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MOTIVATION: FROM LEP TO LHC 

LEP: TGCs (on-shell)    

LHC: QCGs (off shell) 

The anomalous coupling approach is good in a first approximation, for 
more complicated processes, like VBS we need a more robust formalism  

𝒪(1) diagram 𝒪(104) diagrams

Traditionally param. by form 
factors (aTGCs) 

Traditionally  Dim-8 EFT 
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BOTTOM-UP EFT
➤ Assuming linear representation for the Higgs, no new light particles, 

SM symmetries, etc:  

➤ Amplitudes and cross-sections: 

this reason, a rigorous treatment of the process demands also the study of the EFT effects
on the corresponding background, which we perform in section 7. To finalise, in section 8,
we discuss a possible strategy for a global analysis including all the dimension-six operators
relevant to this process.

2 SMEFT: notations and conventions

In this work, the bottom-up approach to EFT is used. The SM Lagrangian is extended
with higher dimensional operators, consistent with the known SM symmetries. Further, we
assume a linear representation for the physical Higgs field, in the form an SU(2) doublet.
Such a theory is commonly known as SMEFT:
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At dimension-five, dim = 5, there is only one possible operator, from Ref.[53], which doesn’t
enter the process studied in this work. At dim = 6 , the complete basis has 59 operators
in the flavour universal case and 2499 in the most general one. In this work we will use a
parametrisation of the former commonly known as the Warsaw basis, from Ref. [54].

A general method to construct higher dimensional bases using Hilbert series was pro-
posed in Ref. [55]. In the context of VBS, some subsets of dim = 8 operators affecting
quartic gauge couplings have been proposed in Refs. [56, 57]

Other EFT bases There are additional dimension-six bases, other than the Warsaw
basis. It is quite common to use the SILH basis, from Ref.[1] in Higgs phenomenology,
however it is not optimised for multiboson processes. Instead, there is a VBS-dedicated
basis, typically known as the HISZ basis, from Ref.[58].

Parameter Shifts Adding higher dimensional terms to the SM Lagrangian has three
consequences: firstly, new vertices appear. For example those with four-fermions. Secondly,
the SM vertices get modified with an additional EFT contribution of the form: VSM =

a ·g+b ·g ·ci/⇤2, where g is the SM coupling and ci is the Wilson coefficient associated with
the i

th dim = 6 operator. Thirdly, there are shifts on the other SM parameters. Namely
the masses, vev, weak mixing angle and gauge fixing parameters. For a detailed discussion
on the parameter shifts and gauge fixing in SMEFT see Refs.[6, 59–61].

The easiest example to understand parameter-shifts is that of the Higgs field: if we add
the Warsaw basis operators to the SM Lagrangian, the Higgs part of the Lagrangian gets
modified as:
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where:
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Obs: The larger Lambda is, the larger the 
difference between contributions….

where the O(6)
i represent a basis of dim = 6 operators built from SM fields and respecting the known

gauge symmetries14, and ci are the Wilson coefficients of the theory. Further, the SMEFT amplitudes
and cross sections can be parametrised as

AEFT = ASM +
g0

⇤
2 A6 +

g02

⇤
4 A8 + . . . (91)
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2
⌘
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Here, we assume the linear contribution (red) of the EFT effects to be leading. Analysis of the dim = 6

quadratic terms and the dim = 8 interference terms (both in blue) will be subject of further studies. In
particular, dim = 8 are commonly associated with quartic gauge couplings and such contribution, albeit
subleading, would represent some added value to the linear dim = 6 prediction.

