

Transport ASPECTS

Kurt Artoos, Edward Jordan, Eduardo Cano-Pleite, Duarte Cartaxo Dos Santos, Luca Dassa, Teddy Capelli, Tom Jones

20/06/2019

International review of the CRAB cavity system design and production plan for the HL-LHC

OUTLINE

Risk analysis

Impact/contact Untightening screws Contamination/humidity Leak Shock Vibration Inclination/support Fatigue Temperature Misalignment Magnetic/electrical Air pressure (na)

Loss of equipment during transport Loss of traceability

Sensitive, long lead items

Risk analysis

Level of probability (P)	Meaning	Description
		Under similar conditions this was rarely or never observed. Several parallel causes are required for this
1	Very unlikely	to happen. The process for this to happen is complex
		Under similar conditions this has been observed. Some parallel causes are required for this to happen.
2	Possible	The process for this to happen is less complex.
		Under similar conditions this is a known event. Two parallel causes are required for this to happen. The
3	Certain	process for this to happen is easy to imagine.
		Under similar conditions this happened often. A single cause is required for this to happen. The process
4	Very likely	is evident.
Level of frequency (F)	Number of separate transport actions	Measure the risk by numbers
Level of Gravity (G)	Meaning	Description
1	Minor	Minor consequences, Can be easily rectified. No impact on planning (days). No impact on performance
		Average consequences. Requires more than one rectification steps. Existing impact on planning (weeks)
2	Average	and/or cost. No clear impact on performance
		Significant consequences. Requires several rectification steps with some level of incertitude. Important
3	Critical	impact on planning (months) and/or cost. Probable impact on performance
		Possible loss of component, high uncertainty on outcome. Major consequence on planning and cost.
4	Catastrophic	Performance lost.
Level of detection (D)	Meaning	Description
1	Clearly observable	Will be detected, easily measured
		Can be measured with some effort, requires time for observation, measurement with consequence on
2	Observable	planning/cost
		Difficult to observe, measurements difficult to interprete, with level of uncertainty, measurements with
3	Difficult	significant consequences on planning/cost.
4	Not observed	Will only be detected during operation or very late stage with very high consequences on planning/cost.

Risk analysis «Living document»

Some examples not related to shocks or vibrations:

Contact:Tuner motor directly supported on cavity,
mitigation: blockage or coverContamination:bellows and clean room preparation
«Inverted bellows» of tuner and FPC, small parts may fall inContact/impactLoss of fiducials
mitigation: protection cover, redundancy ?

Untightening screws: use locking devices, technical specification of tightening torque Block shear motion, model contacts Look for contacts with limited number of screws Certification or <u>Junker tests</u>

Qualitative analysis for design

Analysis shocks and random vibration

Random vibration

3. Response spectrum analysis

- PSD of the random signal
- Analysis of the response of the model
- A Response PSD is calculated for every node at each frequency.
- A RMS value (1,2 or 3 sigma) for the entire frequency range is calculated for every node
 Displacement, 3 sigma

Model validation + component testing

- Comparison with transient analysis
- Shock and random testing on mock up
 - With shaker
 - Drop test
- Component testing possible
- Larger assemblies with analytical models with modal reduction

Planned next week

Cavity support

D: Random Vibration

Probability: 99.73 %

2.9536 Max

2.6254

2.2972

1.9691

1.6409

1.3127

0.98453

0.65635

0.32818 0 Min

1.3494

Unit: mm

Time: 0

ASTM 4169 random excitation longitudinal ٠

CERN

Cavity support modes

Preliminary

No restraints (Hz) Refined Mes Model	sh	Staggered restraints (Hz) Refined Mesh Model		
1 Cavity Longitudinal and Lateral	23	51	1 Cavity Longitudinal	
2 Cavity Lateral	25			
3 Cavity Rotation Z	40			
5 FPC Hook Longitudinal	61	61	3 FPC Hook Longitudinal	
6 FPC Hook Lateral	62	61	4 FPC Hook Lateral	
4 Frame Rotation Y	60	57	2 Frame Rotation Y	
7 Motor Lateral	66	66	5 Motor Lateral	
8 Motor Longitudinal	76	77	6 Motor Longitudinal	
10 Cavity Rotation X and Y	100			
9 Frame Rotation X	98	98	7 Frame Rotation X	
11 Frame Rotation Y 2	107	147	14 Frame Rotation 2 X	
12 Cavity Rotation X	111	114	9 Cavity Rotation X	
		128	11 Frame Diagonal and cavity Rotation X	
13 Frame mode diagonal	128	127	10 Frame Diagonal	
14 Frame + outer tube Longitudinal	134	106	8 Frame + Outer tube	
15 Blades	145	143 - 146	13 + 14 + 15 Blades	
CERN		134	12 Frame Rotation X 2	

