https://indico.cern.ch/event/787363/

Vacuum for HL-LHC CC

V. Baglin, A. Carvalho, <u>G. Riddone</u>

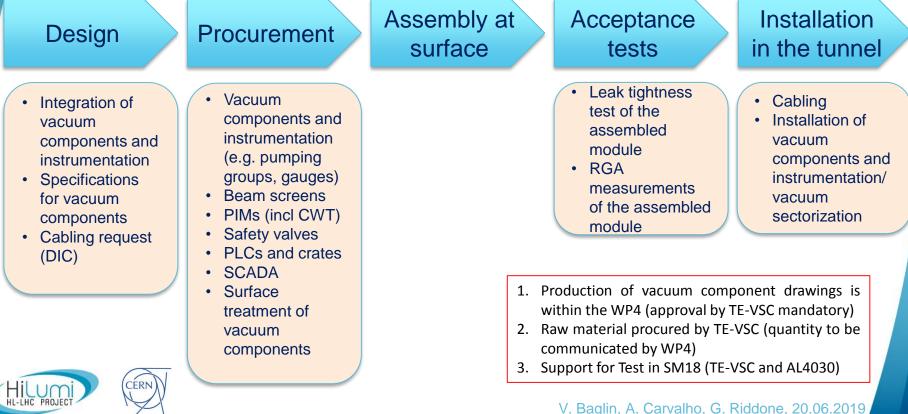
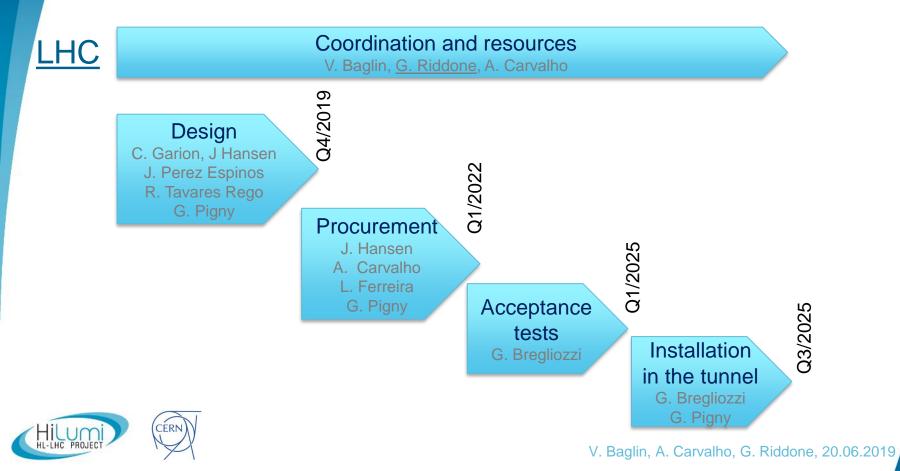
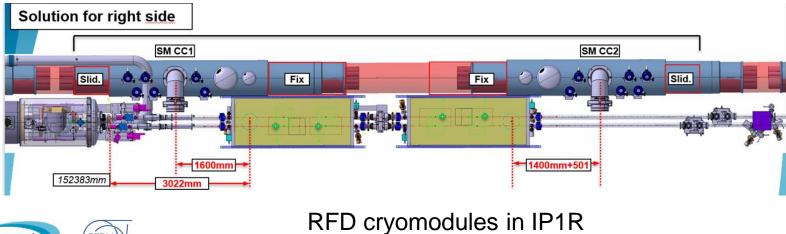

International Review of the Crab Cavity system design and production plan for the HL-LHC, 21 June 2019

Table of contents


- TE-VSC scope, involvement and organisation
- Integration layout
- Vacuum requirements, input and assumptions
- Vacuum design
 - Beam Vacuum
 - Interconnections
 - Insulation vacuum
- Procurement and possible in-kind contributions
- Planning and critical issues
- Conclusions
- Documentation

TE-VSC scope


TE-VSC organization and link persons

Integration layout

2 types of crab cavities and, therefore, cryomodules (see also T. Capelli talk):

- the Double Quarter Wave (DQW) cryomodules (P5);
- the RF Dipole (RFD) cryomodules (P1).
- The preliminary integration of the vacuum components is based on the RFD cryomodule, since the DQW cryomodule is still in design phase.

