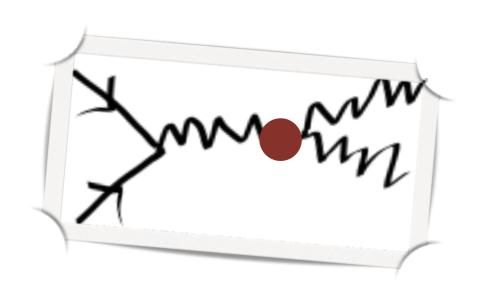
STUDIES OF DIM-6 EFT IN VECTOR BOSON SCATTERING

Raquel Gomez Ambrosio (IPPP Durham) & Kristin Lohwasser (Sheffield Univ.)

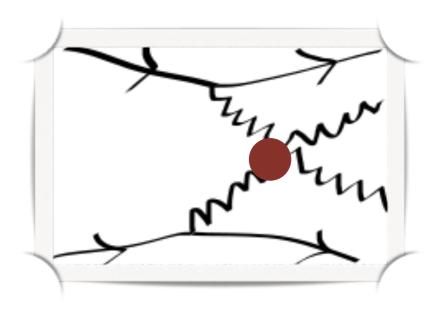
The University Of Sheffield.

DIM-6 EFT AND VV PROCESSES

- ➤ Based on:
 - "Studies of Dimension-Six EFT effects in Vector Boson
 Scattering" arXiv 1809.04189 (EPJC)
 - ➤ "Higgs Physics at the HL-LHC and HE-LHC" arXiv 1902.00134
 - ➤ Work in progress (within the EWWG)


Comments and suggestions very welcome!

(Thanks already to R. Covarelli, J. Lindert, C. Degrande ...)


MOTIVATION: FROM LEP TO LHC

Traditionally param. by form

- LEP: TGCs (on-shell) factors (aTGCs)
- The anomalous coupling approach is good in a first approximation, for more complicated processes, like VBS we need a more robust formalism

 $\mathcal{O}(1)$ diagram

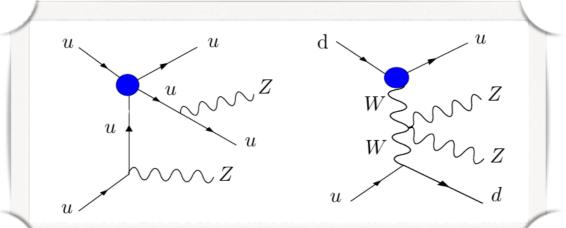
 $\mathcal{O}(10^4)$ diagrams

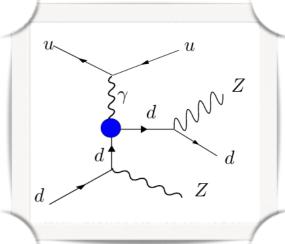
BOTTOM-UP EFT

➤ Assuming linear representation for the Higgs, no new light particles, SM symmetries, etc:

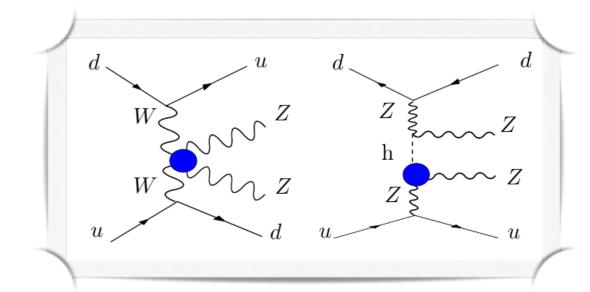
$$\mathcal{L}_{SMEFT} = \mathcal{L}_{SM} + \frac{c^{(5)}}{\Lambda} \mathcal{O}^{(5)} + \frac{1}{\Lambda^2} \sum_{i} c_i^{(6)} \mathcal{O}_i^{(6)} + \sum_{j} \sum_{k} \frac{1}{\Lambda^{2+k}} c_j^{(6+k)} \mathcal{O}_j^{(6+k)}$$