Definition of the fiducial region
The VBS(ZZ) process has a very peculiar experimental signature, with two energetic forward jets and 4
identifiable charged leptons (`, `0

= µ or e). The electroweak component of the process pp ! ZZjj !
`¯̀`0¯`0jj is defined and isolated through some experimental cuts. The ones used in the CMS analysis
(in the measurement of the fiducial cross-section) can be found in [359]. Here we define a similarly
VBS-enriched region, with a relaxed mjj selection:

pT (j) > 30GeV �⌘(j1j2) > 2.4 mjj > 100GeV on-shellZ1, Z2 (93)

EFT analysis
In tables 63 and 64 we show the sensitivities to different dim = 6 operators of the VBS(ZZ) process, as
well as of its main background at LHC: the diboson production channel from quark-antiquark annihila-
tion associated to gluon radiation (studied in depth by CMS for LHC runs I and II in [362], QCD(ZZ)).

Further, in figure 89 we show differential distributions for a subset of the previous operators. In
particular we chose the three operators that directly affect triple and quartic gauge couplings:

OW = ✏ijkW i⌫
µ W j⇢

⌫ W kµ
⇢ OHW = H†HW I

µ⌫W
µ⌫I OHWB = H†⌧ IHW I

µ⌫B
µ⌫ (94)

However, as reported in tables 63 and 64, there are other relevant operators for the VBS process,
for example O``, the 4-lepton operator that affects GF , or OHB that enters the Z boson propagator. More
details can be found for example in [151].

Figure 89 should be interpreted as follows: we select one paradigmatic operator (for example
OW ), and see how much does its interference term affect the VBS and diboson signals (2.5% in this
case). As the VBS(ZZ) cross section is still mostly unconstrained experimentally, while the QCD(ZZ)
has a 21% uncertainty in the 2-jet bin [362], we know the bounds within which we can vary this coeffi-
cient. If we assume for example a 10% positive interference with the total cross-section, we observe that
such a small contribution to the total cross-section can represent a large modification in certain bins of the
differential distributions. This advantage is twofold: with this procedure we can select the optimal bin(s)
for the study and fit of each EFT operator; and, by applying unitarity considerations, we can constrain
the values of the Wilson coefficients further. In our example, a contribution of 10% in OW , still allowed
for the total rate, has a large impact on the high energy bins of the pT (Z1) distribution.

14In particular, we assume CP symmetry, neglecting the CP-odd operators since their impact on VBS cross-sections and dif-
ferential distributions is negligible. However it is well known that certain variables of these processes (namely spin correlations
and polarizations) can be sensible to CP-violation.

135

Linear EFT

Quadratic + dim-8
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VBS (ZZ) 

Generate the purely electroweak 
process  p p → z z j j , with on-shell 
Zs  

Use numerical methods to find the 
relative contribution for each 
operator of the Warsaw basis to the 
total cross sections 

Observe the behaviour of different 
operators and combinations thereof, 
in a bin-by-bin, observable-by-
observable basis 

Repeat for other VBS and VV 
channels….

5 The Warsaw Basis in VBS

5.1 EFT for the full process

In this section, we investigate the effects of including all the Warsaw-basis operators on the
computation of the VBS(ZZ) cross-section. Some examples of the Feynman diagrams that
contribute to the process are shown in figure 5.

Figure 5: Some of the Feynman diagrams contributing to the VBS(ZZ) process in dim =

6EFT. The blobs represent the dimension-six insertions.

In particular we found, numerically, the following expressions for the bosonic contribu-
tion to the total cross-section:

�EFT,bosonic

�SM
⇡ 1.+ 0.047 c̄HB � 0.053 c̄H⇤ � 0.0021 c̄gHB

+ 0.010 c̄Hd � 1.84 c̄HD

� 3.86 c̄
Hl(3) � 0.017 c̄

Hq(1) + 5.61 c̄
Hq(3) � 0.033 c̄Hu + 0.59 c̄HW

� 0.0041 c̄]HW
� 0.69 c̄HWB � 0.022 c̄

ĤWB
+ 0.23 c̄W � 0.086 c̄fW .

