

#### LLRF experience for SPS & HL-LHC Outlook

P. Baudrenghien, J. F. Bento, J. Simonin, N. Stapley, *CERN, BE-RF* T. Mastoridis, *California Polytechnic State University, San Luis Obispo, USA* 

E. Yamakawa, John Adams Institute, Oxford University, UK



HL-LHC International Review of CC system design, June 20th 2019

#### Outline

- SPS 2018 tests
  - LLRF hardware
  - Ponderomotive Instabilities
  - Microphonics and TX noise
  - TX non-linearity
  - Coupling of Antenna signal to beam
  - Transverse emittance growth
- Plans SPS 2020-2023
- Plans HL-LHC
- Conclusions



#### **SPS tests**

- For the SPS tests the energy range is 26-270 GeV/c. The 2 x 4620 harmonic of the SPS revolution frequency is therefore 400.530 MHz -400.787 MHz
- Fits in the tuning range
- But the CC tuning system is very slow -> cannot track the SPS acceleration ramp
- Solution:
  - We drive the CC with a fixed frequency (adjusted to the energy, 400.5288 MHz @ 26 GeV/c, 400.7873 MHz @ 270 GeV/c)
  - We rephase the SPS beam to that frequency on a corresponding plateau in the SPS cycle
  - RF manipulation similar to the cogging done before SPS-LHC transfer.
- CC RF is switched ON after the rephasing of beam to CC
- Note: The CCs are in LSS6 and driven from equipment in surface building BA6. The accelerating cavities are in LSS3, driven from BA3.



#### **SPS LLRF hardware (1/2)**





#### SPS LLRF hardware (2/2)

#### Linac4 system adapted for the Crab Cavity frequency (400 MHz vs. 352.2 MHz).





(FEC)

## Ponderomotive instabilities [1]-[3] (1/2)

 The oscillation is not seen in the Antenna when the cavity field is below 1 MV. (FDBK is OFF).





 When the cavity voltage is above 1 MV, we observe huge oscillations (210 Hz) in the Antenna. (FDBK is OFF).







## **Ponderomotive instabilities (2/2)**

- Lorentz Force Detuning is -350 Hz/MV<sup>2</sup> (CC1), -390 Hz/MV<sup>2</sup> (CC2)
- When the cavity field is close to 1 MV, the detuning frequency is about one cavity bandwidth (-400 Hz, Q<sub>L</sub>=500000), that is the worst case for ponderomotive oscillation
- When the RF FDBK is closed, it stabilises the cavity field. No more problem of ponderomotive oscillation. Remain small 20 Hz sidebands (cryo pumps). (Antenna, 1.6 MV).







#### Microphonics and TX noise [6]

- 20-30 Hz: Cryo-pump
- 49 Hz: TX high voltage ripples (50Hz)+
  Tuner mode (Mechanical 47.7Hz)
- 74.3 Hz: Mechanical mode
- 98 Hz: Harmonics of TX ripple

- 172.3 Hz: Not identified
- 215.5 Hz: Mechanical mode. EM to mechanical coupling source of the ponderomotive oscillation
- 199.7 Hz, 299.5 Hz, 342 Hz: Not identified (could be TX high voltage ripples).





crab1,closed Loop, @1.1MV



### **SPS CC TX**

- The power needed depends on the beam displacement. The HL-LHC system is designed to accept ±2 mm beam offset in the CC
- In the SPS we have a 50 kW TX that has been used in the 0-5 kW range during the MDs
- We have observed very small gain at low drive level



#### LHC CC TX

- In operation we will need the full dynamic range from 0 to 50 kW, including very low power
- The power needed depends mainly on the beam centering



HL-LHC case. Power required with 3 MV/cavity. With -1.3 mm offset the power actually goes to zero, as the beam-induced crabbing voltage equals the demanded 3 MV. If the offset is +1 mm we need about 40 kW. Full compensation of transient beam loading.

It is therefore important to have a system that can deal with a large range of TX power, including very low drive [7].



# Direct coupling of ANTENNA signal to the BEAM

- The LLRF measures the field in the cavity and corrects the TX drive to keep the measured field equal to the voltage set point
- In the CC the location of the Antenna creates a direct coupling to the beam. The Antenna probe is not in the cavity, but in the adjacent beam pipe
- Its shape was designed to couple to HOMs in 1.7 GHz range (*mushroom* shape)
- So the cavity field measurement is corrupted by the direct measurement of beam passage.