➤ Amplitudes and cross-sections:


$$\mathcal{A}_{EFT} = \mathcal{A}_{SM} + \frac{g'}{\Lambda^2} \mathcal{A}_6 + \frac{g'^2}{\Lambda^4} \mathcal{A}_8 + \dots$$


$$\sigma_{EFT} \sim |\mathcal{A}_{SM}|^2 + 2\frac{g'}{\Lambda^2} \mathcal{A}_{SM} \mathcal{A}_6 + \frac{g'^2}{\Lambda^4} \left(2\mathcal{A}_{SM} \mathcal{A}_8 + |\mathcal{A}_6|^2\right) + \dots$$

Linear EFT


Obs: The larger Lambda is, the larger the difference between contributions.... 4

VBS (ZZ)

- Generate the purely electroweak process $p p \rightarrow z z j j$, with on-shell Zs
- Use numerical methods to find the relative contribution for each operator of the Warsaw basis to the total cross sections
- Observe the behaviour of different operators and combinations thereof, in a bin-by-bin, observable-byobservable basis
- Repeat for other VBS and VV channels....

<u>In progress:</u>

- Study fully leptonic final state
- Shower events
- Migrate to Rivet analyser
- Validate results with SHERPA*

UP-TO-NOW TOOLS

Everywhere: Linear EFT (LO) and MW IPS

- ➤ Monte Carlo:
 - ➤ SMEFTsim + Madgraph5 + Pythia8
- ➤ Event Analysis:
 - Madanalysis5 (partonic)
- ➤ Numerical analysis:
 - ➤ Mathematica + Python

NEAR-FUTURE TOOLS

Everywhere: Linear EFT (LO) and MW IPS

Linear + Quadratic + Dim 8

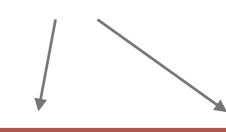
- ➤ Monte Carlo:
 - ➤ SMEFTsim* + Madgraph5 + Pythia8
 - ➤ SMEFTsim* + SHERPA
- Event Analysis:
 - ➤ Madanalysis5 (partonic) Rivet (showered)
- ➤ Numerical analysis:
 - ➤ Mathematica + Python

THE WARSAW BASIS

$1: X^{3}$			
Q_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$		
$Q_{\widetilde{G}}$	$f^{ABC}\widetilde{G}^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$		
Q_W	$\epsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$		
$Q_{\widetilde{W}}$	$\epsilon^{IJK}\widetilde{W}_{\mu}^{I u}W_{ u}^{J ho}W_{ ho}^{K\mu}$		

$2:H^6$		$3:H^4D^2$		
Q_H	$(H^{\dagger}H)^3$	$Q_{H\square}$ $(H^{\dagger}H)\square(H^{\dagger}H)$		
		Q_{HD}	$\left(H^{\dagger}D_{\mu}H\right)^{*}\left(H^{\dagger}D_{\mu}H\right)$	

	$5:\psi^2H^3+\mathrm{h.c.}$		
	Q_{eH}	$(H^{\dagger}H)(\bar{l}_{p}e_{r}H)$	
)	Q_{uH}	$(H^{\dagger}H)(\bar{q}_pu_r\widetilde{H})$	
	Q_{dH}	$H^{\dagger}H)(\bar{q}_p d_r H)$	


	$4:X^2H^2$
Q_{HG}	$H^{\dagger}HG^{A}_{\mu\nu}G^{A\mu\nu}$
$Q_{H\widetilde{G}}$	$H^{\dagger}H\widetilde{G}^{A}_{\mu u}G^{A\mu u}$
Q_{HW}	$H^\dagger H W^I_{\mu u} W^{I \mu u}$
$Q_{H\widetilde{W}}$	$H^\dagger H \widetilde{W}^I_{\mu u} W^{I \mu u}$
Q_{HB}	$H^\dagger H B_{\mu\nu} B^{\mu\nu}$
$Q_{H\widetilde{B}}$	$H^{\dagger}H\widetilde{B}_{\mu u}B^{\mu u}$
Q_{HWB}	$H^\dagger \tau^I H W^I_{\mu\nu} B^{\mu\nu}$
$Q_{H\widetilde{W}B}$	$H^{\dagger} au^I H \widetilde{W}^I_{\mu u} B^{\mu u}$

