

HOM Damping and SPS Measurements

J. Mitchell

with significant contribution from BNL, CERN, Lancaster University, FermiLab, JLAB and SLAC (Z. Li).

CERN, BE-RF-PM

20/06/2019

International Review of the Crab Cavity system design and production plan for the HL-LHC

Crab cavity HOM damping: 2018 (1st QTR)

- Impedance thresholds: \mathbf{Z}_{\parallel} and $\mathbf{Z}_{\perp(x,y)}$ as $200 \,\mathrm{k\Omega}$ and $1 \,\mathrm{M\Omega/m}$.
- Each cavity had several modes over the threshold.
- Each cavity had one high power HOM.

	Mode	Nearest bunch	Z_{\parallel}	P^{12}
Cavity	frequency	spacing harmonic		
	[MHz]	[MHz]	$[k\Omega]$	[kW]
DQW	958.87	961.92 (24^{th})	100	<u>10</u>
RFD	760.94	$761.52~(19^{th})$	29	<u>9</u>

- Methods of reducing high power:
 - ▶ HOM impedance (Q-factor) should be decreased.
 - ▶ Detune mode frequency.

J. Mitchell (CERN, BE-RF-PM)

¹Threshold is 1 kW.

 $^{^2\}mathrm{Power}$ calculated at the frequency of the bunch spacing harmonic only and assuming that the mode fully aligns with this frequency.

Changes due to HOMs

DQW

- Altered HOM coupler's equivalent circuit.
- Square profile, flat section on capacitive jacket and lifted output line.

<u>RFD</u>

• Detune high power HOM and alter ancillaries.

- -9 MHz detuning of mode using cavity geometry.
- H-HOMC: larger waveguide stub, rotation, hook changes.
- V-HOMC: 'electric' to 'electric and magnetic coupling'.

Changes due to HOMs

HOM Impedances

• $25\,\Omega$ matching verified \checkmark

SPS Measurements: Pre-Installation

CERN

• Measured mode parameter deviation from simulations.

- f-range: -0.9% \rightarrow +1.0%, Q-range: -50% \rightarrow +100%
- 959 MHz mode
 - Frequency: + <u>3.31 MHz</u> and + <u>3.47 MHz</u>
 - ▶ Q-factors: 15% and 30%
- Mode could align with 24^{th} bunch spacing harmonic: confirms further damping needed.

CERN

• Measured frequencies and Q-factors used to modify simulated impedance table and produce 'measured' impedance spectra.

• Intra-cavity mode spread analysed.

Coupler Measurements: Predicting damping

• Individual coupler measurements on 'test-boxes' pre-assembly to compare transfer function to simulations.

- Areas of decreased damping identified: correlate with Q-factor deviations.
- Coupler-port location unknown.
- In the future
 - Record coupler mounting location.
 - Acceptance criterion.
 - ▶ Coupler installation location choice.

CERN

Measurement goals

- Identify **unforeseen issues** arising from HOMs.
- Quantify **effect of geometric deviations** from manufacture on HOMs.
- Ensure HOM performance with proton beam is **predictable**.

Measurements: HOM Power

• The power from each of the HOM couplers was measured with single and multi-bunch beams.

- High longitudinal impedance modes couple differently to each coupler.
- This was measured to quantity the difference from simulation.

- High power mode (960 MHz) only couples to top HOM coupler.
- $\bullet \rightarrow$ This means the high power will only be on the top HOM coupler.

SPS test: Single Bunch

- Single bunch coast (one bunch for many hours).
- Measurements from each coupler compared to analytical calculations (impedance spectra altered with measured frequencies and Q-factors).

(b) Normalised bunch profile (form of current source).

- General form matches well (HOMs seen where predicted).
- Analytical power under-estimated.
 - Misrepresentation of proton bunch distribution.
 - Underestimation of impedance spectra.
 - Error in the measurement signal.

SPS test: Profile measurements

CERN

- Bunch represented by binomial formula (dependant on σ and μ).
- 4 bunch coast used to measure profile of proton bunches.