(5.1)

And for the fermionic contribution:
�EFT,fermionic

�SM
⇡ 1.� 3.23 · 10�6

c̄dd � 2.89 · 10�6
c̄
(1)

dd
� 3.86 c̄

(1)

``
+ 0.0010 c̄

(1)

qd

+ 1.80 · 10�20
c̄
(8)

qd
� 1.93 c̄

(1)

qq � 2.57 c̄
(11)

qq � 14.3 c̄
(3)

qq � 10.3 c̄
(31)

qq

� 0.0049 c̄
(1)

qu � 2.51 · 10�20
c̄
(8)

qu + 0.00020 c̄
(1)

ud

+ 1.62 · 10�21
c̄
(8)

ud
� 0.0010 c̄uu � 0.00099 c̄

(1)

uu .

(5.2)

Both of this expressions have been extracted from simple numerical analysis of relatively
small Monte Carlo samples and hence are dominated by the MC uncertainty. Which we
estimate of the order of 10% for each of the interference terms. The only purpose of
displaying them here is to give an impression of the relative sensitivity of this process to
the different EFT operators.

It is interesting to observe that the bosonic interference is generally positive, while
the fermionic one is generally negative. This means that in the case that all the Wilson
coefficients would have the same sign, both interferences could extensively cancel, giving
rise to a very small SM deviation in the total cross section. For this reason it is fundamental
to define observables and regions where the EFT effects are maximised.
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In progress: 

Study fully leptonic final state 

Shower events 

Migrate to Rivet analyser  

Validate results with SHERPA* 

*TBD �5



UP-TO-NOW TOOLS

➤ Monte Carlo:  

➤ SMEFTsim + Madgraph5 + Pythia8  

➤ Event Analysis:  

➤  Madanalysis5 (partonic) 

➤ Numerical analysis: 

➤ Mathematica + Python

Everywhere:  Linear EFT (LO) and 
MW IPS
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NEAR-FUTURE TOOLS

➤ Monte Carlo:  

➤ SMEFTsim* + Madgraph5 + Pythia8 

➤ SMEFTsim* + SHERPA 

➤ Event Analysis:  

➤  Madanalysis5 (partonic)             Rivet (showered)  

➤ Numerical analysis: 

➤ Mathematica + Python

Everywhere:  Linear EFT (LO) and 
MW IPS

Linear +Quadratic + Dim 8 

*Possibility of validation against private UFO model �7



THE WARSAW BASIS

Grzadkowski  et al. (basis), Alonso et al. (representation) 

1 : X3

QG fABCGA⌫

µ
GB⇢

⌫
GCµ

⇢

Q eG fABC eGA⌫

µ
GB⇢

⌫
GCµ

⇢

QW ✏IJKW I⌫

µ
W J⇢

⌫
WKµ

⇢

QfW ✏IJKfW I⌫

µ
W J⇢

⌫
WKµ

⇢

2 : H6

QH (H†H)3

3 : H4D2

QH⇤ (H†H)⇤(H†H)

QHD

�
H†DµH

�⇤ �
H†DµH

�

5 :  2H3 + h.c.

QeH (H†H)(l̄perH)

QuH (H†H)(q̄pur
eH)

QdH (H†H)(q̄pdrH)

4 : X2H2

QHG H†H GA

µ⌫
GAµ⌫

Q
H eG H†H eGA

µ⌫
GAµ⌫

QHW H†H W I

µ⌫
W Iµ⌫

Q
HfW H†H fW I

µ⌫
W Iµ⌫

QHB H†H Bµ⌫Bµ⌫

Q
H eB H†H eBµ⌫Bµ⌫

QHWB H†⌧ IH W I

µ⌫
Bµ⌫

Q
HfWB

H†⌧ IH fW I

µ⌫
Bµ⌫

6 :  2XH + h.c.

