Global EFT fits in the top sector

Eleni Vryonidou CERN TH

VBSCAN EFT meeting 05/03/2018

SMEFT

New Interactions of SM particles

$$\mathcal{L}_{\text{Eff}} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{C_{i}^{(6)} O_{i}^{(6)}}{\Lambda^{2}} + \mathcal{O}(\Lambda^{-4})$$

Buchmuller, Wyler Nucl. Phys. B268 (1986) 621-653

Grzadkowski et al arxiv:1008.4884

	X^3		φ^6 and $\varphi^4 D^2$	$\psi^2 arphi^3$		
Q_G	$f^{ABC}G_{\mu}^{A\nu}G_{\nu}^{B\rho}G_{\rho}^{C\mu}$	Q_{arphi}	$(\varphi^{\dagger}\varphi)^3$	Q_{earphi}	$(\varphi^{\dagger}\varphi)(\bar{l}_{p}e_{r}\varphi)$	
$Q_{\widetilde{G}}$	$f^{ABC}\widetilde{G}_{\mu}^{A u}G_{ u}^{B ho}G_{ ho}^{C\mu}$	$Q_{arphi\square}$	$(\varphi^{\dagger}\varphi)\Box(\varphi^{\dagger}\varphi)$	$Q_{u\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_p u_r \widetilde{\varphi})$	
Q_W	$\varepsilon^{IJK}W_{\mu}^{I\nu}W_{\nu}^{J\rho}W_{\rho}^{K\mu}$	$Q_{\varphi D}$	$\left(\varphi^{\dagger}D^{\mu}\varphi\right)^{\star}\left(\varphi^{\dagger}D_{\mu}\varphi\right)$	$Q_{d\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_p d_r \varphi)$	
$Q_{\widetilde{W}}$	$\varepsilon^{IJK}\widetilde{W}_{\mu}^{I\nu}W_{\nu}^{J\rho}W_{\rho}^{K\mu}$					
	$X^2 \varphi^2$		$\psi^2 X \varphi$		$\psi^2 \varphi^2 D$	
$Q_{arphi G}$	$\varphi^{\dagger}\varphiG^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eW}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi l}^{(1)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{l}_{p}\gamma^{\mu}l_{r})$	
$Q_{arphi\widetilde{G}}$	$\varphi^{\dagger}\varphi\widetilde{G}^{A}_{\mu u}G^{A\mu u}$	Q_{eB}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \varphi B_{\mu\nu}$	$Q_{\varphi l}^{(3)}$	$(\varphi^{\dagger} i \overleftrightarrow{D}_{\mu}^{I} \varphi) (\bar{l}_{p} \tau^{I} \gamma^{\mu} l_{r})$	
$Q_{\varphi W}$	$\varphi^\dagger \varphi W^I_{\mu \nu} W^{I \mu \nu}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \widetilde{\varphi} G^A_{\mu\nu}$	$Q_{arphi e}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{e}_{p}\gamma^{\mu}e_{r})$	
$Q_{\varphi \widetilde{W}}$	$\varphi^{\dagger}\varphi \widetilde{W}^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \widetilde{\varphi} W^I_{\mu\nu}$	$Q_{arphi q}^{(1)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{q}_{p}\gamma^{\mu}q_{r})$	
$Q_{\varphi B}$	$\varphi^{\dagger}\varphiB_{\mu\nu}B^{\mu\nu}$	Q_{uB}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \widetilde{\varphi} B_{\mu\nu}$	$Q_{\varphi q}^{(3)}$	$(\varphi^{\dagger} i \overleftrightarrow{D}_{\mu}^{I} \varphi) (\bar{q}_{p} \tau^{I} \gamma^{\mu} q_{r})$	
$Q_{arphi\widetilde{B}}$	$\varphi^{\dagger}\varphi\widetilde{B}_{\mu\nu}B^{\mu\nu}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu} T^A d_r) \varphi G^A_{\mu\nu}$	$Q_{\varphi u}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}u_{r})$	
$Q_{\varphi WB}$	$\varphi^{\dagger} \tau^I \varphi W^I_{\mu\nu} B^{\mu\nu}$	Q_{dW}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi d}$	$(\varphi^{\dagger} i \overleftrightarrow{D}_{\mu} \varphi) (\bar{d}_{p} \gamma^{\mu} d_{r})$	
$Q_{\varphi \widetilde{W}B}$	$\varphi^{\dagger} \tau^{I} \varphi \widetilde{W}_{\mu\nu}^{I} B^{\mu\nu}$	Q_{dB}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \varphi B_{\mu\nu}$	$Q_{\varphi ud}$	$i(\widetilde{\varphi}^{\dagger}D_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}d_{r})$	