Upgraded design with antennas on both sides: *hook* for the LLRF and *mushroom* for HOM.



HL-LHC International Review of Crab Cavity System Design

#### **Direct coupling to beam. Measurements**

 The Antenna signal with 4 batches of 36 bunches, nominal intensity. Cavity idling (Oct 12<sup>th</sup>, 2018)



- The "direct beam coupling" is a problem. It generates ripples at the revolution frequency (43 kHz in SPS, 11 kHz in HL-LHC)
- We can filter it a bit in the SPS but, as we want fast (10+ kHz) regulation BW, filtering will not be possible in the LHC
- The Antenna shape will be modified to couple less at high frequency. A 20 dB improvement is expected for both DQW and RFD [5]
- In addition the LLRF will use the PU signals (on both sides of the CCs) for Adaptive Noise Cancelling: We will remove from the Antenna the part of the signal that is correlated with the PU.



# **Emittance growth. Calculations** [4]

Geometric factor (bunch length)

Phase noise

$$\frac{d\varepsilon_{x}}{dt} = \beta_{cc} \left(\frac{eV_{0}f_{rev}}{2E_{b}}\right)^{2} C_{\Delta\phi}(\sigma_{\phi}) \sum_{k=-\infty}^{\infty} \int_{0}^{\infty} S_{\Delta\phi} \left[\left(k \pm v\right)f_{rev}\right] \rho(v) dv$$

- Depends on the overlap between phase noise spectrum and betatron tune distribution
- Noise spectrum is aliased at f<sub>rev</sub>

Beam parameters

The "phase-noise geometric factor" decreases with bunch length
 Amplitude noise

$$\frac{d\varepsilon_{x}}{dt} = 2\beta_{cc} \left(\frac{eV_{0}f_{rev}}{2E_{b}}\right)^{2} C_{\Delta A} \left(\sigma_{\phi}\right) \sum_{k=-\infty}^{\infty} \int_{0}^{\infty} S_{\Delta A} \left[\left(k \pm v \pm v_{s}\right)f_{rev}\right] \rho\left(v\right) dv$$

- Depends on the overlap between phase noise spectrum and synchrobetatron tune distribution
- The "amplitude-noise geometric factor" **increases** with bunch length.



#### **Emittance growth. Data taking**

- SPS CC MD5, Sept 4<sup>th</sup>, 2018
- Coasts at 270 GeV/c
- 4 bunches, low intensity, ~2 ns long
- CC1 idling (no RF), CC2 field at ~1 MV
- 4 coasts, with first one with CC RF off
- Transverse emittance measured with Wire Scanners (Lee Carver, [8])
- RF noise added vectorially -> always a mixture of phase and amplitude noise. Tried to minimize amplitude noise. Phase noise was always dominant
- RF noise (PM and AM) covered a band from DC to 10 kHz only -> excites the first betatron band only (around 8 kHz)
- CC2 phase and amplitude noise Power Spectral Density (PSD) measured with Signal analyser
- Transverse Damper (ADT) off.



#### **Measurements**

We inject RF noise and measure its PSD in the Antenna signal



We measure the x-y emittance evolution

05-09-2018 - Coast 3





- Although the CC gives vertical kicks, we observe some emittance growth in x
- The relevant measurement should be the  $\varepsilon_x + \varepsilon_y$ . That was confirmed by running simulations with pyHeadTail, injecting CC RF noise in one plane, with coupling by skew quadrupoles
- We observe emittance growth in z-plane as well, but no relation with CC RF noise. Again simulations with pyHeadTail including chromaticity confirmed: No significant effect on transverse emittance growth
- The background growth (0.55 μm/h in x, 0.45 μm/h in y, measured with CC RF Off) was removed
- One measurement point was discarded as the noise level had been modified during the corresponding data taking.



#### **Emittance growth. Results**



- Very good correlation between measured and calculated
- The factor 3.45 suggests a systematic error: V (1 MV), β<sub>cc</sub> (75.85), Noise Power,...?
- Investigations on-going.



#### **Plans SPS**

#### SM18, 2021

- Measurements of the RFD at higher voltage (> 1 MV). Use "linearized" IOT or Solid State amplifier.
- Check ponderomotive oscillations with RFD
- Check RF feedback with "linear" TX
- Optimize RF ON sequence.
- SPS, 2021
  - Restore end-2018 situation for both cavities
  - Measurements of DQW with "linearized" IOT amplifiers at higher voltage (>2 MV) and beam
  - Investigations of Transverse Emittance Growth.
- SPS, 2022-2023
  - Test RFD in SPS.