QeW (l̄p�µ⌫er)⌧ IHW I

µ⌫

QeB (l̄p�µ⌫er)HBµ⌫

QuG (q̄p�µ⌫TAur) eH GA

µ⌫

QuW (q̄p�µ⌫ur)⌧ I eH W I

µ⌫

QuB (q̄p�µ⌫ur) eH Bµ⌫

QdG (q̄p�µ⌫TAdr)H GA

µ⌫

QdW (q̄p�µ⌫dr)⌧ IH W I

µ⌫

QdB (q̄p�µ⌫dr)H Bµ⌫

7 :  2H2D

Q(1)
Hl

(H†i
 !
D µH)(l̄p�µlr)

Q(3)
Hl

(H†i
 !
D I

µ
H)(l̄p⌧ I�µlr)

QHe (H†i
 !
D µH)(ēp�µer)

Q(1)
Hq

(H†i
 !
D µH)(q̄p�µqr)

Q(3)
Hq

(H†i
 !
D I

µ
H)(q̄p⌧ I�µqr)

QHu (H†i
 !
D µH)(ūp�µur)

QHd (H†i
 !
D µH)(d̄p�µdr)

QHud + h.c. i( eH†DµH)(ūp�µdr)

8 : (L̄L)(L̄L)

Q`` (l̄p�µlr)(l̄s�µlt)

Q(1)
qq (q̄p�µqr)(q̄s�µqt)

Q(3)
qq (q̄p�µ⌧ Iqr)(q̄s�µ⌧ Iqt)

Q(1)
`q

(l̄p�µlr)(q̄s�µqt)

Q(3)
`q

(l̄p�µ⌧ I lr)(q̄s�µ⌧ Iqt)

8 : (R̄R)(R̄R)

Qee (ēp�µer)(ēs�µet)

Quu (ūp�µur)(ūs�µut)

Qdd (d̄p�µdr)(d̄s�µdt)

Qeu (ēp�µer)(ūs�µut)

Qed (ēp�µer)(d̄s�µdt)

Q(1)
ud

(ūp�µur)(d̄s�µdt)

Q(8)
ud

(ūp�µTAur)(d̄s�µTAdt)

8 : (L̄L)(R̄R)

Qle (l̄p�µlr)(ēs�µet)

Qlu (l̄p�µlr)(ūs�µut)

Qld (l̄p�µlr)(d̄s�µdt)

Qqe (q̄p�µqr)(ēs�µet)

Q(1)
qu (q̄p�µqr)(ūs�µut)

Q(8)
qu (q̄p�µTAqr)(ūs�µTAut)

Q(1)
qd

(q̄p�µqr)(d̄s�µdt)

Q(8)
qd

(q̄p�µTAqr)(d̄s�µTAdt)

8 : (L̄R)(R̄L) + h.c.

Qledq (l̄j
p
er)(d̄sqtj)

8 : (L̄R)(L̄R) + h.c.

Q(1)
quqd

(q̄j
p
ur)✏jk(q̄ksdt)

Q(8)
quqd

(q̄j
p
TAur)✏jk(q̄ksTAdt)

8 : (L̄R)(L̄R) + h.c.

Q(1)
lequ

(l̄j
p
er)✏jk(q̄ksut)

Q(3)
lequ

(l̄j
p
�µ⌫er)✏jk(q̄ks�

µ⌫ut)

Table 1: L6 of Refs. [222] as given in Ref. [204]. The flavour labels p, r, s, t on the Q operators
are suppressed on the left hand side of the tables.
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Q(8)
qu (q̄p�µTAqr)(ūs�µTAut)

Q(1)
qd

(q̄p�µqr)(d̄s�µdt)

Q(8)
qd

(q̄p�µTAqr)(d̄s�µTAdt)

8 : (L̄R)(R̄L) + h.c.

Qledq (l̄j
p
er)(d̄sqtj)

8 : (L̄R)(L̄R) + h.c.

Q(1)
quqd

(q̄j
p
ur)✏jk(q̄ksdt)

Q(8)
quqd

(q̄j
p
TAur)✏jk(q̄ksTAdt)

8 : (L̄R)(L̄R) + h.c.