	$(\bar{L}L)(\bar{L}L)$		$(\bar{R}R)(\bar{R}R)$	$(\bar{L}L)(\bar{R}R)$				
Q_{ll}	$(\bar{l}_p\gamma_\mu l_r)(\bar{l}_s\gamma^\mu l_t)$	Q_{ee}	$(\bar{e}_p \gamma_\mu e_r)(\bar{e}_s \gamma^\mu e_t)$	Q_{le}	$(\bar{l}_p \gamma_\mu l_r)(\bar{e}_s \gamma^\mu e_t)$			
$Q_{qq}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{q}_s \gamma^\mu q_t)$	Q_{uu}	$(\bar{u}_p \gamma_\mu u_\tau)(\bar{u}_s \gamma^\mu u_t)$	Q_{lu}	$(\bar{l}_p \gamma_\mu l_r)(\bar{u}_s \gamma^\mu u_t)$			
$Q_{qq}^{(3)}$	$(\bar{q}_p\gamma_\mu\tau^Iq_r)(\bar{q}_s\gamma^\mu\tau^Iq_t)$	Q_{dd}	$(\bar{d}_p \gamma_\mu d_r)(\bar{d}_s \gamma^\mu d_t)$	Q_{ld}	$(\bar{l}_p \gamma_\mu l_r)(\bar{d}_s \gamma^\mu d_t)$			
$Q_{lq}^{(1)}$	$(\bar{l}_p \gamma_\mu l_r)(\bar{q}_s \gamma^\mu q_t)$	Q_{eu}	$(\bar{e}_p \gamma_\mu e_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{qe}	$(\bar{q}_p \gamma_\mu q_r)(\bar{e}_s \gamma^\mu e_t)$			
$Q_{lq}^{(3)}$	$(\bar{l}_p\gamma_\mu\tau^Il_r)(\bar{q}_s\gamma^\mu\tau^Iq_t)$	Q_{ed}	$(\bar{e}_p \gamma_\mu e_r)(\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{u}_s \gamma^\mu u_t)$			
		$Q_{ud}^{(1)}$	$(\bar{u}_p \gamma_\mu u_r)(\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r)(\bar{u}_s \gamma^\mu T^A u_t)$			
		$Q_{ud}^{(8)}$	$(\bar{u}_p \gamma_\mu T^A u_r)(\bar{d}_s \gamma^\mu T^A d_t)$	$Q_{qd}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{d}_s \gamma^\mu d_t)$			
				$Q_{qd}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{d}_s \gamma^\mu T^A d_t)$			
$(\bar{L}R)$	$(\bar{R}L)$ and $(\bar{L}R)(\bar{L}R)$	B-violating						
Q_{ledq}	$(ar{l}_p^j e_r) (ar{d}_s q_t^j)$	$Q_{duq} \qquad \qquad \varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\left[(d_p^\alpha)^TCu_r^\beta\right]\left[(q_s^{\gamma j})^TCl_t^k\right]$						
$Q_{quqd}^{(1)}$	$(\bar{q}_p^j u_r) \varepsilon_{jk} (\bar{q}_s^k d_t)$	Q_{qqu}	$\varepsilon^{lphaeta\gamma} arepsilon_{jk} \left[(q_p^{lpha j})^T C q_r^{eta k} ight] \left[(u_s^{\gamma})^T C e_t ight]$					
$Q_{quqd}^{(8)}$	$(\bar{q}_p^j T^A u_r) \varepsilon_{jk} (\bar{q}_s^k T^A d_t)$	$Q_{qqq}^{(1)}$	$\varepsilon^{\alpha\beta\gamma} \varepsilon_{jk} \varepsilon_{mn} \left[(q_p^{\alpha j})^T C q_r^{\beta k} \right] \left[(q_s^{\gamma m})^T C l_t^n \right]$					
$Q_{lequ}^{(1)}$	$(\bar{l}_p^j e_r) \varepsilon_{jk} (\bar{q}_s^k u_t)$	$Q_{qqq}^{(3)}$	$\varepsilon^{\alpha\beta\gamma}(\tau^I\varepsilon)_{jk}(\tau^I\varepsilon)_{mn}$	$\left[(q_p^{\alpha j})^T C q_r^{\beta k} \right] \left[(q_s^{\gamma m})^T C l_t^n \right]$				
$Q_{lequ}^{(3)}$	$(\bar{l}_p^j\sigma_{\mu\nu}e_r)\varepsilon_{jk}(\bar{q}_s^k\sigma^{\mu\nu}u_t)$	Q_{duu}	$\varepsilon^{\alpha\beta\gamma}\left[(d_p^{\alpha})^T\right]$	Cu_r^{β} $\left[(u_s^{\gamma})^T Ce_t\right]$				

