.4				
	eq/	cQ131				0.011	0.06				4.1	6			
1	cq/(1)	cQ1#1				-0.0062	-9.8					2.2			
<u> </u>	c _{Qe} ⁽¹⁾	cQe1					-1.5					-0.39			
	c(1)	ct11				-0.0023	-3.6					-0.036			
ĥ	(1)	ctel					-6.7					0.064			
0															

- 1. Internal validation: 2 independent versions (A, B)
- 2. Validation against dim6top

feynrules.irmp.ucl.ac.be/wiki/dim6top – G.Durieux,C.Zhang Top WG note: Aguilar-Saavedra et al. 1802.07237

1. Internal validation: 2 independent versions (A, B)

2. Validation against dim6top

feynrules.irmp.ucl.ac.be/wiki/dim6top - G.Durieux,C.Zhang

Top WG note: Aguilar-Saavedra et al. 1802.07237

			$pp \rightarrow t\bar{t}$	$pp \rightarrow t\bar{t}b\bar{b}$	$pp \rightarrow t\bar{t} t\bar{t}$	$pp \rightarrow t\bar{t} e^+ \nu$	$pp \rightarrow t\bar{t} e^+e^-$	$pp \rightarrow t\bar{t}\gamma$	$pp \rightarrow t\bar{t}h$	$pp \rightarrow tj$	$pp \rightarrow t e^- D$	$pp \rightarrow tj e^+$	$e^- pp \rightarrow tj$	$\gamma pp \rightarrow tjh$	
e	SM	25	5.2×10^2 pb	1.9 pb	0.0098 pb	0.02 pb	0.016 pb	1.4 pb	0.4 pb	55 pb	2.5 pb	0.0054 pt	ь 0.39 pb	0.016 pb	
	500	cQQ1	-0.25	-1.9	-1×10^{2}		-1.6	-0.67	-0.71						
	-	c008	-0.16	-3.2	-34		-0.91	-0.5	-0.27						
_	1	c0+1	-0.15	-5.6	1×10^{2}		-0.76	-0.19	-0.55					1	
<u> </u>	2	c0+8	-0.053	-1.8	-41		-0.18	-0.095	-0.15					10 + ~ +	n nro coccoc
-	-01	-70-1	0.0055	0.73	0.063		0.015	0.007	0.006					$\perp \perp \perp \iota \iota \iota$	DIOCESSES
0	-gs	c.qu.s	-0.0033	0.74	-0.004		-0.013	-0.007	-0.020						
ž	- Çu	cupe	0.14	3.9	0.12		0.35	0.16	0.50						
<u> </u>	÷ģ	cttl			-1.8×10^{-1}										
_	- go	ctbl	-0.0095	0.46	-0.059		-0.02	-0.026	-0.039						
~	÷#	ctb8	0.13	3.5	0.11		0.26	0.31	0.56						
>	°ĝ:Qb	cQtQb1													CC1 1
-a)	<0,00	cQtQbS												a b 0	controlente
, w	€Q1Q6	cQtQb1I												~ 50 0	Juenneients
-	e91	cQtQbBI													
	60.	cDall3	2.7	-0.11	4.7	-85	-20	8.5	15	-3.4×10^{-15}		-6.4×10^{-1}	-15 -5.2 × 10	$-15 -4.1 \times 10^{-15}$	
-	-73	cDall	12	7.1	25	2.6×10^{2}	71	40	75						
	-94					0.6									
	~ng	ctqs	13	0.2	21	2.6 × 10	62	51	14				L. S. L.	1 C.	and the second
	·	cuus	1.4		10		21	41	**				notn	Interte	rence and
	÷.	ctuB	7.4	3	16		14	22	45				DOLII	muchic	chec una
<	€ĝa	cQd8	5	3	11		17	7.3	29						
-	c _{id}	ctd8	5	2.1	10		12	10	28				~	o duo ti o	+
-	C 04	cQq13	3.3	3	5.8	1.1×10^{4}	22	11	18	-3.8×10^{4}			- CI I	latiratic	Terms
-	c0.1	cQq11	0.94	-1.4	-7.7	-5.9	-5	3	5.4				99		
	cho	ctql	0.65	2.4	-7.9	8.7	0.84	3.7	4.8						
	Ĩ	cDu1	0.57	1.5	-5.2		1.5	2.9	4.3						
	24	ctul	1.1	-0.29	-3.8		2.3	3.3	6.6					1	
		cDd1	-0.19	0.55	-4		-0.66	-0.3	-1.4					•	
1.2	1	ct.d1	-0.97	-1.3	-5		-0.91	-1.3	-2.1				10	00.	
\cup	0.1	ctn.		-0.00035	-9.1	0.034	0.0093		-1.2×10^{2}			_	- 12	$100 \pm n$	Impers
		cn08	-0.063	1	-41	-0.76	-1×10^{2}	-0.13	-0.29						inders
~	39		0.68	-	0.065	0.46		1.6	1.0	· · · · · · · · · · · · · · · · · · ·	4.0				
0	-49	cpes	0.034	1.0	43	0.96	69	0.058	0.16	1.2 × 10	1.2 × 10				wood
Ψ	Curris .	coth												COMDe	ireu
	-4 W	ctW	0.98	1	-34	13	1.1	69	9.4	84	-76			· · · · · · · ·	
	c _{tZ}	ctZ	-0.54	0.028	27	-0.048	-3.6	-55	-4.3						
~	C _{DW}	cbW													
2	CoG.	ctG	$2.7 \times 10^{\circ}$	2.5 × 10"	3.8×10^{4}	$2.4 \times 10^{\circ}$	3.1×10^{4}	2.4×10^{4}	8.4×10^{4}		59				
10	et a	ctpI		-7.3×10^{-7}	0.045	-0.00064	-0.00029		0.045					-0.21	
0,	Sum	cptbI													
-	c.w	ctWI	4.8×10^{-6}	0.032	-1.6	-0.19	0.29	0.91	0.031	1.6×10^{-16}	-1.4	0.47	0.022	-0.13	
ь	cl.z	ctZI	-1.4×10^{-6}	0.1	-1.2	0.0098	3.2	-0.56	-0.057			-0.87	0.67		
~	C _{DW}	cbWI													
2	enc.	ctGI	-0.00098	0.48	0.65	0.031	-0.7	0.019	-2.4		0.4				
1.2	501	cQ131				0.011	0.06				4.1	6			
نب	-(1)	-0181				-0.0062	-9.8					2.2			
Ē	_(1)	-0-1					1.6					-0.39			
.=	-80	c.qu.					-1.5								
\sim	5	ctil				-u.0023	-3.0					-0.036			
6	c _{ne} ^(A)	ctel					-6.7					0.064			