Transport norms and resources

- ASTM D4169-14 Standard practice for performance testing of shipping containers and systems: Truck update 2016
- MIL-STD-810G Annex : Vibration exposure definition transport
- CTU code
- Consulting agency
- PNNL Nuclear transport
- ESO Transport conditions
- ELI NP Module transport
- Recent TTC
- CERN data

Type of info: Drop test heights, PSD, Intensity acceleration (integrated R.M.S.), «quasistatic»,

	Longit.	Lat.	Vert.
СТИ	0.8	0.5	1
Magnuson	2.8 (20 ms)	2.3 (19 ms)	7.0 (77 ms)
NASA	3.5	2.0	6.0
ESO	1	0.6	1.5

Road transport (g)

Consulting agency: 1.2 g road, 4 g train, 0.8 – 1 g boat, 3 g air

Place your bets... or measure it yourself

11

Source Tom Nicol talk TTC, shipping of LHC magnets

a sentitical il	D-t-	Time (1	Landing	1	lana? deal	Martinal	Deshable Front
lagnet	Date	Time (Local)	Location	Lateral	Longitudinal	Vertical	Probable Event
408	01/18/06	18:01	Baltimore	0.9	1.5	1.6	Handling in shipyard at Baltimore
408	01/18/06	22:01	Baltimore	1.1	0.9	2.0	Handling in shipyard at Baltimore
808	01/19/06	2:01	Baltimore	1.3	0.7	1.7	Handling in shipyard at Baltimore
408	01/19/06	6:01	Baltimore	1.0	1.0	1.9	Handling in shipyard at Baltimore
408	01/19/06	10:01	Baltimore	0.7	0.8	21	Handling in shipyard at Baltimore
408	01/23/06	22:01	Baltimore	1.8	1.5	1.2	Handling in shipyard at Baltimore
408	02/02/06	10:01	Baltimore	1.6	1.7	3.8	Loading onto ship
408	02/09/06	20:01	Antwerp	2.0	1.8	1.7	Unloading from ship
409	05/08/06	14:29	Fermilab	0.7	0.7	1.5	Truck leaves Fermilab
409	05/10/06	11:29	Baltimore	1.5	0.7	1.2	Unloading from truck
409	05/15/06	23:29	Baltimore	0.8	1.4	1.9	Loading onto ship
409	05/29/06	13:29	Antwerp	1.6	1.6	2.3	Unloading from ship
409	06/07/06	13:29	CERN	0.9	2.0	11.9	Arrival at CERN (possibly recorders remov
306	01/25/06	12:31	Baltimore	1.2	1.3	2.6	Handling in shipyard at Baltimore
306	02/02/06	8:31	Baltimore	0.3	0.9	0.5	Loading onto ship
306	02/16/06	7:31	Antwerp	1.6	1.2	1.6	Unloading from ship
306	02/20/06	15:31	Antwerp	1.5	1.5	1.7	Handling in shipyard at Antwerp
306	02/20/06	19:31	Antwerp	2.2	1.1	1.2	Handling in shipyard at Antwerp
306	02/22/06	15:31	CERN	2.1	10.1	6.8	Arrival at CERN (possibly recorders remov
310	04/08/06	11:33	Baltimore	0.8	0.7	1.5	Unloading from truck
310	04/13/06	10:53	Baltimore	0.6	1.0	1.0	Loading onto ship
310	04/27/06	10:53	Antwerp	0.8	0.5	0.6	Unloading from ship
310	05/02/06	18:53	Antwerp	3.8	1.4	1.1	Handling in shipyard at Antwerp
310	05/04/06	2:53	Geneva	2.1	0.7	0.1	Truck enroute to CERN
311	03/05/07	11:27	Fermilab	1.5	1.3	1.3	Truck enroute to airport
311	03/05/07	12:27	Fermilab	1.3	1.3	1.3	Truck enroute to airport
311	03/07/07	13:27	CERN	2.3	3.2	11.8	Arrival at CERN (possibly recorders remov
C 05	02/14/06	12:34	Baltimore	0.8	0.6	1.2	Arrival in shipyard at Baltimore
05	03/02/06	16:34	Baltimore	2.4	1.1	21	Loading onto ship
05	03/18/06	10:34	Antwerp	1.1	0.7	1.5	Unloading from ship