Q(1)
lequ

(l̄j
p
er)✏jk(q̄ksut)

Q(3)
lequ

(l̄j
p
�µ⌫er)✏jk(q̄ks�

µ⌫ut)

Table 1: L6 of Refs. [222] as given in Ref. [204]. The flavour labels p, r, s, t on the Q operators
are suppressed on the left hand side of the tables.
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STEP 1: COMPARE DIFFERENT CUT SELECTIONS

➤ Selection 1:  

➤ Pt(j1) > 30 GeV & Pt(j2) > 30 GeV 

➤  Eta(j) > 4.5 & DeltaEta (jj) > 2.5 

➤ m(jj) > 100 GeV 

➤ Selection 2:  

➤ 100 GeV < m(jj) < 250 GeV 

➤ Selection 3:  

➤ m(jj) > 400 GeV
“Traditional” VBS region

STXS Style region

Minimum Cut

�9
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STEP 2: COMPARE DIFFERENT CHANNELS

�11

➤ VBS Channels:  

➤ ZZ, ssWW, WZ… 

➤ VBF Channels 

➤ Hjj, Zjj, Wjj … 

➤ Diboson Channels: 

➤ QCD induced ZZjj, osWW, …
See Kristin’s part…



VBS (WW)

➤ For now: semileptonic decays 

➤ Interesting news in this channel: 

➤ “Precise predictions for same-sign W-boson 
scattering at the LHC” 

➤ NLO EW+QCD corrections can amount up  
to -16%  

1803.07943 (Ballestrero et. al)

190X.XXXX (Pellen et. al)
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STEP 3: DIFFERENTIAL DISTRIBUTIONS
➤ The advantages of differential 

distributions are several: 

1. Provide with extra 
‘observables’ to study (bins) 

2. Provide with extra 
discrimination power

1.

2.

Figure 7: SM prediction and benchmark scenarios from table 2. It is interesting to see
that although one benchmark gives a total enhancement to the cross-section and the other
gives a decrease, in the tail of some distributions both seem to contribute positively.

Figure 8: Example of a benchmark scenario (B5 in table 2) that is realistic in terms of
cross section and pT (Z), but has non-physical kinematics in the pT (j) variable.

– 18 –
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NEXT STEPS:

1. Study the Backgrounds 

2. Extend to other VBS and VV processes  

3. Projections for HL-LHC and future colliders  

4. Study of Dim-8  linear and Dim-6 quadratic terms

�15



 BACKGROUND
➤ QCD induced VV production

Figure 10: Some of the Feynman diagrams contributing to the VBS(ZZ) dominant back-
ground process in dim = 6EFT. The blobs represent the dimension-six insertions.

Figure 11: Effect of the B1 scenario in the background process. The effect is in principle
very small, however it is important to remark that the number of background events is
about one order of magnitude larger per bin, than that for the signal.
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FUTURE  (HL-LHC)
➤ VBS(ZZ) with leptonic decays: very good prospects for the future runs 

➤ LHC Run-2:  O(10) events        HL-LHC: O(100) events 

R. Covarelli, R. Gomez Ambrosio,  for HL-HE-LHC yellow report

VBS Signal Signal strengths (Linear EFT)
Class 1: OW = cW · 2.5%

Class 3: OHD = cHD · 6.0%

Class 4: OHW = cHW · 5%, OCHB = cHB · 0.2%, OHWB = cHWB · 14%

Class 7: O
Hl

(3) = c
Hl

(3) · 48%, O
Hq

(1) = c
Hq

(1) · 2%,
O

Hq
(3) = c

Hq
(3) · 46%, OHu = cHu · 0.8%

Class 8a: (LL̄)(LL̄) (GF !) O`` = c`` · 24% , O
qq

(1) = c
qq

(1) · 12%,
O

qq
(11) = c

qq
(11) · 14%, O

qq
(33) = c

qq
(33) · 100%, O

qq
(31) = c

qq
(31) · 75%

Table 63: Different sensitivities to each of the Warsaw basis operators. The operators that are not listed
do not intervene in the process, or do it in a negligible way. Each sensitivity ✏i is calculated as ✏i =

|�EFT ��SM
�SM

|, and they include a standard EFT prefactor v
2

⇤
2 |⇤=1TeV which needs to be taken into account

if substituting values for the ci in the table. NB: we quote the absolute value for the sensitivities ✏.