$6: \psi^2 XH + \text{h.c.}$			
$(\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I H W^I_{\mu\nu}$			
$(\bar{l}_p \sigma^{\mu\nu} e_r) H B_{\mu\nu}$			
$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \widetilde{H} G^A_{\mu\nu}$			
$(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \widetilde{H} W^I_{\mu\nu}$			
$(\bar{q}_p \sigma^{\mu\nu} u_r) \widetilde{H} B_{\mu\nu}$			
$(\bar{q}_p \sigma^{\mu\nu} T^A d_r) H G^A_{\mu\nu}$			
$(\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I H W^I_{\mu\nu}$			
$(\bar{q}_p \sigma^{\mu\nu} d_r) H B_{\mu\nu}$			

$7:\psi^2H^2D$			
$Q_{Hl}^{(1)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{l}_{p}\gamma^{\mu}l_{r})$		
$Q_{Hl}^{(3)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}H)(\bar{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$		
Q_{He}	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{e}_{p}\gamma^{\mu}e_{r})$		
$Q_{Hq}^{(1)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{q}_{p}\gamma^{\mu}q_{r})$		
$Q_{Hq}^{(3)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}H)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$		
Q_{Hu}	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{u}_{p}\gamma^{\mu}u_{r})$		
Q_{Hd}	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{d}_{p}\gamma^{\mu}d_{r})$		
$Q_{Hud} + \mathrm{h.c.}$	$i(\widetilde{H}^{\dagger}D_{\mu}H)(\bar{u}_{p}\gamma^{\mu}d_{r})$		

VBS WW?

$8:(\bar{L}L)(\bar{L}L)$		
$Q_{\ell\ell}$	$(\bar{l}_p \gamma_\mu l_r)(\bar{l}_s \gamma^\mu l_t)$	
$Q_{qq}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{q}_s \gamma^\mu q_t)$	
$Q_{qq}^{(3)}$	$\left (\bar{q}_p \gamma_\mu \tau^I q_r) (\bar{q}_s \gamma^\mu \tau^I q_t \right $	
$Q_{\ell q}^{(1)}$	$(\bar{l}_p \gamma_\mu l_r)(\bar{q}_s \gamma^\mu q_t)$	
$Q_{\ell q}^{(3)}$	$ (\bar{l}_p \gamma_\mu \tau^I l_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	
	•	

$8:(\bar{R}R)(\bar{R}R)$			$8:(\bar{L}L)(\bar{R}R)$	
Q_{ee}	$(\bar{e}_p \gamma_\mu e_r)(\bar{e}_s \gamma^\mu e_t)$	Q_{le}	$(\bar{l}_p \gamma_\mu l_r)(\bar{e}_s \gamma^\mu e_t)$	
Q_{uu}	$(\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{lu}	$(\bar{l}_p \gamma_\mu l_r)(\bar{u}_s \gamma^\mu u_t)$	
Q_{dd}	$(\bar{d}_p \gamma_\mu d_r)(\bar{d}_s \gamma^\mu d_t)$	Q_{ld}	$(\bar{l}_p \gamma_\mu l_r)(\bar{d}_s \gamma^\mu d_t)$	
Q_{eu}	$(\bar{e}_p \gamma_\mu e_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{qe}	$(\bar{q}_p \gamma_\mu q_r)(\bar{e}_s \gamma^\mu e_t)$	
Q_{ed}	$(\bar{e}_p \gamma_\mu e_r)(\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{u}_s \gamma^\mu u_t)$	
$Q_{ud}^{(1)}$	$(\bar{u}_p \gamma_\mu u_r)(\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r)(\bar{u}_s \gamma^\mu T^A u_t)$	
$Q_{ud}^{(8)}$	$ (\bar{u}_p \gamma_\mu T^A u_r) (\bar{d}_s \gamma^\mu T^A d_t) $	$Q_{qd}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{d}_s \gamma^\mu d_t)$	
		$Q_{qd}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r)(\bar{d}_s \gamma^\mu T^A d_t)$	

