

SPS beam measurements & Operational challenges

On behalf of BE-ABP/BI/RF/OP & MPP, UK/US HL-LHC WP4

20 June 2019 - CERN

Super Proton Synchrotron, SPS

Circumference	7 km
Injection-Extraction energy	26-450 GeV
Main RF Frequency	200 MHz, TW
CC Frequency swing	400.528 – 400.788 MHz
CC bandwidth	800 Hz

SPS-LSS6 before crabs

SPS-LSS6 - 2018

SPS-Crab Installation

 Massive installation of a new RF & Cryo plant in BA6 in parallel to the cryomodule into the beam line

Expected SPS Test Sequence

- 4 main phases foreseen 10 machine development sessions (MDs) requested
- 2 slots were for table and RF setup in-beam
- 7 MDs of 10 hrs each were performed

	What	When	MD slots
0	RF commissioning (no-beam)	Mar-Apr	~ 4 weeks
1	RF-beam synchronization	Apr-May	2-4 x 10h
2	Transparency to beam	Jun-Jul	2-4 x 10h
3	Performance & Stability	Aug-Sep	4 x 10h
4	High intensity RF operation	October	2 x 10h

Cryo Availability

- Issues with LN₂ meant operation at 4.5K before the Summer
- 4.5K not ideal due to large pressure modulation, higher than 1 MV caused vacuum-thermal runaway

MD Overview

* Operating temperature is 2K

MD#		Cav1	Cav2 [MV]	Temp [K]	Energy [GeV]
1	First crabbing, phase and voltage scan	0.5	0	4.5	26
2	270 GeV ramp with single bunch	1-2	0	4.5	26, 270
3	Intensity ramp up	1	~0.3	4.5	26
4	270 GeV coast setup	1.0	0.5	2.0	270
5	Emittance growth at 270 GeV with induced noise	0	1.0	2.0	270
6	Intensity ramp up to 4-batches	-	1.0-1.5	2.0	26
7	Intensity/Energy ramp up	-	1.0	2.0	26, 270, 400

Protons meet Crabs

First injection – 12:55, May 23 Cavity 1 only

 $\begin{array}{l} \text{Single bunch} \\ 0.2 - 0.8 \times 10^{11} \text{p/b} \end{array}$

Head-tail monitor as main beam diagnostic

In general, beam measurements showed 10-20% larger voltage than RF signals

How to synchronize Crab-RF?

Crab cavity is at fixed frequency

- Freq (400.53 400.78 MHz): 26 450 GeV
- SPS RF ~200 MHz is rephased to crab Freq

Reconstruction of Crabbing using HT

of turns for ref position along the bunch ~ 2k turns RF re-synchronization ~ 1s after injection

Phase Scans & "Transparency"

Transparency: V=1MV in both cavities

270 GeV Ramp

- With cavities powered during the energy ramp and without synchronization to main RF, the beam is rapidly lost due to resonant excitation at the betratron frequency.
- With <u>cavities off</u> during the ramp the beam makes it through without losses. New operational scenario for HL-LHC

Cav1 ~1MV (400.787 MHZ), Cav2 off (400.528 MHz)

Ramp to 270 GeV

Vertical tune: $Q_y = 0.18$

RF Freq: Cavity 1: 400.787 MHz (~1 MV) Cavity 2: 400.528 MHz (almost zero)

Resonant excitation observed as we cross the vertical tune (black dotted lines).

Kicking the beam at 270 GeV equivalent frequency , while sweeping the beam frequency from 26-270 GeV

After setting the correct cycle start voltage to 270 GeV equivalent, beam circulated w/o any issue

Cavity Alignment

 Tight alignment tolerances (±0.5 mm, intra-cavity misalignment at 2K) for HL-LHC.

Beam Loading & Electrical Center

 Beam induced voltage with cavities off performed to determine the magnitude & electrical center

Emittance Growth

- SPS natural emittance growth at 270 GeV, $\leq 0.5 \ \mu m/h$
 - HL-LHC we need to be below $0.05 \,\mu m/h$
- CC Expected growth with existing electronics (noisy!)
 - Ph. noise up to 8 μ m/hr, amp noise: 1.4 μ m/hr (σ_t : 2.0 ns)
 - Scaling with additional induced noise is qualitatively reproduced but more pessimistic than measured growth

RF Multipoles

 Very promising results to measure RF multipoles with beam, but still require careful separation between existing components

Higher Order Modes

- Integrated max HOM power measured < 3 W. More than 75% from \sim 960 MHz.
- Overall HOM power & scaling to the HL-LHC looks reasonable, some deviations from expectations