Conclusions
The VBS(ZZ) and QCD(ZZ) final states, still largely unexplored at the LHC, will be an important source
of constraints on dim = 6 EFT operators at the HL-LHC. We have shown the impact that values of Wil-
son coefficients still experimentally allowed have on differential distributions that are easily accessible
experimentally in this channel.

Fig. 89: Two generic simulations showing the EFT effects on key differential distributions: invariant
mass of the di-jet system (left) and transverse momentum of the leading Z boson (right). We selected
arbitrary values for the Wilson coefficients {cW , cHW , cHWB}

4.8 Same-sign WW scattering at HL-LHC and HE-LHC: a new strategy for the EFT-based
analysis and reach on dimension-8 operators
G. Chaudhary,a J. Kalinowski,b M. Kaur, a P. Kozów,b S. Pokorski,b J. Rosiek,b K. Sandeep,a

M. Szleperc and S. Tkaczykd

a University of Panjab, Chandigarh, India,
b Faculty of Physics, University of Warsaw, Warsaw, Poland,

c National Center for Nuclear Research, Warsaw, Poland,
d Fermi National Accelerator Laboratory, Batavia, IL 60510, USA.

Although any statistically significant deviation in data from the Standard Model(SM) predictions
would be a manifestation of a BSM physics, the question is what we can learn about its scale and

136
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 HIGHER ORDER EFT: QUADRATIC & DIM-8 

➤ Warsaw basis operators generating TGCs and QGCs

3.3 Subsets of operators and gauge invariance

Each of the operators in the Warsaw basis is independently gauge-invariant and in principle,
it is possible in a tree-level study to select a subset of operators without breaking this
gauge invariance. This situation however, will not hold beyond tree-level, where different
operators enter through the dim = 6 counterterms, and the full basis is needed for UV-
renormalization. For a further discussion on the SMEFT renormalization see Refs.[6, 7, 9,
59].

Gauge invariance is also broken if the effects of certain dim = 6 or dim = 8 operators are
only included on a certain vertex and not in other vertices or wave function normalizations.
For example, it is gauge-invariant to include only OW ,OHW and OHWB, neglecting OHB.
But it is not completely rigorous: OHB enters every vertex containing a Z field, as shown in
equation (2.7), and every expression containing the weak-mixing angle, and it might enter
in different ways depending on the IPS chosen. The same holds for other operators, mainly
O`` and O

(3)

Hl
, that enter as corrections to GF.

4 EFT for the Gauge Couplings

To allow a straightforward comparison with the existing literature, in this section we study
the impact of a handful of EFT operators. In particular, the operators that directly affect
triple and quartic gauge vertices, and are CP-even.3

• OW = ✏
ijk

W
i⌫
µ W

j⇢
⌫ W

kµ
⇢

• OHW = H
†
HW

I
µ⌫W

µ⌫I

• OHWB = H
†
⌧
I
HW

I
µ⌫B

µ⌫

For this preliminary study we generated 3 · 105 events for the process defined in section 2.3
using a modified version of the SMEFTsim package [104], interfaced with Madgraph5_aMC@NLO

[113] via FeynRules [114] and MadAnalysis5 [115]. We studied the impact of each of the
three TGC/QGC operators separately, as well as the sum of them, following the definition
of leading-order EFT given in section 2.1.