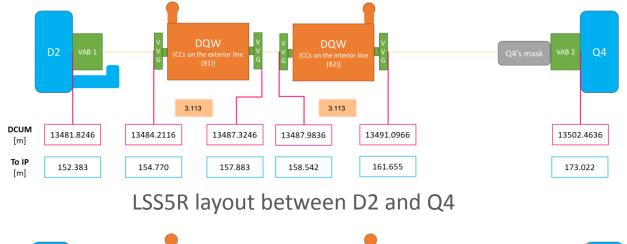
Vacuum requirements

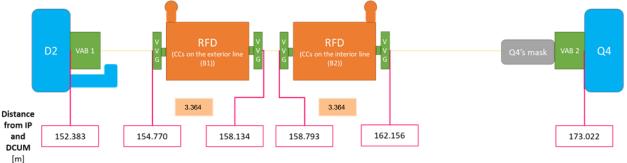
Vacuum level

- beam vacuum: better than $1 \cdot 10^{-9}$ mbar @ 2K
- insulation vacuum: better than $1 \cdot 10^{-6}$ mbar @ 2K

Leak-tightness rate

- for beam vacuum chamber: better than 1·10⁻¹⁰ mbar·l/s EDMS#1752123
- for insulation vacuum chamber (He to ins. vacuum @RT): better than 10⁻⁹ mbar·l/s (single component) EDMS#353384.


EDMS#2043014


Vacuum input

- Input taken into account to perform the conceptual design of the CC vacuum system:
 - Functional position;
 - Maximum beam aperture along the CC area;
 - Cold bore tolerances and temperature (<2.8 K);
 - Alignment specifications;
 - Vacuum sectorisation and instrumentation.

Vacuum Input - Location and functional position

LSS1R layout between D2 and Q4

V. Baglin, A. Carvalho, G. Riddone, 20.06.2019

8

Vacuum Input – max beam aperture and cold bore

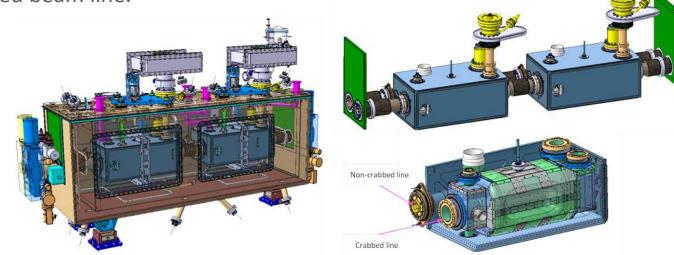
Plane	Maximum beam aperture along the non-crabbed cavity line		
Horizontal and vertical	55.2 mm*		

* Considering all the beam aperture contributions as specified by the WP2

	Description	Value [mm]
	Operation temperature	2 К
e	Nominal outer diameter at 300 K	88 mm
bore	Cold bore wall thickness	2 mm
Cold	Nominal inner diameter at 300 K	84 mm
ပို	Cylindricity (in the inner diameter)	0.5 mm
	Material	Titanium grade 2

Vacuum system assumptions

Assumptions taken into account in order to define the vacuum system:

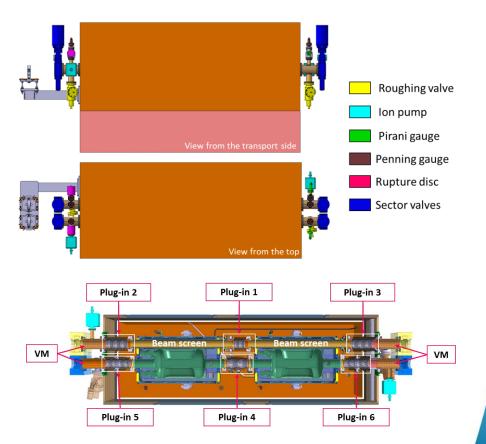

- Sectorisation implies two sector valves (VVGs) in each beam line;
- The four VVGs located in the beam line are supported by the cryomodule;
- The cryomodule does not shrink during cold down;
- Beam screens, plug-ins (cavity interconnections and cold-warm transitions (CWT)), vacuum instrumentation and cryomodule interconnection are supported by the cryomodule frame and the cavity modules.
- Vacuum system has been divided according to:
 - Beam vacuum;
 - Interconnections;
 - Insulation vacuum.

