

US Contribution to SPS Crab Cavity Prototypes and Lessons Learned

Alessandro Ratti - SLAC for the LARP and AUP collaboration

Lancaster

Review of CC System Design and Production Plan – Jun 19th–21st; 2019

Jefferson Lab

DMINION UNIVERSITY

Outline

- A historic perspective of crab cavities in LARP
- Cavity development path and processes
- Production history and results
- Test results of all LARP cavities
- Summary of major program accomplishments

Historic Perspective

- CC proposal started before the commissioning of the LHC
 - First CC workshop (CC-08 BNL/LARP/CARE-HHH) held at BNL 24-5 Feb. 2008
 - Motivated by the great benefit in luminosity leveling and coping with the necessary crossing angles in the LHC
 - HL-LHC makes it even more compelling
- Initial challenge → demonstrate sufficient deflecting voltage in the limited space available = Local vs. Global
 - Beampipe separation 40 cm
 - Limited longitudinal space in the IR \rightarrow significant gradients
- Three candidate designs were built and successfully tested by 2013
 - LARP led the DQW and RFD;
 - STFC led the 4-rod cavity
 - All PoP cavities built by Niowave

Initial Cavity System Requirements

Resonance frequency [MHz] 400.79 Bunch length [ns] 1.0 (4 σ) Maximum cavity radius [mm] ≤145 Nominal kick voltage [MV] 3.4 R/Q (assumed, linac convention) [Ω] 400 ~3W (for SPS) Dynamic Load $3 \times 10^{5} - 5 \times 10^{5}$ Q_{ext} (fixed coupling range) RF power [kW] 80 Power coupler OD (50Ω) [mm] 62 LLRF loop delay [µs] ≈1 Cavity detuning [kHz] ≈1.0

First LARP Results – the PoP Program 2008-2013

- Demonstrated EM conceptual design and feasibility
- Not ready for beam
- No peripherals

LARP PoP Test Results 2013

AU

RFD - Proof-of-Principle Design

E Field

AUF

Proof-of-Principle cavity fabricated at Niowave Inc.

Parameters	Value	Units
Frequency of fundamental	400	MHz
Frequency 1 st HOM	590	MHz
Deflecting Voltage (V_t^*)	0.375	M∨
Peak Electric Field (E_{ρ}^{*})	4.02	MV/m
Peak Magnetic Field (B_{ρ}^{*})	7.06	mT
B_p^*/E_p^*	1.76	mT/ (MV/m)
Stored Energy (U)	0.195	J
$[R/Q]_t$	287.0	Ω
Geometrical Factor (G)	140.9	Ω
R _t R _s	4.0×10 ⁴	Ω2
At $E_t^* = 1$ MV/m		-

J. Delayen

De Silva

Bead pull measurements of on axis electric and magnetic field components

Review of CC System Design and Production Plan – Jun 19th–21st; 2019

0.1

z [m]

Measurement

0.5

Simulation

0.3

B Field

-0.1

Two Crab Cavity Designs Selected May 2014

- LARP supported the R&D that led to both designs that are part of the baseline HL-LHC design
- Proof of Principle cavities were built and tested in a VT
 - Successful measurements demonstrated feasibility
- Both LARP designs were chosen to address kicks in the H (CMS) and V (ATLAS) planes.
- Two main reasons to keep both designs:
 - HOMs are a dominant factor
 - different cavities have different spectra
 - Cryomodule integration
 - 90 deg rotations are "easy" only in principle

First LARP Prototype Cavities

- We started a program to build two DQW and two RFDs
 - Complete with tuners, couplers (HOM and pickups) and He tanks
- Funding was not available through LARP
- Cavities were developed through small business grants from DOE to Niowave

Functional Specification for SPS tests

- System Specifications
- Functional parameters
 - Including HOMs, Z…
- Enclosures (incl. materials...)
- Cryogenics
- RF Power incl. couplers
- LLRF
- SPS Integration

Released by CERN in Feb. 2013

Updated for HL-LHC

CERN-ACC-NOTE-2013-003

HiLumi LHC

FP7 High Luminosity Large Hadron Collider Design Study

Scientific / Technical Note

Functional Specifications of the LHC Prototype Crab Cavity System

Baudrenghien, P et al

28 February 2013

The HiLumi LHC Design Study is included in the High Luminosity LHC project and is partly funded by the European Commission within the Framework Programme 7 Capacities Specific Programme, Grant Agreement 284404.