20

High Intensity

- MD6: 72 bunches at 2×10^{10} p/b increased to 4×36 at 1×10^{11} p/b (1/2 the max intensity)
 - Limited by crab by-pass pressure rise 10⁻⁶mb
 - With moderate voltage (1 MV), no beam induced failures or fast transients seen except for pressure rise
- MD7: 2×60 bunches at 1×10^{11} p/b
 - Also limited by vacuum pressure rise in by-pass
 - Cavities on/off at 1MV didn't make any difference on pressure dynamics
 - Ramp the multi-bunches to 270-400 GeV to reach closer to LHC like bunch lengths – longitudinally unstable beyond 12-bunches, required more setup time

Some Challenges to Consider

- Cavity voltage reach
- RF linearity at low power and optimization of RF chain including interlocks
- Direct beam coupling with field probe for field regulation
- Electro-acoustic instabilities above 1MV, recall LFD $\sim 300 800 \text{ Hz}/\text{MV}^2$
- Microphonics measured but not an issue

Average Voltage Evolution (2K)

First 2K operation, Aug 29 (MD4)

 With LLRF feedback, sudden request of power on cavity 2 but this cavity did not see any significant power yet through conditioning

Oct 13, Stable Voltage CAV1/2 – 1.0 MV

- Many hours of stable operation with good correlation between RF and cryogenics
- We then also saw a few occasions with stable operation over many hours with sudden increase in cryo load and loss of RF conditions – not fully understood

Crab Cavity Max Performance, Nov/Dec

Cavity 1 Voltage & RF Power (red)

Cavity 2 Voltage & RF Power (blue)

Note: After many hours of stable operation, we observed big thermal load and lost RF conditions, the trigger of such events is not fully understood

High Power RF

- Two 80 kW IOTs operational in SPS
 - Issues of linearity at very low power (< 5 kW) being addressed jointly with LLRF team
 - For series, SSPA spec with the required linearity
- RF chain validated during operation in SPS
 - Use of LHC-type circulators & loads are way oversized for crab needs, will be adapted for HL-LHC

Surface-BA6

CERN

SPS-CC Interlocks and Automation

Main elements:

- One PLC + one fast interlock to control each IOT / Cavity
- One table interlock relay and PLC monitoring
- One dual RF power interlock for up to 8 HOM signals
- One dual Motor controller for tuner movement
- Dual strain gauge conditioner with interlocks

Main external connections:

- Table control system with local and tunnel remote control possibility
- Cryogenic control interface for hardware Cryo OK signal
- Separate access system interface for RF controls and for table control
- Dual Beam interlock link for LSS6 and RING
- Low level RF (LLRF) VETO fibre link and extra contact for conditioning RF VETO

Direct Beam Coupling

 Due to the hybrid field ANT & HOM coupler design, we saw strong coupling to the beam passage on top of measuring cavity field variation

Direct Beam Coupling, Mitigation

SPS Field ANT

HILUNI CERN

HL-LHC Field ANT

Electro-acoustic Instabilities > 1MV

- At 1MV, the LFD is ~400 Hz (1/2 the cavity BW)
- Self excited loop not implemented in early 2018, tested later in Nov.
- Cured by with tuning loop or with feedback. following the cavity tune with slow voltage ramp & tuning loop on.

Modal Analysis of Bare Cavity

 Measurements on bare cavities with 5 tri-axial accelerometers & modal hammer

112, 132, 151 Hz 210 Hz 298 Hz 200 Hz

Courtesy: L. Lacny, M. Guinchard, T. Jones, EDMS 1771639

Measured Transfer Functions

Final Comments

- SPS Crab Cavities
 - SPS experience was invaluable for both hardware and beam validation "almost" LHC like environment
 - Several operational aspects will be fine-tuned during 2021-23. Scrubbing will be needed before MDs
 - No unknown "fast failures" observed during SPS-2018 tests, have to probe the beam behaviour near quench fields (> 2 MV)
- Special thanks to our collaborations (UK & US) who played a critical part in the SPS success

Backup

Transparency Tests

HILUNI CERN

Dressed Cavity Modal Frequencies

C: Modal Total Deformation Type: Total Deformation Frequency: 8.8509 Hz Unit: mm 01/09/2015 13:56 8.9196 Max

7.9285

6.9374 5.9464

4.9553 3.9643 2.9732

1.9821

0.99106

0 Min

Analysis	Max Deformation (mm)	Max von- Mises stress (MPa)	Mode 1 Frequency (Hz)	Mode 2 Frequency (Hz)	Mode 3 Frequency (Hz)	Mode 4 Frequency (Hz)
1	3.9	183	7.7	8.3	16.1	61.1
2	0.24	65.2	8.5	25.3	38.3	70.9
3	0.025	15.3	25.1	48.3	56.5	122
4	0.01	10.5	27.2	50.15	66.9	174

Microphonics, Feedback ON

RF-FDBK is ON (Vcrab1:1.1 MV)

Overview of 2K Operation