- Bunch length spread $\pm 10\%$, $\mu \text{ error } \pm 0.5$ from SPS nominal (1.5).
- First bunch is close to Gaussian.
- Also oscillations on bunch profile as a function of time. Frequency of oscillations much faster than sweep time on analyser → very difficult to compare broad-band response.

J. Mitchell (CERN, BE-RF-PM)

SPS test: Multi-bunch

- Power at different bunch numbers measured.
- Both at the frequencies of the high Z_∥ modes and multiples of the bunch spacing harmonics (t_{bb}).

• Highest power region predictable.

Overall Conclusions

- Both DQW and RFD crab cavities have changed from last review to **mitigate high power HOMs**.
 - ► DQW
 - ★ HOM coupler damping improvement.
 - ★ Geometric to ease manufacture.
 - ► RFD
 - $\star\,$ Cavity geometry altered.
- Mode parameter deviation measured and quantified.
 - ▶ 960 MHz mode could align with 24^{th} bunch spacing harmonic.
 - ▶ Under/over damping predictable from test box measurements.
- DQW HOM measurements in the SPS
 - Coupling ratios: high power more only couples to top HOM coupler.
 - Single bunch broad band measurements
 - ★ Difficult to compare to analytic because of bunch profile deviations and bunch instabilities.
 - $\star\,$ More information needed on bunch form.
 - ► Multi-bunch measurements agree with analytic near to the bunch spacing harmonics and agree for highest powers.

• Study the effect of bunch profile variations in further detail.

- Re-designed ancillaries for 25Ω matching for larger inner conductors (see E. Montesinos' talk).
- RFD SPS HOM measurments.
 - Better record the bunch profile during MDs.
 - ► Combine HOMC signals and have them continually logged to timber or equivalent.

Appendix

J. Mitchel Impedance Power Multipoles Conclusior

Appendix

LHC Crab Cavities Impedance and Multipole Update

J. A. Mitchell^{1, 2}

¹Engineering Department Lancaster University

> ²BE-RF Section CERN

29/01/2019 - 140th HL-LHC WP2 Meeting

DQW Beampipe Ancillaries

J. Mitchell

- Impedance Power Multipoles Conclusions
- Appendix

- SPS DQW antenna was dual function: HOM damper and fundamental mode antenna.
- Functions split because damping geometry coupled to beam (perturbing LLRF signal).

Figure 1: SPS (left) and LHC (right) DQW crab cavities with beampipe ancillaries highlighted.

Crab Cavity Impedance

- DQW model: EDMS No. 2009911 Alumina ceramics, Nb HF-Damper, Cu Antenna.
- RFD model: EDMS No. 1347072
- RFD was benchmarked with ACE3P results from Z. Li.

Concerning Modes

J. Mitchell

f	Qe	R_v	R_h	R_l	Notes
[MHz]		$[k\Omega/m]$	$[k\Omega/m]$	$[k\Omega]$	
583.59	4381	-	-	243.00	Far from bunch spacing harmonic
					Close to bunch harmonic.
960.87	507	-	-	4.70	$Al_2O_3: R_l + 27\%$
					Al_2O_3 : Frequency + 0.75 MHz
1500.20	23200	-	2009	-	
1754.40	8522	-	751	-	
1921.98	60600	-	2505	-	Not mesh converged.

• Limits: $\perp = 1 \,\mathrm{M}\Omega/\mathrm{m}/\mathrm{cavity}, \parallel = 200 \,\mathrm{k}\Omega/\mathrm{cavity}.$

Table 1: DQW

f	Qe	R_v	R_h	R_l	Notes
[MHz]		$[k\Omega/m]$	$[k\Omega/m]$	$[k\Omega]$	
752.06	217			10.4	9.4 MHz from bunch harmonic.
152.00	217	-	-	13.4	Not simulated with HOM coupler
					ceramics.