This work is part of HiLumi LHC Work Package 4: Crab cavities.

The electronic version of this HiLumi LHC Publication is available via the HiLumi LHC web site <http://hilumilhc.web.cern.ch> or on the CERN Document Server at the following URL: <http://cds.cern.ch/search?p=CERN-ACC-NOTE-2013-003>

CERN-ACC-NOTE-2013-003

Review of CC System Design and Production Plan – Jun 19th–21st; 2019

QA Requirements for Manufacturing Readiness

Due 1 month before start of manufacturing for CERN approval

#	Requirements
1	Niobium material samples according to Section 3.2
2	Material certificates and quality control of raw materials (including RRR measurements)
3	Material certificates of welding consumables (whenever applicable)
4	Functional and manufacturing drawings (with tolerances)
5	Design reports demonstrating that welds are designed to withstand the specified load cases (refer to Section 3.6.1)
6	 Welding plan including: Welding maps Welding and brazing procedure qualification record including CERN acceptance criteria in Section 4.2 (WPQR and BPQR) Welding and brazing procedure specification (WPS and BPS) Welders performance qualification (GTAW), Welding and Brazing Operators Performance Qualifications (electron-beam welding and vacuum brazing) – WPQ, WOPQ and BOPQ
7	Manufacturing procedures (whenever required in Annex 6.3)
8	Test procedures (whenever required in Annex 6.3)
9	EB welded and vacuum brazed samples according to the requirements specified in Section 3.8.4
10	NDT personnel qualifications
11	Manufacturing and inspection plan (MIP) – list of all manufacturing and quality control operations.
US HL-L AU	Review of CC System Design and Production Plan – Jun 19th–21st; 2019

Initial RFD Cavity Design for SPS

Next HOM is 1.5 times fundamental mode

US HL-LHC

- Multipacting is improved compared to P-o-P cavity
- Surface fields are lower compared to P-o-P cavity
- Shunt impedance higher compared to P-o-P cavity
- Reduced multipoles components with curved poles

 $A_{t}E_{t}^{*} = 1.0 \text{ MV/m}$
 V_{t} 3.4 MV

 E_{p}^{*} 33 MV/m

 B_{p}^{*} 56 mT

FPC & HOM Coupler Designs

- FPC/HOM ports oriented to keep clearance for the second beam pipe
- Couplers at locations of low field region on cavity body
 - Minimizes RF heating on the coupler components
- Location preserves field symmetry

US HL-LHC

- Electrical center moved by only 50 microns
- H-HOM coupler with 30 degree hook orientation with no change to filter elements

Selective coupling (V-HOM) to reduce the number of filters

- 7 mm offset incorporated into the pickup tip to enhance coupling to the dipole modes at around 2GHz
- Small RF power leakage through the coupler, ~1.5W, due to asymmetry
- FPC coupler: $Q_L = 5.0 \times 10^5$
 - Hook shaped coupler reduces RF heating → 69
 W

Zenghai Li, S de Silva, J Delayen

Review of CC System Design and Production Plan – Jun 19th–21st; 2019

Beampipe Assembly Dimensional Control at CERN - some non compliance

Review of CC System Design and Production Plan – Jun 19th–21st; 2019

AUP

Beam Pipe Testing Summary

Assembly and Dimensions:

- Some dimensions are not compliant with spec. tolerances
 - The parallelism between the flange and the ring, and the diameter of the ring are the most relevant tolerances <u>not achieved</u>
- The knife edge is <u>acceptable</u>

Welding and brazing:

- Radiographic tests were <u>acceptable</u>
- Metallurgic tests were <u>acceptable</u>