206	01/09/06	7:31	Fermilab	1.2	1.4	0.6	Loading onto truck
206	01/10/06	16:31	Baltimore	43	21	1.7	Arrival in shipvard at Baltimore
206	01/11/06	12:31	Baltimore	1.8	10.2	1.6	Handling in shipyard at Baltimore
206	02/02/06	12:31	Baltimore	11	1.0	11	Loading onto ship
206	02/09/06	18:31	Antwerp	1.7	0.7	1.1	Unloading from ship
:06	02/10/06	18:31	Antwerp	1.0	0.9	1.3	Handling in shipyard at Antwerp
07	03/16/06	11.25	Baltimore	11	14	2.3	Loading onto ship
:07	03/30/06	13:25	Antwern	2.0	16	17	Unloading from ship
207	04/04/06	17:25	Antwern	13	12	10	Loading onto truck
07	04/06/06	9.25	CERN	14	28	80	Arrival at CERN (nossibly recorders remov
208	05/04/06	11.54	Baltimore	13	23	0.9	Handling in shinyard at Baltimore
08	05/04/06	15:54	Baltimore	1.5	12	1.0	Handling in shipyard at Baltimore
08	05/19/06	0.54	Antwern	1.5	1.2	1.6	Unloading from shin
208	05/22/06	21.54	Antwen	0.7	1.5	1.0	Logding onto truck
208	05/24/06	0.54	CEDN	1.3	2.0	1.1	Arrival at CE DN
200	00/26/00	17:00	Chicago	1.3	2.2	1.1	Truck enoute to Baltimore
203	09/25/06	21.22	Chicago	1.7	16	47	Truck enroute to Baltimore
200	09/25/06	21.22	Reltimore	1.7	0.0	10	Arrivel at phinkerd in Politimere
209	09/20/06	22.22	Baltimore	0.5	0.9	1.0	Armai al snipyaro in Baitimore
v09	09/29/06	11.11	Daitimore	1.1	1.1	24	Loading onto ship
					Recorded shocks	in excess of	2 g.
					Questionable data	May have o	occurred after recorders removed
					and the second second		
	Note:	Indicated times	are end of a 4-	hour samplin	g window.	and a second	
		Recorded value	s are peak valu	es recorded	during the 4-hour pe	riod.	
		E XCEPTION IS B	II. Sampling p	period is 30 m	inutes (shipped by	aur).	1

CERN

Talk Edward Jordan

Thank you for your attention!

Spare slides

CERN

Ad-Hoc Measurements

Ad-Hoc Measurement: RF & Transport

Radiofrequency performance monitored during all major steps

- Acceptance
- Tuner Assy
- Connection to to Vessel
- Coax lines + Assy
- Closure

Structural loading of cavity supports and acceleration monitored during assembly and transport

22101 22.00 7.02.0

Ad-Hoc Measurement: Vibrational

- · Vibrometry acquisition via 3D Laser Scanning
- Configuration: hanging top cover and cavity string
- Comparison ongoing between FE analysis and measured data

		Road tran	sport			
Acceleration coefficients						
Securing in	Longitudinally (cx)		Transversely	Minimum vertically		
Securing in	forward	rearward	(c _y)	down (cz)		
Longitudinal direction	0.8	0.5		1.0		
Transverse direction	141	1.00	0.5	1.0		

Rail transport (combined transport)						
Acceleration coefficients						
Securing in	Longitud	inally (cx)	Transversely	Minimum vertically		
Securing in	forward	rearward	(Cy)	down (cz)		
Longitudinal direction	0.5 (1.0)†	0.5 (1.0) [†]		1.0 (0.7)†		
Transverse direction	838	875	0.5	1.0 (0.7)†		

[†] The values in brackets apply to shock loads only with short impacts of 150 milliseconds or shorter, and may be used, for example, for the design of packaging.