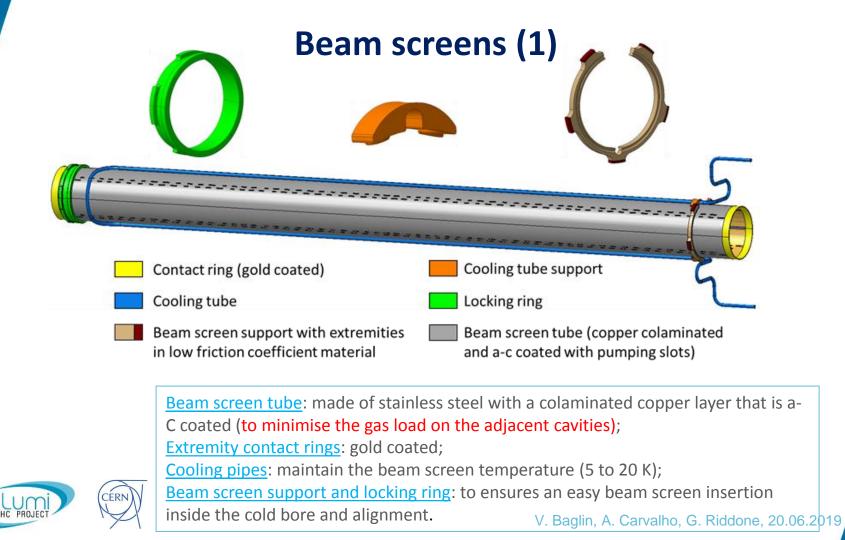
Integration of the vacuum components in the cryomodule

Two beam line types can be identified for each crab cavity:

- Crabbed beam line;
- Non-crabbed beam line.

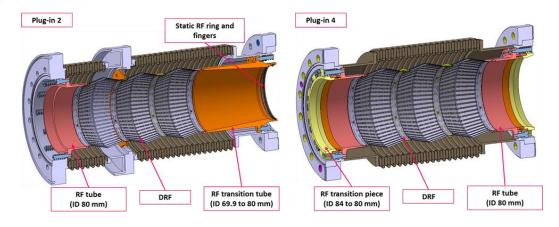
Preliminary RFD cryomodule (ST1050008_01)


Cryomodule bill of components


			Components	Quantity per cryomodule
			Plug-in 1	1
		Crabbed line	Plug-in 2	1
	ule r)		Plug-in 3	1
	Cryomodule (Interior) Non-crapped		Beam screen + cooling tubes + end connections	2
_	Cry	Non-crabbed line	Plug-in 4	1
Beam vacuum	-	ine	Plug-in 5	1
Ы			Plug-in 6	1
/aC	ule L)		Roughing valve	2
2			lon pump	2
an			Pirani	2
Be			Penning	6
-		irio	Rupture disc	2
	Cryomodule (Exterior)		Sector valves	4
			Extremity vacuum modules (VM)	4
		Vacuum modules supports		4
			Drift chamber support	0.5*

*s1 per 2 cryomodules

We assume the same components for RFD type as for DQW type


Beam screens (2)