- Top EFT
- Global top EFT fits

Top-quark operators and how to look for them

Operators entering various processes: A strategy is needed

Input from the LHCTopWG

Interpreting top-quark LHC measurements in the standard-model effective field theory

```
J. A. Aguilar Saavedra, <sup>1</sup> C. Degrande, <sup>2</sup> G. Durieux, <sup>3</sup>
F. Maltoni, <sup>4</sup> E. Vryonidou, <sup>2</sup> C. Zhang<sup>5</sup> (editors),

D. Barducci, <sup>6</sup> I. Brivio, <sup>7</sup> V. Cirigliano, <sup>8</sup> W. Dekens, <sup>8,9</sup> J. de Vries, <sup>10</sup> C. Englert, <sup>11</sup>
M. Fabbrichesi, <sup>12</sup> C. Grojean, <sup>3,13</sup> U. Haisch, <sup>2,14</sup> Y. Jiang, <sup>7</sup> J. Kamenik, <sup>15,16</sup>

M. Mangano, <sup>2</sup> D. Marzocca, <sup>12</sup> E. Mereghetti, <sup>8</sup> K. Mimasu, <sup>4</sup> L. Moore, <sup>4</sup> G. Perez, <sup>17</sup>
T. Plehn, <sup>18</sup> F. Riva, <sup>2</sup> M. Russell, <sup>18</sup> J. Santiago, <sup>19</sup> M. Schulze, <sup>13</sup> Y. Soreq, <sup>20</sup>
A. Tonero, <sup>21</sup> M. Trott, <sup>7</sup> S. Westhoff, <sup>18</sup> C. White, <sup>22</sup> A. Wulzer, <sup>2,23,24</sup> J. Zupan. <sup>25</sup>
```

Abstract

This note proposes common standards and prescriptions for the effective-field-theory interpretation of top-quark measurements at the LHC.

arXiv:1802.07237

Top EFT note

Contents

- 1 Introduction
- 2 Guiding principles
- 3 Operator definitions
- 4 Flavour assumptions
- 5 Example of EFT analysis strategy
- 6 Summary and outlook
- A Indicative constraints
- B UFO models
- C Flavour-, B- and L-conserving degrees of freedom
- D Less restrictive flavour symmetry
- E FCNC degrees of freedom