Sea transport						
Si	ignificant wave		Acceleration coefficients			
	height in sea area	Securing in	Longitudinally (cx)	Transversely (c _y)	Minimum vertically down (cz)	
A H _s ≤8m	Longitudinal direction	0.3	0.70	0.5		
	Transverse direction	12	0.5	1.0		

		Sea tra	ansport		
Significant wave Acceleration coefficients					
	height in sea area	Securing in	Longitudinally (cx)	Transversely (c _y)	Minimum vertically dowr (cz)
0	0	Longitudinal direction	0.3	-	0.3
в	o m < H ₅ = 12 m	Transverse direction	-	0.7	1.0
C H _s > 12 m	Longitudinal direction	0.4	-	0.2	
	Transverse direction		0.8	1.0	

The effect of short term impact or vibrations should always be considered. Therefore, whenever the cargo cannot be secured by blocking, lashing is required to prevent the cargo from being significantly displaced, taking into account the characteristics of the cargo and the mode of transport. The mass of the cargo alone, even when combined with a high friction coefficient (see appendix 2 to annex 7), does not sufficiently secure the cargo as the cargo can move due to vibrations.

5.5 The significant 20-years return wave height (H_s) is the average of the highest one-third of waves (measured from trough to crest) that is only exceeded once in 20 years. The allocation of geographic sea areas to the respective significant wave heights is shown in the following table:

A	В	С
H₅ ≤ 8 m	8 m < H₅ ≤ 12 m	Hs > 12 m
Baltic Sea (incl. Kattegat) Mediterranean Sea Black Sea Red Sea Persian Gulf Coastal or inter-Island voyages in following areas: Central Attantic Ocean (between 30°N and 35°S) Central Indian Ocean (down to 35°S) Central Pacific Ocean (between 30°N and 35°S)	North Sea Skagerak English Channel Sea of Japan Sea of Okhotsk Coastal or inter-island voyages in following areas: South-Central Altantic Ocean (between 35°S and 40°S) South-Central Pacific Ocean (between 35°S and 40°S)	unrestricted

Sources:

5.4

The Royal Netherlands Meteorological Institute (KNMI): The KNMI/ERA-40 Wave Atlas, derived from 45 years of ECMWF reanalysis data (ed. S.Caires, A.Stern, G.Komen and V.Swail), last updated 2011, Hs 100-yr return values, 1958 – 2000

SN

	 Drop Height, in 	n. (mm) Assurance Level
Shipping Weight, Ib (kg)	at Para .	- II (1997) - IK
0 to 20 (0 to 9.1)	24 (610)	15 (381) 9 (229)
20 to 40 (9.1 to 18.1)	21 (533)	13 (330) 1 8 (203)
40 to 60 (18.1 to 27.2) -: 11	. 18 (457)	12 (305) 7 (178)
60 to 80 (27.2 to 36.3)	15 (381)	10 (254) 6 (152)
80 to 100 (36.3 to 45.4)	12 (305)	9 (229) 5 (127)
100 to 200 (45.4 to 90.7)	10 (254)	7 (178) 4 (102)
Number of		
Impacts at	1	
Sensified	्यू सम्बद्ध 🦷 🖉	
Helahi I	moad Orientation	ana a tao
Firet Soo	uence of Distribut	lion Cucle
Plat Sec	Bag or Sack	Cylindrical Cantain
000 100	foco	too
Two adjacent bottom edges	two eidee	two sides 90° anast
Two adjacent boltom edges	n both ende	bottom edges 002
Two diagonally opposite botto	II Dour ends	bollon edges 90' apart
Ora bettern	annacita faca	hottom
One bottom	opposite face	Dottom
Number of	N 26 1 1 1	
Impacts at	C. Same	
Enclined		
Height	monact Orlentation	216.12 m
Litti Second Se	quence of Distrib	ution Cycle
Box	Bag or Sack	Cylindrical Container
One vertical edge	face	ton
Two ediacent side faces	two sides	two sides 90° anort
Two one top corner and one	hoth ends	hottom edges 90% and
ediacent ton edge	Sour onus	south ougos of Bpan
One see Note 1	see Note 1	see Note 1
	000	