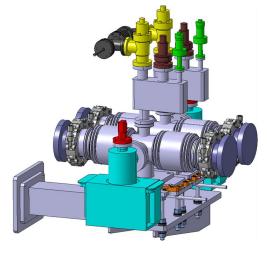
Component	Description	Value	Value in
	Transparency	2%	
	Slot dimension	With ≈1.5mm, ≈6-10 mm length	
	Coating	a-C coating	
	Temperature	5 to 20K	
Beam screen	Shape	Circular	
tube	Material	Stainless steel P506	
	Wall thickness	1 mm	
	Cooper layer thickness	0.075 mm	
	Wall thickness tolerance	0.05 mm	radius
	Cylindricity	0.5 mm	diamete
	Material	Stainless steel P506	
Gaaliaa	External diameter	4.76 mm	
Cooling pipes	Inner diameter	3.7 mm	
pipes	External diameter tolerance	0.05 mm	diamete
	Welding tolerance	0.1 mm	diamete
	Thickness	9.85 mm ($\phi_i = 72.1 mm and \phi_o = 91.8 mm$)	
Doom coroon	Shape of the external surface	0.1 mm	diamete
Beam screen support	Shape of the internal surface	0.2 mm	radius
Support	Minimum annular gap with bimetallic transition	0.05 mm	radius

CLEARANCE: 1.3 mm (radius) --> considering the beam screen and the bimetallic transition tolerances, the beam aperture given by WP2 and the positioning tolerances

Plug-in modules

6 types of Plug-in modules No aC-coating on CWT To be noticed:

- Deformable RF (DRF) bridges to cope with impedance
- DRF bridges more robust than standard bridges ==> baseline for new Inner Triplet interconnect


	Installed langth		Material]
Plug-in	Installed length at warm [mm]	ID [mm]	Bellow	RF tubes/transitions	DRF	
Plug-in 1	187	69.9				1
Plug-in 2 (CWT)	318	80 - 69.9	Ctainlana ata al	Our service of the s	Common	
Plug-in 3 (CWT)	282	69.9 - 80	Stainless steel	Oxygen free copper (OFE Cu)	Copper beryllium with rhodium coating	
Plug-in 4	264	84 - 80 - 84	(0.15 mm of thickness)			
Plug-in 5 (CWT)	374	80 - 84				
Plug-in 6 (CWT)	302	84 - 80]			