Review of CC System Design and Production Plan – Jun 19th–21st; 2019

DQW – Assembly and Specifications

Review of CC System Design and Production Plan – Jun 19th–21st; 2019

US HL-LHC

AUP

DQW Main Components

Review of CC System Design and Production Plan – Jun 19th–21st; 2019

RFD – Assembly and Specification

Review of CC System Design and Production Plan – Jun 19th–21st; 2019

 \overline{AUP}

RFD – Main Components

Review of CC System Design and Production Plan – Jun 19th–21st; 2019

Nb Parts Measurements

Review of CC System Design and Production Plan – Jun 19th–21st; 2019

US HL-LHC

AUP

RFD Subassemblies at Jefferson Lab

NIOWAVE www.niowaveinc.com

HL-LHC

DQW Sub-Assemblies at BNL

Issues with Cavity Production at the company

- Some tests and qualifications not shared or not verified
 - Ie. parts unavailable for a few months until after welding
- Company treated several steps as proprietary information
- After the fact QA showed some non compliances that were not reported
 - Ie. double weld on RFD external assembly

Role of LARP cavities

- Due to lack of documentation and inspections, CERN was forced to run a rush program to complete cavities (and CMs) for the SPS beam test of 2018
 - See the next talk
- Nevertheless the LARP cavities played a crucial role developing processes and understanding limits and performance

Summary of LARP/CERN Cavities Test Results

	CERN DQW1	CERN DQW2	LARP DQW1	LARP DQW2	LARP RFD1	LARP RFD2	LARP RFD1 @FNAL
VMax [MV]	5.0	4.8	5.9	5.3	4.4	5.7	5.02
Epeak [MV/m]	56	54	65	58	42	54	56
Bpeak [mT]	109	103	125	113	73	95	109
Rs min [nOhm]	10	10	9	10	11	7	
Rs @ 3.4MV [nOhm]	15	18	15	12	13	9	
FE onset [MV]	4.0	3.5	4.1	2.8	> 4.4	4.5	
Q0 max			9.2E+9	8.8E+9	1.1E+10	1.5E+10	1.5E+10
Q0 @3.4MV			6.2E+9	7.3E+9	8.5E+9	1.2E+10	1.1E+10

Niowave RFD Cavities at JLAB

Two cavity sub assemblies arrive at JLAB

28 April 2016

Review of CC System Design and Production Plan – Jun 19th–21st; 2019

RFD Process Flow at JLAB

Inspection and frequency measurement between each step

RFD final Machining at JLAB

BNL **CERN** LU/STFC JLAB ODU SLAC

contributed

27 Oct 2016

US HL-LHC AUP

Review of CC System Design and Production Plan – Jun 19th–21st; 2019

SPS-RFD Cavity: Trimming Sensitivity

Trimming sensitivity for RFD cavities df/dz = -119.85 kHz/mm

Good agreement with simulations

Measured sensitivity:

- CAV001: -129.3 kHz/mm
- CAV002: -116.1 kHz/mm

HOM Dampers Fabrication Process

HOM Dampers Fabrication

Summary of LARP RFD test data

Test Date	Cavity #	Location	HHOM	VHOM	MAX V	Q AT 4.1 MV	Low field Q
2/12/2017	LARP RFD#1	JLab			4.04	1.60E+09	1.23E+10
3/23/2017	LARP RFD#1	JLab			4.38	8.21E+09	1.03E+10
6/2/2017	LARP RFD#2	JLab			5.75	1.13E+10	1.46E+10
8/20/2017	LARP RFD#1	FNAL			4.70	1.10E+10	1.95E+10
4/30/2018	LARP RFD#1	FNAL			3.54	N/A	1.49E+10
5/8/2018	LARP RFD#2	JLab	YES	YES	4.77	1.22E+09	measure error
5/31/2018	LARP RFD#2	JLab	YES	YES	5.03	1.32E+09	1.45E+09
6/13/2018	LARP RFD#1	FNAL			3.47	N/A	1.67E+10
8/16/2018	LARP RFD#2	JLab	YES		5.26	6.60E+08	7.18E+08
10/9/2018	LARP RFD#2	JLab	YES		4.18	1.08E+09	1.56E+09
11/14/2018	LARP RFD#2	JLab	YES	YES	5.50	5.00E+09	6.50E+09
11/28/2018	LARP RFD#2	JLab	YES	YES	5.50	7.35E+09	1.05E+10
3/27/2018	LARP RFD#2	JLab	YES	YES	5.33	6.50E+09	9.00E+09
5/2/2019	LARP RFD#1	FNAL			5.10	1.00E+10	1.50E+10