Nore 1—On the last impact of the last manual handling sequence in a distribution cycle, the impact should be made at *nvice* the specified height or equivalent velocity change. (This is the final (sixth) drop in the sequence, not an additional drop.) The drop should be in the impact orientation most likely for a drop to occur, usually the largest face or the bottom. For distribution cycles where any drop orientation is possible (that is, shipments via carriers that mechanically sort packages), this drop should be in the most critical or damage-prone orientation, as defined in Test Method D5276.

Note 2—The equivalent velocity change corresponding to the specified drop height used for the shock machine method shall be calculated as specified in Test Method D5487.

10.3.1.1 Fork Lift Truck Handling—One rotational flat drop from each opposite base edge in accordance with Method C of Test Methods D6179 and one rotational drop on each of two diagonally opposite base corners in accordance with Method B of Test Methods D6179.

 Gross Weight, Ib (kg)
 Drop Height, in. (mm) Assurance Level

 0 to 500 (0 to 226.8)
 12 (305)
 9 (229)
 6 (152)

 0 ver 500 (226.8)
 9 (229)
 6 (152)
 3 (076)

10.3.1.2 Crane Handling—(Conduct this test only if cranes are used for handling in the distribution process.) One drop flat on bottom and one drop on base edge in accordance with Method D of Test Methods D6179. Use the same drop heights versus shipping unit weight as in 10.3.1.1.

18

Table 2-4. Summary of Shock Data

Carrier	Axis	Peak Acceleration (g)	Pulse Duration (ms)			
Truck (shocks	Longitudinal	2.8	20			
superimposed on	Transverse	2.3	19			
vibration)	Vertical	7.0	77			
Rail (shocks	All	4.7	14			
superimposed on						
vibration)						
Rail coupling ^a	Longitudinal	39.0	18			
(11.05 mph)	Vertical	26.0	9			
Source: Magnuson and Wilson (1977)						
a. Based on ATMX railca	a. Based on ATMX railcar with 5-ton cargo.					

Table 2-1. Truck Vibration Data

	Measurements on Cargo Floor (g)						
	99%	99% Level of Zero to Peak Amplitude					
Frequency Band (Hz)	Longitudinal Axis	Transverse Axis	Vertical Axis				
0-5	0.10	0.10	2.0				
5-10	0.08	0.06	1.04				
10-20	0.84	0.15	1.68				
20-40	0.51	0.24	1.20				
40-80	0.36	0.42	0.50				
80-120	0.24	0.27	0.87				
120-180	1.23	0.21	0.63				
180-240	0.87	0.12	0.87				
240-350	0.24	0.15	0.63				
350-500	0.24	0.15	0.42				
500-700	0.87	0.15	0.87				
700-1000	1.50	0.87	1.17				
1000-1400	0.87	1.17	1.17				
1400-1900	0.39	0.24	0.87				
Source: Magnuson and W	Source: Magnuson and Wilson (1977)						

TABLE 1. – TRANSPORTATION LIMIT LOAD FACTORS

[From ref. 15]			NASA
Medium/mode	Longitudinal load factors, g	Lateral load factors, g	Vertical load factors, g
Water	<u>+</u> 0.5	±2.5	+2.5
Air	<u>+</u> 3.0	±1.5	<u>±</u> 3.0
Ground	. 1		
Truck	<u>+</u> 3.5	<u>+</u> 2.0	+6.0
Rail (humping shocks)	<u>+6.0 to +30.0</u>	<u>+</u> 2.0 to <u>+</u> 5.0	+4.0 to +15.0
Rail (rolling)	<u>±0.25 to ±3.0</u>	<u>±0.25 to ±0.75</u>	+0.2 to +3.0
Slow-moving dolly	±1.0	<u>+</u> 0.75	+2.0

Response Spectrum Analysis vs. Static Structural

Response Spectrum Analysis

 10G shock, 20ms and 1% damping (Y Direction)

Static Structural

10G acceleration (Y Direction)