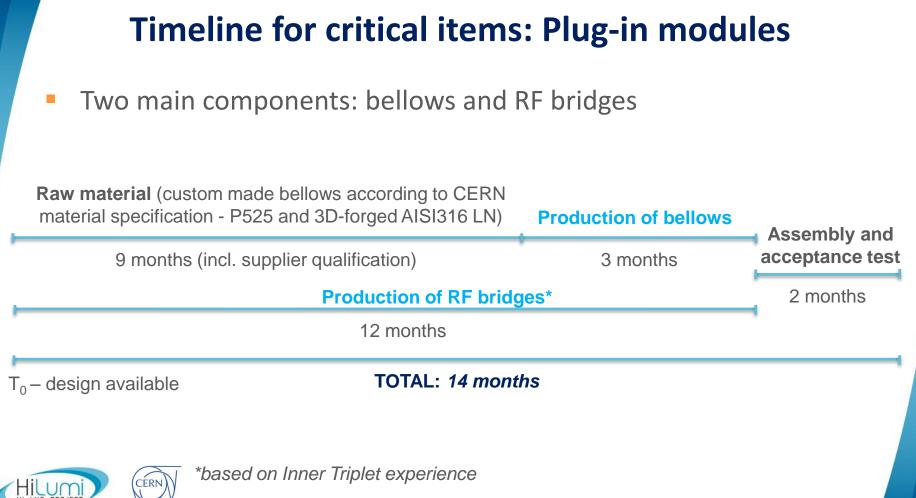
Cryomodule Interconnection

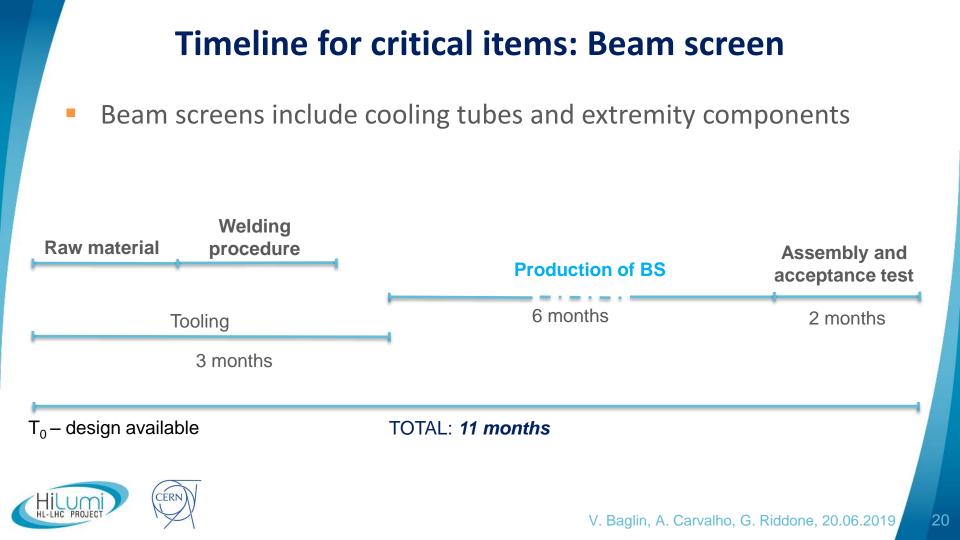
		Components	Quantity per interconnection
		Roughing valve	2
		lon pump	2
		NEG pump	2
μr	u û	Dual pumping fitting	1
ctic loc	Pirani	2	
ac	n li	Penning	2
	con ean	Flange transitions + clamps	4
aπ	Interconnection (2 beam lines)	Gauge fittings	2
Beam vacuum	()	Support for the interconnection modules	1
		Double bellow vacuum module	2

Insulation vacuum

			Gauges + Valve	Pumping group	Flap valve DN160
	Components	Total quantity per cryomodule	(VAZAC)	VPGFY001 SPECIAL FOR STANDALONE	
	Pumping fixed groups	1	VGPA VVMMH		(57
m m	Roughing valves	1	VGRA	· (0)	*(0159)
Insulation vacuum	Gauges	1	VGMA		LHCVV_0041 ST0228078
Insu	Flap valve	1	LHCVA0076(LSS S.A)	-	
	Spring relief valve	1	High Radiation Zone ST0030627		
				LHCVPGFY0001 ST0859898 01	

Integration of these components still to be done by WP4 Sizing of the flap valve has to be confirmed (WP4-WP9)



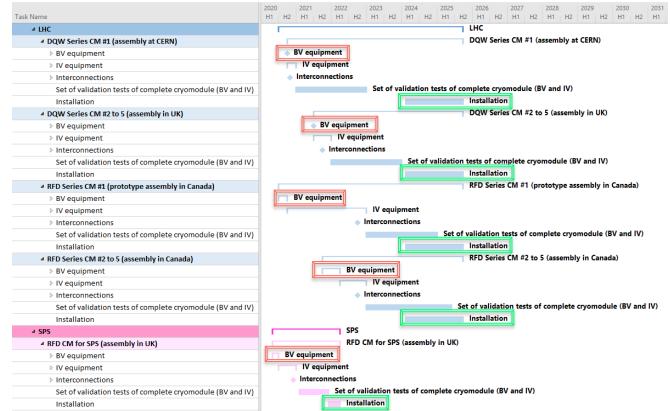

Procurement of the vacuum components

Cryomodule	Assembly in	Components needed by	Critical components	Comments	
DQW #1	CERN	Sept 2020	Plug-in modules Beam screens		
DQW 2 to 5	UK	June 2021		In kind contribution Sector valves*	
RFD #1	Canada	Beam screen: June 2020 Others: Sept 2020	Plug-in modules Beam screens	Possible in-kind contributions Extremity chambers Penning-Pirani gauges* Roughing angle valves Rupture discs Ion pumps*	
RFD 2 to 5	Canada	Beam screen: Sept 2021 Others: March 2022			
SPS Test - RFD	UK	Beam screen: April 2020 Others: June 2020	Plug-in modules Beam screens	 Is the beam screen needed on the non-crabbed line? 3 plug-in modules only? 	
HILUMI CERN	N .	ponents have to follow TE-V due to the fact that TE-VSC			

-LHC PROJECT

V. Baglin, A. Carvalho, G. Riddone, 20.06.2019

Planning (1)