Review of CC System Design and Production Plan – Jun 19th–21st; 2019

US HL-LHC

Summary of LARP DQW test data

Teet	Assembly	Surface preparation		ssembly Surface preparation Max V/t (MV/) EE (M	preparation Max //t (M//) EE (M//) OO low			<u>Q0,nom</u>	CX	<u>LFD</u>
Test	Assembly	Cavity	HOM filter			<u>QU, IUW</u>	[P (W)]		<u>(Hz/(MV)2</u>	
Feb'17	DQW01	Bulk BCP, 600C, light BCP, HPR, 120C	N/A	5.9	4.1	1.00E+10	6.00E+09 [4.5]	#B-2 #F-4		
	DQW01+HOM01	.200	Flash BCP					#B-5		
May'17	Flange set #b	None	(on hook);	2.8	n/a	1.00E+10	n/a	#D-7	-450	
	rinse			#E-8						
lun'17		Bulk BCP, 600C, light	NI/A	53	33	9.00E±09	5.00E+09	#A-567		
Junin	DQW02	BCP, HPR, 120C		5.5	0.0	9.002+09	[5.4]	#F-4		
Sen'17		Light BCP,	N/A	53	4 1	1 00E+10	6.00E+09	#C-1	-554	
00017	DQW02	HPR	1.177	0.0	7.1	1.002+10	[4.5]	#A-7	004	
	DQW02+HOM01	Light BCP	Flash BCP				6.00E+09	#F-4		
Ocť 17	Oct'17 Flange set #a	HPR	(on hook);	3.6	n/a	1.00E+10	[4.5]	#D-7	-499	
			linse					#E-8		
Jan'18	DQW02+HOM01	None	100 um BCP, 600C, light	3.1	2.6	1.00E+10	n/a	N/A	-599	
	Flange set #a		BCP, rinse							
May'18	DQW02+HOM01	HPR 120C	Rinse 120C	47	32	1 00E+10	7.00E+09	None	-772	
May 10	Flange set #a	11110, 1200	141100, 1200		0.2	1.002110	[3.8]	None	112	
Jul'18	DQW02+HOM01						5.00E+09			
(testing anomaly)	20mm NbTi spacer	HPR, 120C	Rinse, 120C	5.9	None	8.00E+09	[5.4]	N/A		
	Flange set #a									
	DQW02+HOM01						5.00E+09			
Sep'18	20mm NbTi spacer	HPR, 120C	None	5.1	2.7	9.00E+09	[5.4]	#E-8		
	Flange set #a									
	DQW02+HOM01						5.00E+09	#C-1		
May'19	Flange set #a	None	None	4.4	2.1	1.00E+10	[5.4]	#F-5	-700	
								#D-7		

Review of CC System Design and Production Plan – Jun 19th–21st; 2019

All the US DQW cavity tests with one HOM filter

Transition to AUP and First HL-LHC Prototypes

- Many more details available for tuners, HOM dampers...
 - Focused on RFD cavity production here
- Lessons learned from LARP cavity production and testing applied to first AUP and HL-LHC prototypes
- AUP developed a lessons learned document for RFD
 - See US-HiLumi-doc-2152
 - Frequency recipe, dimensional adjustments, tolerances, chemistry
- See talk by L. Ristori

Funding

LARP

- Engineering and Design
- DOE SBIR
 - Cavity production, PoP RFD Design
- CERN
 - Welding and processing at JLAB (through LARP)
 - Final DQW testing at JLAB
- AUP
 - All RFD testing and development since AUP start in 2017

Summary

- The LARP program led the way to:
 - Demonstrate the design of SRF cavities capable of meeting the field and dimensional requirements
 - Including the HOM spectra and impedance requirements
 - Demonstrate the fabrication and assembly procedures
 - Including the chemistry and all cavity processing leading to test results that exceeded the required performance

Conclusions

- LARP was a key contributor to enable the CC program by demonstrating the feasibility of SRF cavities meeting the constraints of the HL-LHC upgrade
- LARP program gave very important results for HL-LHC and AUP
 - Both cavity designs exceed performance requirements
 - Developed processes that lead to successful results
 - For the DQW good results came from both sides of the ocean -> good sign of the maturity of the design
- The LARP processes and cavities are giving very valuable support to the AUP tasks and to the HL-LHC

Questions

HL-LHC AUP CD-2/3b Director's Review - July 2018

Old DMINION UNIVERSITY

Science & Technology Facilities Council SLAC Jefferson Lab

RFD Bulk BCP Chemistry at JLAB

Assembly

VHOM-002 After BCP

• Bulk BCP completed for HHOM-002 and VHOM-002

RFD BCP Setup – CTR-002

Two thickness gauges were used.