arXiv:1802.07237

Benchmark results for 13 TeV

		$pp o t ar{t}$	pp o t ar t b ar b	pp o t ar t t ar t	$m \rightarrow t\bar{t} + \cdots$	$pp \rightarrow t\bar{t} e^+e^-$	$pp o t ar t \gamma$	pp o t ar t h
SM	sm	$\frac{pp \to tt}{5.2 \times 10^2 \text{ pb}}$	$\frac{pp \to tt bb}{1.9 \text{ pb}}$	$pp \rightarrow tt tt$ 0.0098 pb	$\frac{pp \to tt \ e^+ \nu}{0.02 \text{ pb}}$	$\frac{pp \to tt e^+ e^-}{0.016 \text{ pb}}$	$\frac{pp \to tt \gamma}{1.4 \text{ pb}}$	$\frac{pp \to tt h}{0.4 \text{ pb}}$
	cQQ1	-0.25	-1.9 pb	-1×10^{2}	0.02 pb	-1.6	-0.67	-0.71
c_{QQ}	cQQ8	-0.25 -0.16	-3.2	-1×10 -34		-0.91	-0.57	-0.71 -0.27
c_{QQ}	cQt1	-0.16 -0.15	-5.2 -5.6	1×10^{2}		-0.91 -0.76	-0.19	-0.27 -0.55
c_{Qt}							-0.19 -0.095	
c_{Qt}	cQt8	-0.053	-1.8	-41 0.050		-0.18		-0.15
c_{Qb}	cQb1	-0.0055	0.72	-0.052		-0.015	-0.007	-0.026
c_{Qb}	cQb8	0.14	3.9	0.12 -1.8×10^{2}		0.35	0.16	0.56
c_{tt}	ctt1	-0.0095	0.46			-0.02	-0.026	-0.039
c_{tb}	ctb1	0.13		-0.059			-0.026 0.31	
c_{tb}	ctb8 cQtQb1	0.15	3.5	0.11		0.26	0.31	0.56
c_{QtQb}								
c_{QtQb}	cQtQb8 cQtQb1I							
$_{-8I}^{CQtQb}$								
$\frac{c_{QtQb}}{3.8}$	cQtQb8I	9.7	0.11	4.7	05	20	0 =	15
$\begin{array}{c} c_{QQQ} \\ c_{QQ} \\ c_{Q$	cQq83	2.7	-0.11		-85	-20	8.5	15
c_{Qq}	cQq81	12	7.1	25	2.6×10^2	71	40	75 74
c_{tq}	ctq8	13	8.2	27	2.6×10^2	62	51	74
c_{Qu}	cQu8	7.4	4.4	18		21	41	44
c_{tu}°	ctu8	7.4	3	16		14	22	45
c_{Qd}°	cQd8	5	3	11		17	7.3	29
c_{td}°	ctd8	5	2.1	10	4.4.4.02	12	10	28
$c_{Qq}^{\circ,1}$	cQq13	3.3	3	5.8	1.1×10^2	22	11	18
$c_{Qq}^{\scriptscriptstyle 1,1}$	cQq11	0.94	-1.4	-7.7	-5.9	-5	3	5.4
c_{tq}^1	ctq1	0.65	2.4	-7.9	8.7	0.84	3.7	4.8
c_{Qu}^1	cQu1	0.57	1.5	-5.2		1.5	2.9	4.3
$c_{tu}^{\scriptscriptstyle 1}$	ctu1	1.1	-0.29	-3.8		2.3	3.3	6.6
c_{Qd}^1	cQd1	-0.19	0.55	-4		-0.66	-0.3	-1.4
c_{td}^1	ctd1	-0.37	-1.3	-5		-0.91	-1.3	-2.1
c_{tarphi}	ctp		-0.00035	-9.1	-0.034	-0.0093		-1.2×10^{2}
$c_{arphi Q}^-$	cpQM	-0.063	1	-41	-0.76	-1×10^2	-0.13	-0.29
$c_{\varphi Q}^3$	cpQ3	0.68	22	0.065	0.46	3.7	1.5	1.8
$c_{arphi t}$	cpt	-0.024	2.8	42	-0.36	68	-0.058	-0.16
$c_{\varphi tb}$	cptb	0.00		2.4	4.2		0.0	0.4
c_{tW}	ctW	0.98	1	-34	13	1.1	69	9.4
c_{tZ}	ctZ	-0.54	0.028	27	-0.048	-3.6	-55	-4.3
c_{bW}	cbW	2.7×10^2	0.5 \(\tau \) 102	9 9 5 102	0.4 × 102	9.1 - 102	0.4 \(\tau \)	9.4 > 102
c_{tG}	ctG	2.7×10^{2}	2.5×10^{2} -7.3×10^{-7}	3.8×10^{2} 0.045	2.4×10^2 -0.00064	3.1×10^2 -0.00029	2.4×10^2	8.4×10^{2} 0.045
$c_{t\varphi}^{C_{t\varphi}}$	ctpI		-1.3 X 10 '	0.040	-0.00064	-0.00029		0.045
$c_{\varphi tb}$	cptbI	4.8×10^{-6}	0.022	-1.6	_0.10	0.20	0.91	0.031
c_{tW}^{C}	ctWI	-1.4×10^{-6}	0.032		-0.19	0.29		
c_{tZ}^{C}	ctZI	-1.4 × 10	0.1	-1.2	0.0098	3.2	-0.56	-0.057
c^{I}	cbWI ctGI	-0.00098	0.48	0.66	0.031	-0.7	0.019	-2.4
$\begin{array}{c} c_{tG} \\ c_{t\varphi}^{I} \\ c_{t\varphi}^{J} \\ c_{tW}^{J} \\ c_{tZ}^{I} \\ c_{tG}^{J} \\ c_{tG}^{J} \\ c_{Ql}^{3(1)} \\ c_{Ql}^{-(1)} \\ c_{Ql}^{(1)} \\ c_{Ql}^{-(1)} \\ c_{Ql}^{(1)} \\ c_{te}^{-(1)} \\ c_{te}^{-(1)} \end{array}$		-0.00090	0.40	0.00			0.019	-2.4
c_{Ql}	cQ131				0.011	0.06		
$c_{Ql}^{-(1)}$	cQ1M1				-0.0062	-9.8		
$c_{Qe}^{(1)}$	cQe1					-1.5		
$c_{tl}^{(1)}$	ctl1				-0.0023	-3.6		
$c_{ts}^{(1)}$	cte1	0 KV!	"40C	\sim		-6.7		
70		arxiv	/:18 0	JZ.()	1231			
		J ., , , ,						