$$8: (\bar{L}R)(\bar{R}L) + \text{h.c.}$$

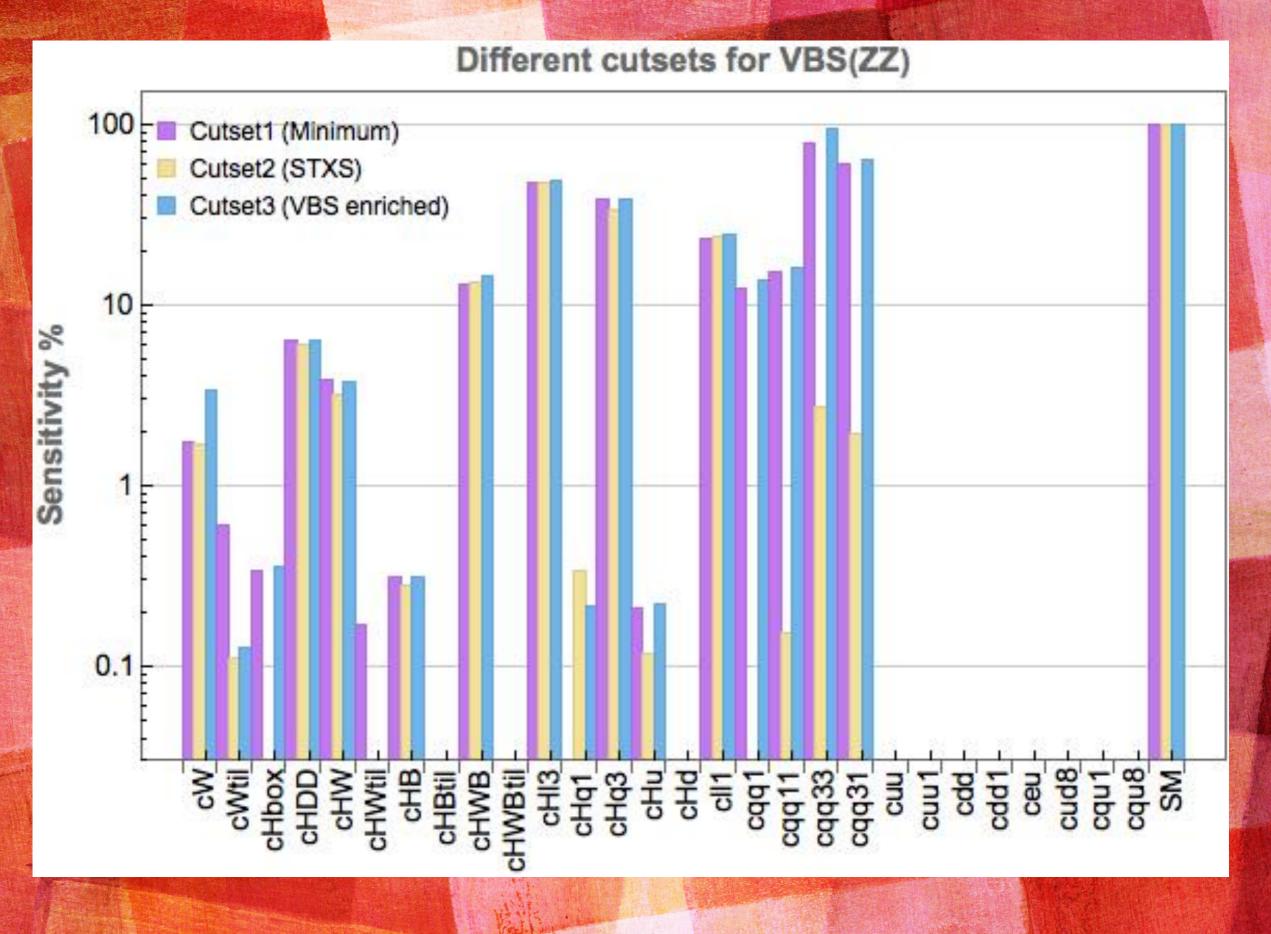
$$Q_{ledq} \mid (\bar{l}_p^j e_r)(\bar{d}_s q_{tj})$$