41

RFD Thickness Measurements Results – CTR-002

RFD Frequency Recipes

CAV-001

CAV-002

Step (Recipe for 20 C, 50 % and 1013.25 mbar)	Δf	f_n
	[kHz]	[MHz]
	_	
Cavity after trimming and thinning		399.840296
Shift due to bulk BCP (140 microns)	-39.441	
Cavity after bulk BCP		399.800855
Weld shrinkage	115.645	
Weld bead	5.000	
Cavity after final weld		399.921500
Shift due to light BCP (20 microns)	-5.762	
Cavity after light BCP		399.915738
Shift due to mounted couplers	4.906	
Fully assembled cavity with HOM couplers		399.920644
Pressure effect (760 Torr differential)	-60.800	
Dielectric effect air to vacuum	130.341	
Evacuated cavity at 20 C		399.990185
Thermal shrinkage	572.877	
Colled down cavity at 4.2 K		400.563062
Shift due to change in skin depth	28.000	
Cavity frequency adjusted for skin depth		400.591062
Pressure from 760 Torr to 23 Torr in He tank	58.960	
Cooled down cavity at 2.0 K		400.650022
Shift due to tuner activation to its mid range	150.000	
Cavity with tuner activated		400.800022
Lorentz detuning	-10.022	
Operational cavity with RF on		400.790000

Step (Recipe for 20 C, 50 % and 1013.25 mbar)	Δf	f_n
	[kHz]	[MHz]
Cavity after sub-assembly fabrication		399.843949
Shift due to bulk BCP of End Plates (140 microns)	-26.988	
Cavity after trimming and thinning		399.816961
Shift due to bulk BCP of Center Body (140 microns)	-16.106	
Cavity after bulk BCP		399.800855
Weld shrinkage	115.645	
Weld bead	5.000	
Cavity after final weld		399.921500
Shift due to light BCP (20 microns)	-5.762	
Cavity after light BCP		399.915738
Shift due to mounted couplers	4.906	
Fully assembled cavity with HOM couplers		399.920644
Pressure effect (760 Torr differential)	-60.800	
Dielectric effect air to vacuum	130.341	
Evacuated cavity at 20 C		399.990185
Thermal shrinkage	572.877	
Colled down cavity at 4.2 K		400.563062
Shift due to change in skin depth	28.000	
Cavity frequency adjusted for skin depth		400.591062
Pressure from 760 Torr to 23 Torr in He tank	58.960	
Cooled down cavity at 2.0 K		400.650022
Shift due to tuner activation to its mid range	150.000	
Cavity with tuner activated		400.800022
Lorentz detuning	-10.022	
Operational cavity with RF on		400.790000

Achieved after trimming - 399.809239 MHz

Achieved after trimming - 399.845874 MHz

RFD Frequency Measurement Setup

RFD Frequency Measurements

- Trim center body to achieve target Trimming sensitivity for frequency at pre welding
- df/dz = -119.85 kHz/mm

- CAV-001 → df/dz = -129.3 kHz/mm
- $CAV-002 \rightarrow df/dz = -116.1 \text{ kHz/mm}$ •

45

Final BCP Closed Chemistry Cabinet

DQW cavities at BNL

Jun 26, 2016

All Vectors Summary: Vector Group								
Statistic	dX	dY	dZ	Mag				
	(mm)	(mm)	(mm)	(mm)				
Min	-0.781	-0.849	-0.674	-0.998				
Max	0.754	0.907	0.491	0.557				
Average	0.006	0.002	0.001	-0.227				
StdDev from Avg	0.216	0.211	0.056	0.207				
StdDev from Zero	0.216	0.211	0.056	0.307				
RMS	0.216	0.211	0.056	0.307				
Tol Range				-0.400				
				0.400				
In Tol Prof	ile sp	ec ≤ ().8 m	8010 (80.6%)				
Out Tol				1930 (19.4%)				
Count	9940							