Results at 13 TeV for all degrees of freedom for each process including interference $(1/\Lambda^2)$ and squared terms $(1/\Lambda^4)$, interference between operators

Public UFO for top EFT

https://feynrules.irmp.ucl.ac.be/wiki/dim6top

What's next?

Use SMEFT to parametrise and look for deviations from SM predictions

Use as many experimental measurements as possible Cross-sections+differential distributions

Need for precision calculations
Automated tools
for the EFT

Use the best SM predictions QCD/EW corrections

How can we improve EFT predictions?

SMEFT@NLO

- Mixing between operators: anomalous dimension matrix: Jenkins et al arXiv:1308.2627,1310.4838, Alonso et al. 1312.2014
- Additional operators at NLO: e.g. chromomagnetic dipole in single top production

Recent progress in top physics:

- top pair Franzosi and Zhang (arxiv:1503.08841)
- single top Zhang (arxiv:1601.06163), de Beurs, Laenen, Vreeswijk, EV (arXiv:1807.03576)
- ttZ/γ Bylund, Maltoni, Tsinikos, EV, Zhang (arXiv:1601.08193)
- ttH Maltoni, EV, Zhang (arXiv:1607.05330)
- tZ/Hj Degrande, Maltoni, Mimasu, EV, Zhang (arXiv:1804.07773)

All automated within MadGraph5_aMC@NLO R2+UV counterterms: NLOCT Degrande (arxiv:1406.3030)

Towards a complete implementation@NLO

Based on:

- Warsaw basis
- Degrees of freedom for top operators as in dim6top

Current status:

- 73 degrees of freedom (top, Higgs, gauge):
 - CP-conserving
 - Flavour assumption: U(2)Q x U(2)u x U(3)d x U(3)L x U(3)e
- Successful validation at LO with dim6top (in turn validated with SMEFTsim)
- 0/2F@NLO operators validated (with previous partial NLO implementations) http://feynrules.irmp.ucl.ac.be/wiki/SMEFTatNLO
- 4F@NLO operators validation: on-going

Future plans

- Full NLO model release (4F@NLO)
- Other flavour assumptions
- CP-violating effects

Work in progress with:

C. Degrande, G. Durieux, F. Maltoni, K. Mimasu, C. Zhang

- Top EFT
- Global top EFT fits

A global top fit@NLO

								2		4			
		l		_	· · · · · · · · · · · · · · · · · · ·			P(Λ ⁻²)				-5.7	_
Class	Notation	Degree of Freedom	Operator Definition	tt	single-top	tW	tZ	ttW	ttZ	ttΉ	titi	ttbb	<u>b</u>
	0001	c_{QQ}^1	$2C_{qq}^{1(3333)} - \frac{2}{3}C_{qq}^{3(3333)}$								✓	✓	
	0008	c_{QQ}^{\dagger}	$8C_{qq}^{3(3333)}$								✓	✓	Top quark pair tW tZ
	OQt1	c_{Qt}^1	$C_{qu}^{1(3333)}$								✓	✓	u d
	0Qt8	c ⁸ Q₁	$C_{qu}^{8(3333)}$								✓	✓	$W \sim \frac{W}{W}$
QQQQ	0Qъ1	c_{Qb}^1	$C_{qd}^{1(3333)}$									✓	\$ 00000 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	одъв	c_{Qb}^8	$C_{qd}^{8(3333)}$									✓	
	Ott1	c_{tt}^1	$C_{uu}^{(3333)}$								✓		
	Otb1	c_{tb}^1	$C_{ud}^{1(3333)}$									✓	\bar{t}
	Otb8	c_{tb}^8	$C_{ud}^{8(3333)}$									✓	Single top (t-channel) Single top (s-channel)
	OQtQb1	c^1_{QtQb}	$C_{quqd}^{1(3333)}$									✓	\ q
	OQtQb8	$c_{Q_tQ_b}^8$	$C_{quqd}^{8(3333)}$									✓	
	081qq		$C_{qq}^{1(i33i)} + 3C_{qq}^{3(i33i)}$	·	<u> </u>	<u> </u>	l	√	√	✓	1	1	$ \sqrt{b}$ \sqrt{b} \sqrt{b}
	011qq	$c_{Qq}^{1,8} \ c_{Qq}^{1,1}$	$C_{qq}^{1(ii33)} + \frac{1}{6}C_{qq}^{1(ii33i)} + \frac{1}{2}C_{qq}^{3(ii33i)}$					(√)	(√)	(√)	1	1	
	083qq	~Qq ,3,8	$C_{qq}^{1(i33i)} - C_{qq}^{3(i33i)}$	V	(√)		(√)	V	V	V	1	1	
	013qq	$c_{Qq}^{3,8}$ $c_{Qq}^{3,1}$	$C_{qq}^{3(ii33)} + \frac{1}{6}(C_{qq}^{1(i33i)} - C_{qq}^{3(i33i)})$	(v)	√		√	(v)	(v)	(v)	7	1	\leq \bar{t}
	08qt	c_{lq}^8	$C_{qu}^{8(ti33)}$	V	'		'	(·)	√	(v)	7	1	
	Oiqt		$C_{qu}^{1(ii33)}$	(v)				(v)	(v)	(v)	7	1	
	08ut	c_{tq}^1 c_{tu}^8	2C(1331)	√				(•)	√	(v)	7	1	
QQqq	Oiut	c_{tu}^1	$C_{uu}^{(ii33)} + \frac{1}{3}C_{uu}^{(i33i)}$	(v)					(v)	(v)	1	1	ttW ttZ ttH
	08qu		C _{qu} 7 3 0 uu C _{qu} 8(3311)	V					V	<i>(</i> ,)	1	1	
	01qu	c_{Qu}^8	$C_{qu}^{1(3366)}$	(v)					(v)	(v)	1	1	t 000000 t
	08dt	c_{Qu}^{b} c_{td}^{s}	C 8(3311)	V					√	(·)	1	1	
	01dt	c_{td}^1	$C_{ud}^{1(33si)}$	(v)					(v)	(v)	1	1	$d \downarrow \qquad \qquad \searrow \longrightarrow -H$
	08qd	c_{Qd}^8	C 8(3366)	V					V	(•)	1	1	\bar{t}
	01qd	c_{Qd}^1	$C_{qd}^{1(3366)}$	(v)					(√)	(√)	1	1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
		l I		√	<u> </u>		<u> </u> 	<u> </u>	ı				$\underline{\hspace{0.1cm}}$
	OtG	c_{lG}	$\text{Re}\{C_{uG}^{(33)}\}$	•	,	1	,	·	√	*	√	*	
	OtW	CtW	$\text{Re}\{C_{uW}^{(33)}\}\$ $\text{Re}\{C_{dW}^{(33)}\}$		(0)	(0)	V						
	ObW Ob7	CHW	$Re\{C_{dW'}\}$ $Re\{-s_W C_{uB}^{(33)} + c_W C_{uW}^{(33)}\}$		(√)	(√)			,				Rich phenomenology
$QQ + V, G, \varphi$	OtZ Off	QZ			10	10	V		✓				r tion priorioriology
$QQ + V, G, \varphi$	Off	C _{φtb}	${ m Re}\{C_{arphi ud}^{(33)}\} \ C_{arphi q}^{(33)}$		(√)	(√)	(√)						
	Ofq3	$c_{\varphi Q}^{3}$			✓	~	'						
	OpQM	$c_{arphi Q}^-$	$C_{\varphi q}^{1(33)} - C_{\varphi q}^{3(33)}$ $C_{\varphi q}^{(33)}$				'		V				
	Opt	$c_{\varphi t}$	$C_{\varphi u}^{(33)}$				V		✓				
	Otp	$c_{t\varphi}$	$\operatorname{Re}\{C_{u\varphi}^{(33)}\}$							✓		<u> </u>	_