EDMS#2155574: 5 categories

- Beam vacuum components (dates from WP4)
- Insulation vacuum components (dates from WP4)
- Interconnections (assumption of 3 months before validation tests)
- Validation tests: BV and IV (dates from WP4)
- Installation (dates based on WP4 master schedule)

ask Name	✓ H1 H2 H1
⊿ LHC	LHC
DQW Series CM #1 (assembly at CERN)	DQW Series CM #1 (assembly at CERN)
 BV equipment 	 BV equipment
extremity VM type1	extremity VM type1
extremity VM type2	extremity VM type2
gauges (VGP)	 gauges (VGP)
gauges (VGR)	 gauges (VGR)
sector valves (VVG)	 sector valves (VVG)
multiport bloc 3xDN40 for gauges and rupture disk	 multiport bloc 3xDN40 for gauges and rupture disk
tee DN40	♦ tee DN40
roughing valves (VVFMF)	 roughing valves (VVFMF)
rupture disk (VAZRD)	 rupture disk (VAZRD)
Ion pumps (VPI)	 Ion pumps (VPI)
Plug-in 5	Plug-in 5
Plug-in 6	Plug-in 6
Plug-in 2	Plug-in 2
Plug-in 3	Plug-in 3
Plug-in 4	Plug-in 4
Plug-in 1	Plug-in 1
Circular beam screen + cooling tubes + end connections	 Circular beam screen + cooling tubes + end connections
extremity VM Supports	 extremity VM Supports
Tooling for the new plug-ins	 Tooling for the new plug-ins
Control (interrack cabling, interlock, crates, cards)	 Control (interrack cabling, interlock, crates, cards)
bakeout (jackets, cable, thermocouple)	 bakeout (jackets, cable, thermocouple)
 IV equipment 	IV equipment
flap valve	♦ flap valve
pumping fixed groups	pumping fixed groups
gauges	♦ gauges
roughing valves	 roughing valves
spring relief valve	 spring relief valve
Cables + controllers VPGF	Cables + controllers VPGF
Control (PLC, cables, crates, piezzo controller)	 Control (PLC, cables, crates, piezzo controller)
 Interconnections 	Interconnections
Support for the interconnection modules	Support for the interconnection modules
Drift chamber support	 Drift chamber support
Ion pumps (VPIAN)	 Ion pumps (VPIAN)
NEG PUMP	NEG PUMP
roughing valves (VVFMD002)	 roughing valves (VVFMD002)
gauges (VGP)	♦ gauges (VGP)
gauges (VGP)	♦ gauges (VGP)
multiport bloc 3xDN40 for gauges and roughing	 multiport bloc 3xDN40 for gauges and roughing
VMT interconnections	VMT interconnections
clamps+flange fittings	 clamps+flange fittings
dual pumping fitting	 dual pumping fitting
Set of validation tests of complete cryomodule (BV and IV)	Set of validation tests of complete cryomodule (BV and IV)

Planning (2)

Conclusions

- Design & Integration are not completed yet
- Procurement of plug-in modules and beam screen on the critical path: 14 and 11 months respectively for the production from the availability of the drawings: "needed by" date for SPS, for DQW#1 and RFD#1, it seems tight
- TE-VSC resources have been recently re-estimated.
 They are within the allocated budget

Documentation

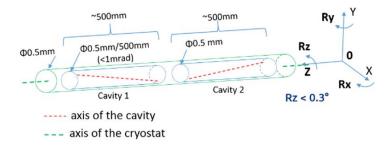
- TE-VSC contribution to the HL-LHC WP4: EDMS#1754567
- Conceptual design of the Crab Cavities vacuum system EDMS#1864637
- TE-VSC mandate for insulation vacuum of RF equipment in the SPS tunnel – EDMS#1953501
- TE-VSC mandate for insulation vacuum of RF equipment in the LHC tunnel - EDMS#2143391
- Planning: vacuum equipment for WP4 EDMS#2155574
- Criteria for vacuum acceptance tests EDMS#1752123
- Codification of surface cleanliness levels EDMS#347564