All Vectors Summary: Vector Group ANALYSIS::TOP							
Statistic	dX	dY	MagXY				
	(mm)	(mm)	(mm)				
Min	-0.822	-0.566	-0.822				
Max	0.810	0.517	0.325				
Average	0.006	-0.002	-0.131				
StdDev from Avg	0.218	0.153	0.232				
StdDev from Zero	0.218	0.153	0.267				
RMS	0.218	0.153	0.267				
Tol Range			-0.400				
			0.400				
In Tol			5569 (87.0%)				
Out Tol			834 (13.0%)				
Count	<mark>6403</mark>						

Edge deviation 9.293 mm down from the edge

DQW n 1 Final Trimming at Niowave 15 Sep 2016

Trim tuning at Niowave – frequency check setup

Evolution of LARP proposals

LARP initial proposal was to contribute all cryomodules, for both the SPS test and the HL-LHC then....

- Nov 2013
 - LARP and CERN realize this was too ambitious
 - New LARP scope \rightarrow deliver all cold masses only
- May 2014
 - CC System External Project Review
 - A. Yamamoto (Chair), M. Champion (SNS), A. Facco (INFN), M. Kelly (ANL), C. Pagani (U. Milano), H. Padamsee (Cornell/FNAL)
 - Down-selected cavities and established a prioritization criteria for SPS CC production
- LARP is not able to secure funding for M&S and cavity fabrication
 - Only option to team up with an ongoing SBIR effort at Niowave

No contractual agreement between Niowave and LARP

Evolution of LARP proposals (2)

Aug. 2014

 Niowave starts the extensive manufacturing qualification process requested by CERN

Winter of 2014/5

- LARP and CERN agree to modify the scope of the collaboration a second time
 - CERN loans magnet wire to LARP freeing up M&S funds
 - LARP engages JLAB to weld all cavity parts, process and test the completed cavities
 - Niowave agrees to provide formed cavity parts for welding at JLAB

March 2015

- CERN takes on responsibility for tuners and HOM dampers for the SPS
 - LARP held the HOM Design Review Feb. 2015, JLAB
- LARP now delivering for the SPS only DQW and RFD cavities with He tanks

Evolution of LARP proposals (3)

• May 2015

- Niowave informs the collaboration that it will weld cavity subassemblies
- JLAB is now only welding the final sub-assemblies

August 2015

Niowave provides the first welded cavity parts for inspection

October 2015

 After a ~6 months process, JLAB receives the funding to start the work

Evolution of LARP proposals (4)

Jan 2016

- CERN starts its effort to produce DQW cavities for the SPS
- LARP decides to build bare cavities only, without He tanks
 - CERN and LARP agree the DQW cavities produced at CERN are the lead candidate for integration in the SPS test.

Mar 2016

- In light of schedule constraints for the SPS test, CERN decides to test the DQW first, before LS2
- The RFD prototypes for the HL-LHC will be tested after LS2

May 2016

 LARP-AUP and CERN agree on the US contribution to the HL-LHC: limited to all RFD dressed cavities only.

The Team – Principal Contributors

- LARP
 - BNL Q.Wu, S. Verdu-Andres, B. Xiao, J. Skaritka, Ilan Ben-Zvi
 - FNAL C. Ginsburg, T. Nicol, T. Peterson, L. Ristori
 - JLAB A. McEwen, E. Daly, H. Park (also ODU)
 - LBNL J. Qiang
 - ODU J. Delayen, S. De Silva, H. Park
 - SLAC Z. Li, A. Ratti (formerly LBNL)
- World Wide Collaboration
 - CERN R. Calaga, O. Capatina, M. Garlasche', C. Zanoni
 - STFC G. Burt, N. Templeton, T. Jones
- Many others are actively involved, in particular in the work centers of CERN and JLAB
 - and many contributed in the past

LARP Team Organization

- Cavity EM Design BNL, ODU/SLAC
 - RF measurements, Frequency Analysis (w. Proc.), HOM studies
- Cavity processing and testing Jefferson Lab
 - Parts inspection and acceptance
 - Welding (w. procedures)
 - Chemistry (w. procedures)
 - Vertical Testing (w. procedures)
- Project Coordination SLAC
- Project Engineering FNAL
 - Development of Pre-Series cavities
 - Planning for AUP

Working as a team, everyone encouraged to contribute CERN actively involved