34 d.o.f.

CP-conserving

Hartland, Maltoni, Nocera, Rojo, Slade, EV and Zhang, arXiv:1901.05965

Global fit Setup

Theory

(N)NLO QCD+ NLO EW for SM NLO QCD for SMEFT State-of-the-art PDFs without top data

Data

Top pair production and single top (differential)
Associated production with W,Z,H
W helicity fractions
Parton-level

Global SMEFT fit of the top-quark sector

Based on NNPDF
Faithful uncertainty estimate
Avoid under- and over-fitting
Validated on pseudo-data (closure test)

Methodology

Fit results can be used to bound specific UV complete models
New data can be straightforwardly added Plan to extend to Higgs, gauge sector etc

Output

Observables and theory predictions

Data

Top-pair production W-helicities

4 tops, ttbb, toppair associated production

> Single top t-channel, schannel, tW, tZ

Dataset	n_{dat}
${\tt ATLAS_tt_8TeV_1jets} \; [\; m_{t\bar{t}} \;]$	7
CMS_tt_8TeV_ljets [y_t]	10
$\texttt{CMS_tt2D_8TeV_dilep} \ \left[\ (m_{t\bar{t}}, y_t) \ \right]$	16
CMS_tt_13TeV_1jets2 [$y_{t\bar{t}}$]	8
CMS_tt_13TeV_dilep [$y_{t\bar{t}}$]	6
CMS_tt_13TeV_1jets_2016 [y_t]	11
ATLAS_WhelF_8TeV	3
CMS_WhelF_8TeV	3
CMS_ttbb_13TeV	1
CMS_tttt_13TeV	1
ATLAS_tth_13TeV	1
CMS_tth_13TeV	1
ATLAS_ttZ_8TeV	1
ATLAS_ttZ_13TeV	1
CMS_ttZ_8TeV	1
CMS_ttZ_13TeV	1
ATLAS_ttW_8TeV	1
ATLAS_ttW_13TeV	1
CMS_ttW_8TeV	1
CMS_ttW_13TeV	1
CMS_t_tch_8TeV_dif	6
$ATLAS_t_th_8TeV[y_t]$	4
$ATLAS_t_th_8TeV[y_i]$	4
ATLAS_t_sch_8TeV	1
${\tt CMS_t_tch_13TeV_dif} \; [\; y_t \;]$	4
CMS_t_sch_8TeV	1
ATLAS_tW_inc_8TeV	1
CMS_tW_inc_8TeV	1
ATLAS_tW_inc_13TeV	1
CMS_tW_inc_13TeV	1
ATLAS_tZ_inc_13TeV	1
CMS_tZ_inc_13TeV	1
Total	102