$8: (\bar{L}R)(\bar{L}R) + \text{h.c.}$		$8: (\bar{L}R)(\bar{L}R) + \text{h.c.}$	
$Q_{quqd}^{(1)}$	$(\bar{q}_p^j u_r) \epsilon_{jk} (\bar{q}_s^k d_t)$	$Q_{lequ}^{(1)}$	$(\bar{l}_p^j e_r) \epsilon_{jk} (\bar{q}_s^k u_t)$
$Q_{quqd}^{(8)}$	$\left (\bar{q}_p^j T^A u_r) \epsilon_{jk} (\bar{q}_s^k T^A d_t) \right $	$Q_{lequ}^{(3)}$	$(\bar{l}_p^j \sigma_{\mu\nu} e_r) \epsilon_{jk} (\bar{q}_s^k \sigma^{\mu\nu} u_t)$

STEP 1: COMPARE DIFFERENT CUT SELECTIONS

- > Selection 1:
 - ightharpoonup Pt(j1) > 30 GeV & Pt(j2) > 30 GeV
 - ➤ Eta(j) > 4.5 & DeltaEta (jj) > 2.5

Minimum Cut


- \rightarrow m(jj) > 100 GeV \rightarrow
- ➤ Selection 2:

STXS Style region

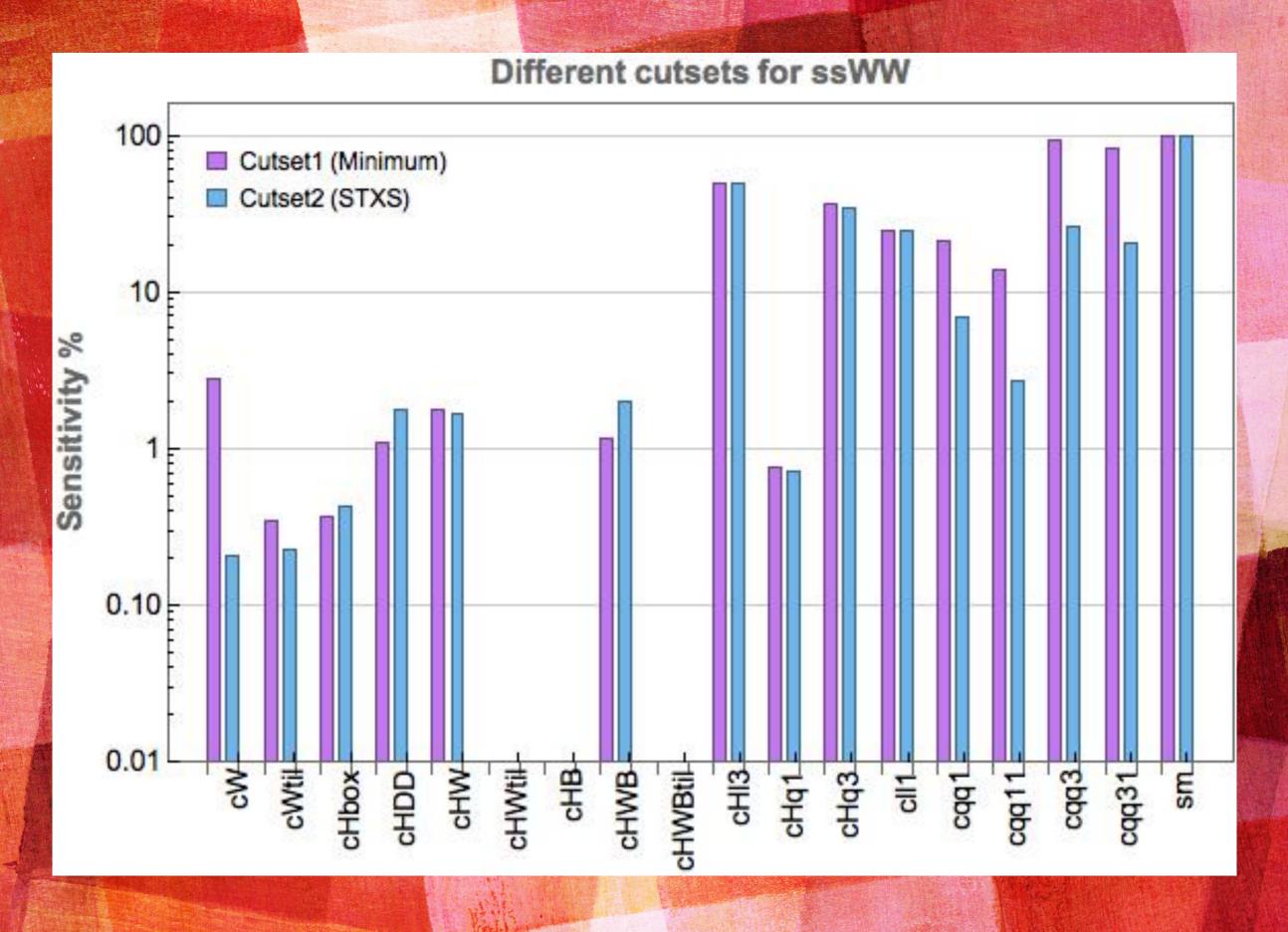
- ➤ 100 GeV < m(jj) < 250 GeV
- ➤ Selection 3:

"Traditional" VBS region

 \rightarrow m(jj) > 400 GeV

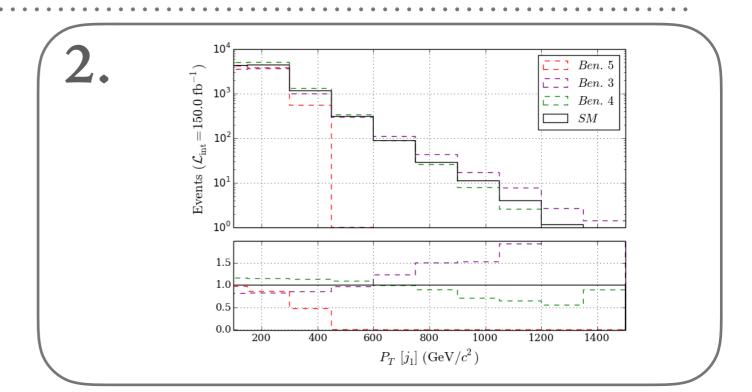
STEP 2: COMPARE DIFFERENT CHANNELS

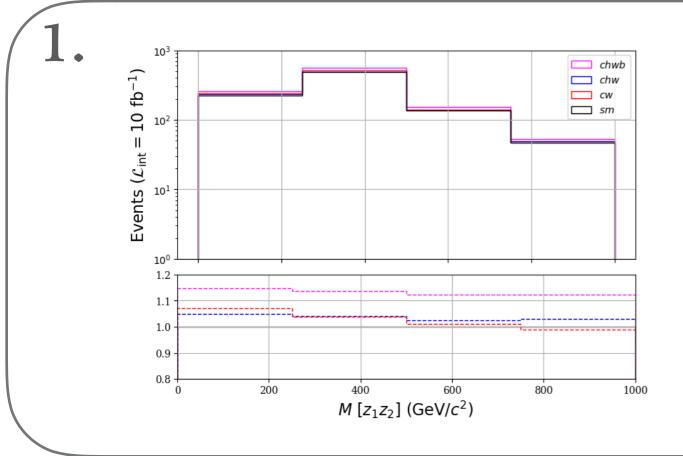
- VBS Channels:
 - ➤ ZZ, (ssWW,) WZ...
- ➤ VBF Channels
 - ➤ Hjj, Zjj, Wjj ...
- ➤ Diboson Channels:
 - ➤ QCD induced ZZjj, osWW, ...