### **Plans LHC**

- Review the operational scenario?
  - The operational scenario was to have the CC ON from injection, with low field and using counter-phasing to make them invisible -> not favourable from RF noise point of view
  - At 2 deg K the CC tune is very stable
  - Can the cavities be left "parked" during filling/ramping and switched ON when needed in physics?



- CC LLRF
  - Design prototype uTCA (?) system in 2022-2023. Synergy with SPS LLRF upgrade (on-going) and possible LHC LLRF upgrade (LS3?).



#### Conclusions

- SM18 2017 tests:
  - The cavities in the cryomodule were driven from the LLRF on Dec. 15<sup>th</sup>-18<sup>th</sup> 2017, just before installation in the tunnel during YETS 2017-2018
  - They were powered from a solid-state 200 W amplifier (not the SPS 50 kW IOT)
  - We could not exceed 100 kV due to poor conditioning (to be compared to the nominal 3 MV).
- SPS 2018 tests:
  - 2 deg K from end-August only. At 4.5 deg K tune is unstable (He ebullition)
  - Work at low field-> big problems with TX non-linearity
  - Tune oscillation above 1 MV (ponderomotive oscillations) understood in October
  - Measured emittance growth a factor 3 below calculations
  - "Rocky" learning but we have solutions for all identified issues.
- LHC operational scenario:
  - To achieve 1% integrated lumi reduction during fill, the RF noise power must be reduced by 100 (-20 dB) compared to LHC ACS design (calculated) or 30 (-15 dB) extrapolated from 2018 SPS measurements
  - Cavity tune very stable at 2 deg K
  - Study the possible filling/ramping with parked CC?

#### Thank you for your attention!



#### References

[1] Ponderomotive Oscillations in a Superconducting Helical resonator, IEEE Trans. On N.Sc., Vol 19, April 1972

[2] Ponderomotive Instabilities and Microphonics- a Tutorial, J.R. Delayen, 12<sup>th</sup> Intl. Workshop on RF Superconductivity, 2005

[3] Electroacoustic Instabilities in the LEP2 Superconducting Cavities, D. Boussard et al., CERN-SP-95-81 RF, 1995

[4] P. Baudrenghien and T. Mastoridis, "Transverse emittance growth due to rf noise in the high-luminosity lhc crab cavities," Phys. Rev. Accel. Beams 18, 101001(2015)

https://journals.aps.org/prab/abstract/10.1103/PhysRevSTAB.18.101001

[5] S. Verdu-Andres, Evaluation of RF pickup antennas

for crab cavity (DQW and RFD) LHC-series, 8<sup>th</sup> HL-LHC meeting, Oct. 2018, https://indico.cern.ch/event/742082/contributions/3085085/attachments/1735409/2806683/18 1018\_HiLumiCERN2018\_PickupsForLHC-series.pdf

[6] E. Yamakawa, Transient beam loading in crab cavities

Experience from SPS & predictions for HL-LHC, 8<sup>th</sup> HL-LHC meeting, Oct. 2018, <u>https://indico.cern.ch/event/742082/contributions/3084841/attachments/1734391/2805146/HL</u> <u>LHC\_2018\_Eyamakawa.pdf</u>

[7] E. Montesinos, WP4 Strategy for RF System, this Review, https://indico.cern.ch/event/787363/contributions/3365401/attachments/1865131/3066511/20 190619 RF power strategy.pdf

[8] R. Calaga, SPS beam measurements & Operational challenges, this Review <u>https://indico.cern.ch/event/787363/contributions/3367295/attachments/1865083/3066410/HL</u> <u>LHC\_Review\_Challenges\_17062019\_Calaga.pdf</u>



#### **Back-up slides**



#### But our cavity filling is way too fast...





Pulsing the CC RF in the SPS: Linear drive ramp lasting for 3.2 ms (bottom).

- We presently fill the cavity in 3.2 ms, which we thought would be slow enough given the 400 µs cavity filling time
  - But the dynamic LFD makes the cavity phase shift ring for > 10 ms.



# **Lorentz For** That is nothing new... Similar observations in the SNS multicell cavities ( $Q_L = 7 \ 10^5 \ @ \ 805$



#### 2 kHz resonance in medium beta cavities [SangHo1].





High beta cavity at 12.7 MV/m for various rep rates [SangHo].

Fast piezzo tuners were installed but are NOT used anymore. The ~1 kHz detuning can be dealt with by the RF feedback.