In Figure 2 we see the impact of each of the three operators individually and the sum
of them, for four different observables: the invariant mass of the two final Z and that of
the two final jets, and the transverse momentum of the leading Z and leading jet. For
the numerical values of the coefficients. In this section, we choose the democratic values
c̄W = c̄HW = c̄HWB = 0.06, which correspond to cW = cHW = cHWB = 1 with ⇤ = 1TeV.
In section 4.1 we will discuss the case of the available best-fit values.

We observe that the EFT effects on the invariant mass distributions are relatively
homogeneous, in particular in the two-jet case. The VBS signature is characterised by
two very energetic jets and the high energy phase space is quite well populated. On the
contrary, for the ZZ invariant mass we find that at very high energies we reach the limit

3
The analysis can be easily extended to the CP-odd case, by adding OfW , O gHW

and O
ĤWB

.
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where the SM production tends to zero, and the EFT effects become sizeable. This effect
is of course dominated by the Monte Carlo uncertainty, but it points us to a region that
should be studied in detail. Such regions where the SM production becomes negligible are
also those where the quadratic-EFT of equation (2.9) will have a dominant role. This will
be discussed in section 4.2.

The case transverse momentum distributions are very interesting themselves. We find
out that the EFT effects get enhanced on the tails of such distributions, which is something
that we would have expected a priori for all four observables, but is not so pronounced as
expected for the invariant masses. For both cases: pT (Z1) and pT (j1), we also reach the
regime where the SM production is negligible but the EFT effects remain.

Figure 2: Here we show the impact of the 3 Warsaw basis operators that affect the triple
and quartic gauge couplings. We set the values c̄ = c

v
2

⇤2 = 0.06 which correspond to c = 1

for ⇤ = 1TeV. However it is important to recall that one of the main assumptions of the
EFT is that there are no new light resonances, and hence in a histogram like this one we
are implicitly assuming ⇤ > 3TeV, while keeping c̄ = c

v
2

⇤2 = 0.06.

4.1 Comparison with LEP and Higgs bounds

Several works have appeared in the last years, where SMEFT predictions are compared
with LEP data (in Refs. [4, 116, 117]) and LHC data (the SILH basis in Refs. [118, 119]
and more recently the Warsaw Basis in Refs. [120–122]).
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Figure 4: Quadratic effects on some kinematic distributions. The red lines represent
the linear contribution to the cross section (dim = 6 interference with the SM) and the
blue lines represent the previous contribution plus the purely dim = 6 term. We take the
canonical values c̄W = 0.06 and ⇤ = 1TeV. The quadratic effects are relevant in general
on the tails of the distributions, and in particular on the bins where the SM production
vanishes. They also play a very important role in the bins where the interference with the
SM is negative, since they may restore unitarity. ⇤ = 1TeV is the worst-case-scenario, for
higher values of ⇤ the difference between the linear and quadratic terms decreases.
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Example of 
quadratic 
contributions:

Figure 4: Quadratic effects on some kinematic distributions. The red lines represent
the linear contribution to the cross section (dim = 6 interference with the SM) and the
blue lines represent the previous contribution plus the purely dim = 6 term. We take the
canonical values c̄W = 0.06 and ⇤ = 1TeV. The quadratic effects are relevant in general
on the tails of the distributions, and in particular on the bins where the SM production
vanishes. They also play a very important role in the bins where the interference with the
SM is negative, since they may restore unitarity. ⇤ = 1TeV is the worst-case-scenario, for
higher values of ⇤ the difference between the linear and quadratic terms decreases.
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Suggestions for 
Dim-8 
implementations 
welcome!

�18



CONCLUSIONS AND OUTLOOK

➤ Precise VBS and Diboson EFT predictions are useful both on their own 
and as part of the global-fit agenda for EFT at LHC 

➤ For this predictions to be useful, more VBS (signal and background) 
measurements are needed. In particular unfolded measurements for 
differential distributions would be a big boost to the programme.

Thanks for  

your attention!

�19


