Protons see Crabs

-6 -1

1 -1

Ó

t [ns]

0 t [ns]

1

Overview of Crab Cavities for HL-LHC

HL-LHC WP4, CERN

International Review of the Crab Cavity system design and production plan for the HL-LHC

Big thanks to BE, EN, TE, HSE, IPT departments & Canada, UK, US collaborations and all involved

WP04-CC Scope

16 SC compact crab cavities to partially compensate the geometric angle (500 μrad) at ATLAS+CMS. Beam tests in the SPS protons

TDR-Basic Parameters

- Frequency = 400.79 MHz
- Aperture = 84 mm
- Voltage = 3.4 MV /cavity (2 cavities /beam /IP side 16 total*)
- Frequency tuning = $\pm 150 \text{ kHz}$
- $Q_{ext} = 5 \times 10^5$, RF power to cavity = 40 kW (80 kW peak)
- $P_{\text{static}} = 18 \text{ W}, P_{\text{dyn}} \le 30 \text{ W} \text{ (per module)}$
- Operating temperature = 2.0 K

Workpackage Structure

Past Reviews & Outcome

- May 2014: Cavity design review
 - Led to down selection to 2 cavities (DQW, RFD) for SPS-test/LHC
- Feb 2015: 1st HOM coupler review
- Mar 2015: Cost & Schedule review I
 - Study the effect of only ½ of system (16 instead of 32)
- May 2015: CERN-STFC Helium vessel review
- Nov 2015: SPS Cryomodule review
 - Develop minimum goal for SPS tests, review individual critical components, integrated production/test planning including infrastructure
- Oct 2016: Clean room assembly review
- Oct 2016: Cost & Schedule review II
 - Reduction to ½ system, HPRF 40 kW-CW
- Nov 2016: Operational safety review in SPS
- April 2017: Crab cavity performance review for HL-LHC
 - Perform SM18 tests prior to SPS installation with minimum success criteria, establish formal agreements, specifications, acceptance criteria and interfaces
- Mar 2018: Cost & Schedule review III
 - Endorsed with new strategy (UK, US-AUP, Canada)

Mandate for 2019 Review

- CQ1: SPS-CC experience & lessons learned to be implemented into HL-LHC CC
- CQ2: SPS beam tests & extrapolation to HL-LHC, open questions ? Readiness of RFD pre-series cryomodule?
- CQ3: Readiness for series production? Open points being addressed implying changes
- CQ4: Status of HPRF, LLRF and other auxiliary components, do we need further attention over the coming years?
- CQ5: Baseline schedule including collaborations w.r.t HL-LHC schedule? Management of in-kind and preparations for work framework – risks for production/testing ?
- CQ6: Is CERN ready to finalize the agreements (status of acceptance criteria & procedures of different sub-components)
- CQ7: QA/QC and risks for deliverables between partner labs

Agenda of this Review

- Introduction
 - Overview of main systems + integration/interfaces
- SPS-tests Hardware & Beam Experience
- HL-LHC Pre-Series status & Series preparation
- HL-LHC main interfaces & integration
- Specifications, norms, conformity & safety

Reminder: Dressed Cavity Geometries

Double Quarter Wave

RF Dipole

Vertical Cavity Tests (6 Cavities)

Nominal Spec $V_{kick} = 3.4 \text{ MV}$

		DQW #1 (CERN)	DQW #2 (CERN)	DQW #1 (USLARP)	DQW #2 (USLARP)	RFD #1 (USLARP)	RFD #2 (USLARP)
Max Volt	[MV]	5.04	4.8	5.8	5.3	5.0	5.75
E_p , B_p [MV/r	m, mT]	56, 109	54, 103	65, 125	59, 114	42, 73	56, 96
R _s min	[nΩ]	10	10	9	9.5	11	7.6
<i>R_s</i> , 3.4MV	[nΩ]	15	18	15	17	13	8.2
Max Volt with HOM	[MV]	3.3*	-	-	4.7	-	5.5