- 1. Internal validation: 2 independent versions (A, B)
- 2. Validation against dim6top

feynrules.irmp.ucl.ac.be/wiki/dim6top – G.Durieux,C.Zhang Top WG note: Aguilar-Saavedra et al. 1802.07237

3. Validation against VBFNLO

Arnold et al. 0811.4559,1107.4038, Baglio et al 1404.3940 VBSCan Thessaloniki Workshop summary. To appear.

VBFNLO has hard coded matrix elements for selected EW processes uses HISZ basis \rightarrow could validate $O_{WWW} = \varepsilon_{ijk} W^{i\mu}_{\nu} W^{j\nu}_{\rho} W^{k\rho}_{\mu}$

checked: $pp \rightarrow e^+ \nu_e \mu^+ \mu^-$ and $pp \rightarrow e^+ \nu_e \mu^+ \nu_\mu jj$

LO, compared σ_{SM} + distributions

- 1. Internal validation: 2 independent versions (A, B)
- 2. Validation against dim6top

feynrules.irmp.ucl.ac.be/wiki/dim6top – G.Durieux,C.Zhang Top WG note: Aguilar-Saavedra et al. 1802.07237

3. Validation against VBFNLO

Arnold et al. 0811.4559,1107.4038, Baglio et al 1404.3940 VBSCan Thessaloniki Workshop summary. To appear.

Ilaria Brivio (ITP, Heidelberg)

VBS & SMEFT

- 1. Internal validation: 2 independent versions (A, B)
- 2. Validation against dim6top
- 3. Validation against VBFNLO
- 4. Validation against analytic expressions

feynrules.irmp.ucl.ac.be/wiki/dim6top – G.Durieux,C.Zhang Top WG note: Aguilar-Saavedra et al. 1802.07237

Arnold et al. 0811.4559,1107.4038, Baglio et al 1404.3940 VBSCan Thessaloniki Workshop summary. To appear.