Thanks for your attention

V. Baglin, A. Carvalho, G. Riddone, 20.06.2019

Extra slides

V. Baglin, A. Carvalho, G. Riddone, 20.06.2019

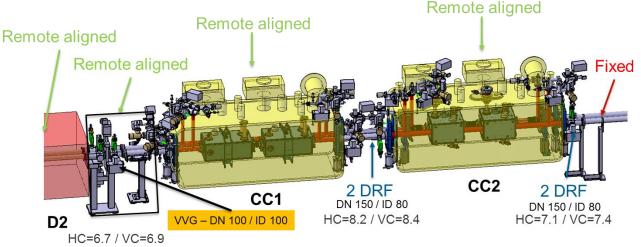

Vacuum input - Alignment specifications

The CCs beam line will be equipped with the Frequency Scanning Interferometry (FSI) alignment system. The non-crabbed beam line is rigidly attached to the CCs, thus, it will follow the CCs displacements. The adjustment of the cavities is performed at room temperature.

The position at warm will be known quite accurately (± 0.1 mm at 1σ).

The contributions taken into account in the alignment tolerance budget are:

- Fiducialisation of the axis of the cavity with respect to the magnetic centre = 0.5 mm (in diameter);
- The cold bore position with respect to the cavity magnetic centre = 1.75 mm (in radius);
- Internal monitoring of the position of the mechanical axis of the flanges of the dressed cavities:
 - Rx: $< 0.057^{\circ} \rightarrow \emptyset 0.5 \text{ mm}/500 \text{ mm}$ (neglected);
 - Rz: < 0.3° $\rightarrow \approx \emptyset$ 1 mm (in radius).



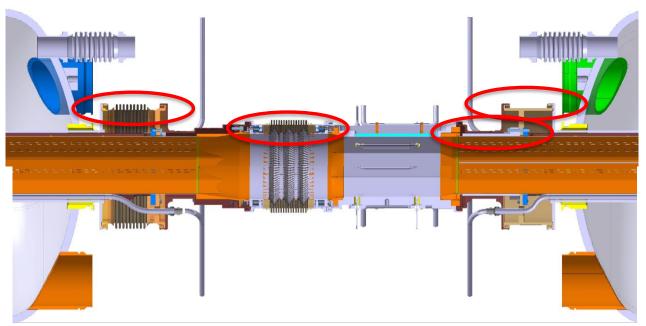
Note that the ground motion is not taken into account since the cavities are **remotely aligned**.

27

Remotely aligned D2 VABs

- D2 VAB with the new VSC interface platform and with the SU remote alignment platform (type 2).
- Vacuum chambers (VCs), between D2 and the CCs, must be remote aligned (in study).
 - VCs embarked with the VAB.

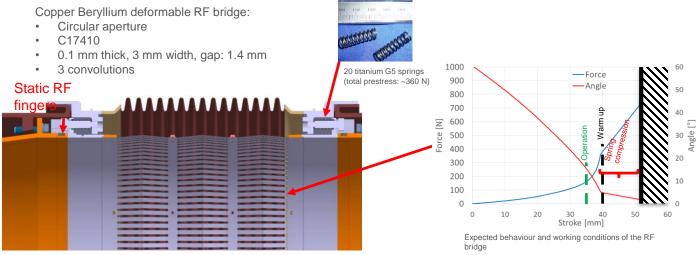
- Total
 - 2 VVGs already in the WP12 baseline.
 - 1 Survey platform for type 2 support to be added to WP12 baseline.
 - 8 VVGs + 4 DRF + 2 new vacuum chambers + 2 flange transition pieces already included in the WP4 baseline.
 - Motors + sensors kit by WP15.4.


28

Master schedule WP4

Beam screen extremities and interconnections Layout

0/90° cut


+/-45° cut

- HILUMI CERM
 - CERN
- More compact components (transversally)
- Longer absorber at the beam screen extremities
- Update of the interconnection module design

30

Beam screen extremities and interconnections

Interconnection module

Longitudinal constraint, due to the finger extension limitation, is

Full interconnection module prototype under manufacturing. Mechanical and RF tests will be done, in particular the RF performance with transversal offset will be assessed (early

reduced thanks to the static RF fingers and the springs.

2018).

as installed

in operation

Deformable RF fingers