One distribution from each dataset, to avoid double counting

Theoretical predictions

Process	SM	SMEFT		
tĒ	NNLO QCD	NLO QCD		
single-t (t-ch)	NNLO QCD	NLO QCD		
single-t (s-ch)	NLO QCD	NLO QCD		
tW	NLO QCD	NLO QCD		
tZ	NLO QCD	LO QCD + NLO SM K-factors		
$t\bar{t}W(Z)$	NLO QCD	LO QCD + NLO SM K-factors		
tīh	NLO QCD	LO QCD + NLO SM K-factors		
tītī	NLO QCD	LO QCD + NLO SM K-factors		
$t\bar{t}b\bar{b}$	NLO QCD	LO QCD + NLO SM K-factors		

Baseline fit includes:

- Best available SM predictions
- NLO EFT predictions
- $O(1/\Lambda^4)$ terms

Methodology

- Based on the MC replica method used by NNPDF for PDF fits
 - Construct sampling of the probability distribution in the data space.
 - Sampling of the probability distribution in the SMEFT space by minimising the error function.

$$E(\{c_l^{(k)}\}) \equiv \frac{1}{N_{\text{dat}}} \sum_{i,j=1}^{N_{\text{dat}}} \left(\mathcal{O}_i^{(\text{th})} \Big(\{c_l^{(k)}\} \Big) - \mathcal{O}_i^{(\text{art})(k)} \Big) (\text{cov}^{-1})_{ij} \Big(\mathcal{O}_j^{(\text{th})} \Big(\{c_l^{(k)}\} \Big) - \mathcal{O}_j^{(\text{art})(k)} \Big)$$

- Cross validation to avoid over-fitting: for each replica, the data is randomly split with equal probability into the training and validation sets. The latter is monitored during the fit, to avoid over-fitting.
- Closure test: feed pseudo-data generated with known EFT parameters to the fit, and ensure that the fit reproduces the correct parameters.

Global top EFT fit@NLO

First limits reported for some operators Improvement for some operators: e.g. O_{tG} , O^{83}_{qq} , O_{bW} Individual limits more stringent than marginalised ones

Hartland, Maltoni, Nocera, Rojo, Slade, EV and Zhang, arXiv:1901.05965

Correlations between EFT coefficients

Strong (anti-)correlations between different operators (ignored by individual constraints)

Some considerations

- $1/\Lambda^2$ vs $1/\Lambda^4$ contributions
 - 1/Λ² suppressed due to helicity Azatov et al arXiv:1607.05236
 - 1/Λ⁴ can be large for loosely constrained operator coefficients/strongly coupled theories

$$C_i^2 \frac{E^4}{\Lambda^4} > C_i \frac{E^2}{\Lambda^2} > 1 > \frac{E^2}{\Lambda^2}$$

E< Λ satisfied but O(1/ Λ ⁴) large for large operator coefficients

- Validity of the EFT expansion: E<Λ
 - Ensure results are not dominated by high energy regions
 - report limits as a function of the max scale probed Contino et al arXiv: 1604.06444

Impact of higher-order terms

Fit allows to check the impact of NLO QCD corrections and of including the O($1/\Lambda^4$) terms

Non-trivial impact of the two effects, can be different operatorby-operator

Hartland, Maltoni, Nocera, Rojo, Slade, EV and Zhang, arXiv:1901.05965

High-energy behaviour

m_{tt} distribution (bins above 1 TeV)

Use ytt as a check

Summary & Outlook

- NLO SMEFT implementation:
 - Imminent release of SMEFT@NLO with 73 d.o.f's
 - http://feynrules.irmp.ucl.ac.be/wiki/SMEFTatNLO
 - Extensively validated and user friendly
- First application of the NLO implementation:
 - A global fit in the top sector
 - NLO SMEFT predictions
 - Wide range of LHC top data
 - Robust and reliable fitting procedure based on NNPDF methodology
- Extension of the fit to include EWPO, Higgs, diboson, VBS data is straightforward and constitutes the next step
- Fitting UV models a posteriori under study