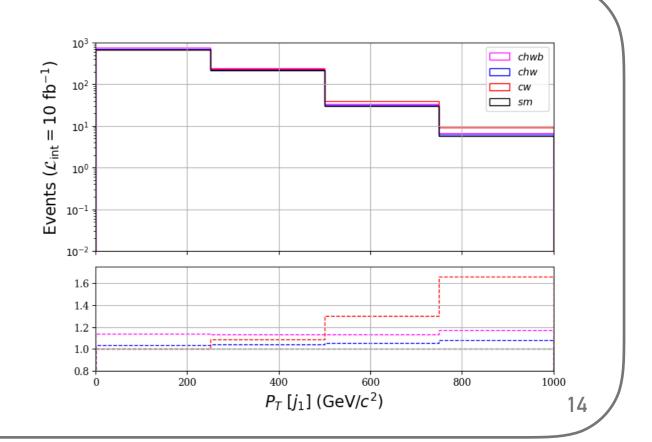

See Kristin's part...

VBS (WW)

- ➤ For now: semileptonic decays
- ➤ Interesting news in this channel:
 - ➤ "Precise predictions for same-sign W-boson scattering at the LHC"


1803.07943 (Ballestrero et. al)


➤ NLO EW+QCD corrections can amount up to -16% 190X.XXXX (Pellen et. al)



STEP 3: DIFFERENTIAL DISTRIBUTIONS

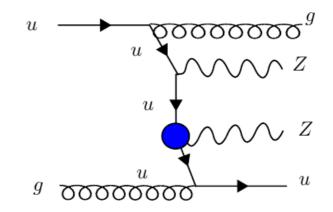
- ➤ The advantages of differential distributions are several:
- Provide with extra
 'observables' to study (bins)
- 2. Provide with extra discrimination power

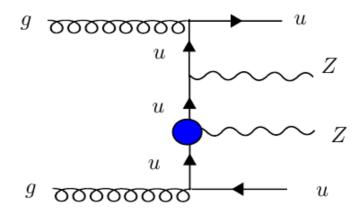
NEXT STEPS:

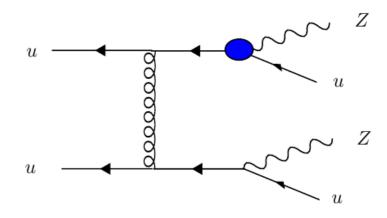
1. Study the Backgrounds

2. Extend to other VBS and VV processes

3. Projections for HL-LHC and future colliders

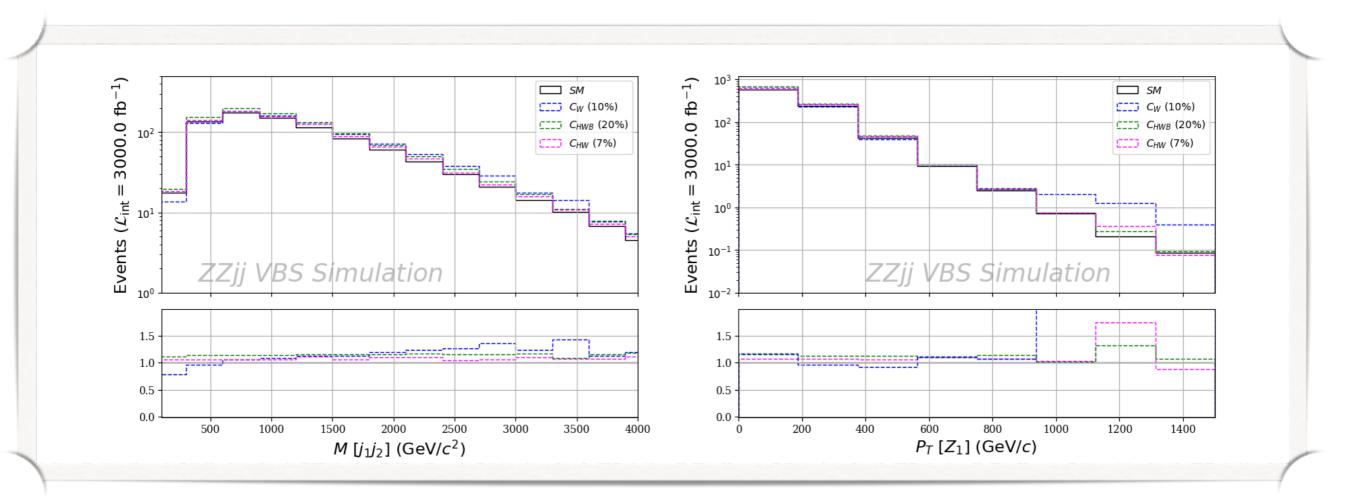



4. Study of Dim-8 linear and Dim-6 quadratic terms



BACKGROUND

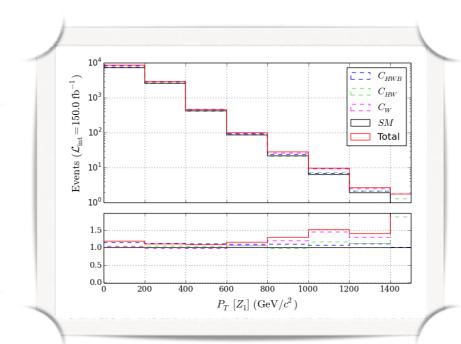
➤ QCD induced VV production

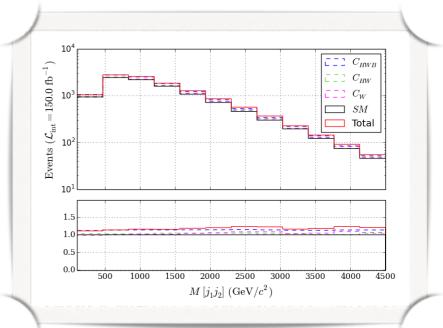


FUTURE (HL-LHC)

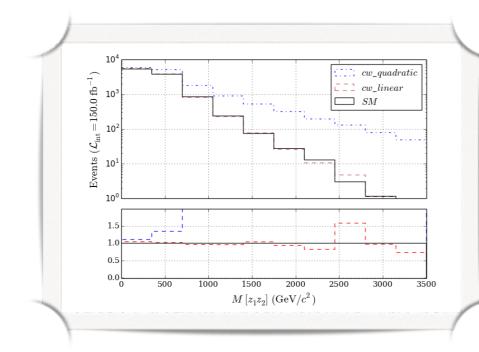
- ➤ VBS(ZZ) with leptonic decays: very good prospects for the future runs
- ► LHC Run-2: $\mathcal{O}(10)$ events \longrightarrow HL-LHC: $\mathcal{O}(100)$ events

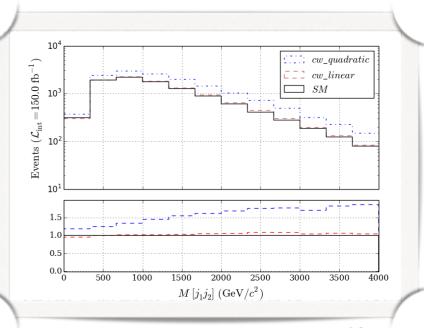
HIGHER ORDER EFT: QUADRATIC & DIM-8


Suggestions for Dim-8 implementations welcome!


➤ Warsaw basis operators generating TGCs and QGCs

$$\mathcal{O}_{W} = \epsilon^{ijk} W_{\mu}^{i\nu} W_{\nu}^{j\rho} W_{\rho}^{k\mu}$$


$$\mathcal{O}_{HW} = H^{\dagger} H W_{\mu\nu}^{I} W^{\mu\nu I}$$


$$\mathcal{O}_{HWB} = H^{\dagger} \tau^{I} H W_{\mu\nu}^{I} B^{\mu\nu}$$

Example of quadratic contributions:

CONCLUSIONS AND OUTLOOK

➤ Precise VBS and Diboson EFT predictions are useful both on their own and as part of the global-fit agenda for EFT at LHC

➤ For this predictions to be useful, more VBS (signal and background) measurements are needed. In particular unfolded measurements for differential distributions would be a big boost to the programme.

Thanks for your attention!