> Brivio, Trott SMEFT review 1706.08945 Brivio, Hays, Trott, Žemaitytė, in preparation.

	theory	MG interf.	MG full xs
cHW	-0.757133	-0.77948	-0.778724
сНВ	-0.217121	-0.223247	-0.223151
cHWB	0.308271	0.295226	0.317418
cHbox	2.	1.99882	2.00469
cHD	0.167224	0.164264	0.170457
сНе	-3.5239	-1.72758	-1.72691
cHl1	4.38291	2.15039	2.14801
cHl3	-1.61513	-3.85776	-3.86201
cll1	2.99835	2.99884	3.00731

 $\sigma(\text{int.})/\sigma(\text{SM})$ for $\bar{C}_i = C_i (v/\Lambda)^2 = 1$

- 1. Internal validation: 2 independent versions (A, B)
- 2. Validation against dim6top
- **3.** Validation against VBFNLO

feynrules.irmp.ucl.ac.be/wiki/dim6top – G.Durieux,C.Zhang Top WG note: Aguilar-Saavedra et al. 1802.07237

Arnold et al. 0811.4559,1107.4038, Baglio et al 1404.3940 VBSCan Thessaloniki Workshop summary. To appear.

Brivio, Trott SMEFT review 1706.08945

Brivio, Hays, Trott, Žemaitytė, in preparation.

4. Validation against analytic expressions

VBS & SMEFT

- 1. Internal validation: 2 independent versions (A, B)
- 2. Validation against dim6top
- 3. Validation against VBFNLO
- 4. Validation against analytic expressions

feynrules.irmp.ucl.ac.be/wiki/dim6top – G.Durieux,C.Zhang Top WG note: Aguilar-Saavedra et al. 1802.07237

Arnold et al. 0811.4559,1107.4038, Baglio et al 1404.3940 VBSCan Thessaloniki Workshop summary. To appear.

> Brivio, Trott SMEFT review 1706.08945 Brivio, Hays, Trott, Žemaitytė, in preparation.

	theory	MG interf.	MG full xs
cHW	-0.757133	-0.77948	-0.778724
сНВ	-0.217121	-0.223247	-0.223151
cHWB	0.308271	0.295226	0.317418
cHbox	2.	1.99882	2.00469
cHD	0.167224	0.164264	0.170457
сНе	-3.5239	-1.72758	-1.72691
cHl1	4.38291	2.15039	2.14801
cHl3	-1.61513	-3.85776	-3.86201
cll1	2.99835	2.99884	3.00731

 $\sigma(\text{int.})/\sigma(\text{SM})$ for $\bar{C}_i = C_i (\nu/\Lambda)^2 = 1$

VBS & SMEFT

1. Internal validation: 2 independent versions (A, B)

2. Validation	against dim6top	feynrules.irmp Top	o.ucl.ac.be/wiki/dim6top – G.Duri p WG note: Aguilar-Saavedra et a	ieux,C.Zhang al. 1802.07237
3. Validation	against VBFNLO	Arnold et a	al. 0811.4559,1107.4038, Baglio e S Can Thessaloniki Workshop sum	et al 1404.3940 mary. To appear.
4. Validation	against analytic expression	ons	Brivio, Trott SMEFT review 17 Brivio, Hays, Trott, Žemaitytė, ir	706.08945 n preparation.
	z > e+ e- w+ > 1+ vl h > a a h > b b h > e+ e- mu+ mu- p p > z h / a	z w+ h h g g	> u u" - > uq dq" > z a > ta+ ta- > e+ ve mu- vm g > h n > u- b	
	 ЪЪъм+п	р	р ∧ м– п	

- 1. Internal validation: 2 independent versions (A, B)
- 2. Validation against dim6top
- **3.** Validation against VBFNLO
- 4. Validation against analytic expressions
- 5. Further validation still in progress!

feynrules.irmp.ucl.ac.be/wiki/dim6top – G.Durieux,C.Zhang Top WG note: Aguilar-Saavedra et al. 1802.07237

Arnold et al. 0811.4559,1107.4038, Baglio et al 1404.3940 VBSCan Thessaloniki Workshop summary. To appear.

> Brivio,Trott SMEFT review 1706.08945 Brivio,Hays,Trott,Žemaitytė, in preparation.