* Voltage limit for SPS-DQW with HOMs due to inadequate BCP of HOMs

USLARP DQW & RFD

 \cap

Summary of SPS-test Experience

- Bare cavity performance is +50% of the nominal voltage
 - In SM18 dressed cavities exhibited limit ~3MV, now understood
 - Performance of the SPS-test module limited to 1MV for machine developments, 2MV stable
- First crabbing of protons demonstrated. Main aspects such as transparency, beam loading, emittance growth, crab dispersion and other aspects studied – no show stopper
- Several hardware limitations: direct beam coupling, pondermotive instabilities, RF non-linearity at low power, RF/Cryo/Vacuum stability beyond 2MV..
- Consolidation of SPS test stand underway during LS2 with 2021 operation of DQW and 2022 RFD

Main Modifications since SPS-test

Cavity design evolution

- RFD cavity design updated for reduction in HOM power from most dangerous HOM at 760 MHz, DQW HOM coupler improved for better damping
- DQW & RFD field antenna design change to reduce direct beam coupling, including modification to 25 Ω for all RF feedthroughs
- RFD-Cryomodule prototype fully compatible HL-LHC (Cryogenics, Vacuum & RF interfaces)
- Strong effort towards solid state for HPRF
- LLRF improvements for faster RF setup & migration from VME $\rightarrow \mu$ TCA beyond LS2

Highlights, since last review

- DQW-SPS prototype demonstrates with <u>first ever crabbing with protons</u>, transparency & high intensity demonstrated. Detailed studies will continue in 2021
- DQW-HL-LHC jacketed cavities contract with RI signed & ongoing
- DQW-HL-LHC cryostating in final stages of negotiation for building 1-CERN and 4-UK
- RFD-SPS test cavity fabrication started at CERN, cryostating to be performed at UK and the conceptual design is almost complete
- RFD-HL-LHC dressed cavities in-kind contribution from US-AUP with CD2 approval & progressing well
- RFD-HL-LHC cryostating as in-kind from Canada-TRIUMF, detailed agreement in preparation
- Discussions ongoing with Novosibirsk for an in-kind contribution of high power RF amplifiers using solid state technology
- Big effort on integration for HL-LHC, including design adapted for left/right IP symmetry and IR1/5 swappable option

WP4 Planning & Collaborations

- Update strategy & planning in place since last review including 3+ collaborations
- In-kind contributions
 - UK1 RFD-Cryomodule prototype with CERN providing dressed cavities & partial components
 - US-AUP 10 RFD dressed cavities (He-tank, HOMs, Field Ant, Cold B-shields)
 - UK2 4-DQW cryomodules with CERN providing dressed cavities & partial components
 - TRIUMF 5-RFD cryomodules with US-AUP providing dressed cavities and CERN with partial components
 - Novosibirsk Proposal to provide SSPA amplifiers jointly with Russian industrial partner – pending final approval

Masterplan WP4-CC

WP4, Documentation QA/QC

EDMS/MTF WP4 - <u>CERN-0000096385</u>

- Centrally managed (specifications, drawings, manufacturing inspection plans, test procedures, results, quality control)
- Strategy for compliance: An engineering specification along with specification drawing (where applicable) for each main component. Also includes acceptance criteria
- Safety folder (SPS-test & HL-LHC)

Specification Documents	Document Number	Status	
Dressed cavities	EDMS 1389669	V2.49 final editing	
Cryomodule	EDMS 2043014	V0.1 for WP4 internal circulation	
SSA System Safety Assessment	EDMS 2010001	V0.13 Engineering check	
Guidelines for compliance with CERN safety rules	EDMS 2058183	V0.2 Eng. Check + Memo from HSE to WP4	

Summing Up

- SPS-test Crab Cavities
 - Despite many hurdles, a monumental effort was put in to conclude 2018 beam tests a success – hunt for higher voltage and beam current in 2021
 - Many lessons learned are being implemented for RFDprototype jointly with UK & US, it is on schedule for 2022 SPS tests
- HL-LHC Crab Cavities
 - RI-DQW pre-series contract progressing well, RFD industrial prototypes under US-AUP progressing well. SSPA with Novosibirsk looks very promising
 - Challenging year to consolidate the detailed specifications, responsibilities between CERN and external partners and adapt planning
 - Communication between CERN & external partners has ramped up significantly in 2019 – very healthy sign

Thank You !

https://videos.cern.ch/record/ (2631455, 2631454, 2630818)

HL-LHC Cryomodule Layout

- RFD-proto already HL-LHC type
- Both types of cryomodules integrated in the IR
- 1-spare module per type (or IR) with left/right symmetry. Also swappable between IRs
- Integration & interfaces with all services in advanced stage

P. Fessia et al