Table 2: RFD

 19^{th} and 24^{th} bunch spacing harmonics: $761.52\,\mathrm{MHz}$ and $961.92\,\mathrm{MHz}$

HOM Power

J. Mitchel

- Impedance
- Power
- Multipoles
- Conclusions
- Appendix

- HL-LHC beam parameters from [1].
- Mode frequency and Q varied: 1000 stochastic variations.
- Limits from SPS DQW measurements.
- **Q**: factor $0.5 \rightarrow 2.0$, f: $-0.1 \rightarrow 0.9\%$

Cavity	P_{max} (Gaussian) [W]	P_{max} (Binomial) [W]	Mode
DQW	1000	1000	$961\mathrm{MHz}$
RFD	8500	8200	$752\mathrm{MHz}$

Table 3: Maximum HOM power values.

Average DQW 960 MHz shifts f: +0.35%, Q: $0.77\times Q_{sim}$ From measured RFD HOM deviations [Berrutti et. al.] f: +0.342 MHz, Q: $1.26\times Q_{sim}$

DQW Feedthroughs - Tuning

Power

(d) Longitudinal Impedance

Multipole Components

J. Mitchel

Impedan D

Multipoles

Conclusions

Appendix

• Last meetings: Questions about b_4 magnitude.

 Re-visited: Issues with CST field export and convergence Panofsky Wenzel method did not converge. Lorentz Force does.

Solved. Benchmarked with K. Papke's code.

SPS DQW (Dressed)							
		b1	b2	b3	b4		
ΙF	Re	33	6	1498	1026		
111	Im	0	-2	19	-383		
	LHC DQW (Dressed)						
		b1	b2	b3	b4		
LF	Re	33	6	1488	1048		
	Im	0	-2	21	-292		
LHC RFD (Dressed)							
		b1	b2	b3	b4		
LF	Re	34	0	-458	128		
	Im	0	0	-74	55		

Table 4: Evolution of b_n in units of mT/m^{n - 1}. Values correspond to a transverse deflecting voltage of 10 MV and are evaluated with 64 points around the azimuth at a radius of 30 mm.

- **TDR**: Limit of b_4 was 1000 units.
- **TDR**: Limits pending for higher components.

Conclusions

J. Mitchell Impedance Power Multipoles Conclusions Appendix

DQW HOMs: two horizontal modes 2.5 times over threshold.

- Worst case HOM Power in DQW (1000 W very pessimistic) is more likely. But it is manageable.
- Heat load in RFD could be problematic (8 times threshold),
 f-shift is unlikely measure during upcoming manufacture.
- Damping and tuning method for DQW 960 MHz mode.
- Multipoles: b4 are now more realistic → in limits. Limits for b5?

Impedano Power

Multipoles

Conclusions

Appendix

Appendix

960 MHz Mode Shift

Figure 4: Measured impedance spectra in SPS.

Multipole Components

J. Mitchell Impedance Power Multipoles Conclusions Appendix

Figure 5: Multipole coefficients as a function of longitudinal position. Panofsky-Wenzel and Lorentz Force decomposition methods shown in blue and red dashed lines respectively.

Multipole Measurements

1184.75

83 = 1609.4

J. Mitchell Impedance Power Multipoles Conclusions

Appendix

- Measurement technique developed on aluminium prototype (PoP design).
- **TDR**: Limits pending for higher components.

• Work from and detailed in the summer student report by P. Gapais.

Horizontal Modes

J. Mitchel

- Impedance Power Multipoles
- Conclusions
- Appendix

- 1500 MHz mode Q can be reduced using a more complex HOM damper.
- Probe material still under investigation if copper can bring down by 25%.
- 1920 MHz mode is under investigation. I see a decrease in Q with mesh convergence, beam-pipe length and without ports.
- There are also big differences between broadband and narrow band solvers.

References

J. Mitchel Impedance Power Multipoles Conclusion

Appendix

R. Tomas, Presentation: Parameter update for the nominal HL-LHC : Standard , BCMS , and 8b + 4e Current HL-LHC Parameters table, in *26th HL-LHC TCC*, 2017.