

Engineering Specifications and Guidelines for Compliance with CERN Safety Rules

Luca Dassa on behalf of the engineering team

International Review of the Crab Cavity system design and production plan for the HL-LHC June, 19th -21st 2019 (CERN)

Outline

- Overall context: the cryomodule
- CERN rules for pressure/cryogenic equipment
- HiLumi structure for compliance with CERN Rules
- GSI-M-4/PED key words
 - Essential Safety Requirements (ESRs)
 - Technical documentation
- Strategy for cryomodule
 - Engineering specifications
 - Guidelines for compliance with CERN Safety Rules
- Jacketed cavity

Overall context: the cryomodule

Detailed system architecture for LHC

CERN rules for pressure/cryogenic equipment

HiLumi structure for compliance with CERN Rules for Crab cryomodule

HiLumi Project

PED key words (valid also for GSI-M-4)

Directive PED 2014/68/EU

"<u>manufacturer</u>': <u>any</u> natural or <u>legal person who</u> manufactures pressure equipment or an assembly or <u>has</u> <u>such</u> equipment or <u>assembly designed or manufactured</u>, <u>and</u> ...<u>uses it for his own purposes</u>;"

Article 6

. . .

. . .

Obligations of manufacturers <u>1... manufacturers shall ensure that (their pressure</u> <u>equipment or assemblies) have been designed and</u> <u>manufactured in accordance with the **essential safety** <u>requirements set out in Annex I.</u></u>

Annex III Conformity assessment procedures

- 1. Module A: (Internal production control)
- 2. Technical documentation The manufacturer shall establish the technical

documentation. <u>The technical documentation shall make it</u> <u>possible to assess the conformity of the pressure equipment</u> <u>to the relevant requirements</u>, ...

<u>The cryomodule shall be</u> <u>designed and manufactured in</u> <u>accordance with the essential</u> <u>safety requirements.</u>

CERN shall establish the technical documentation

GSI-M-4/PED key words - encore

Essential Safety Requirements (ESRs)

ESRs: a mix of

- Design requirements
- Manufacturing requirements
- Inspection requirements
- Operational requirements often interconnected

- CERN specificities (i.e. LHC installation)
- Crab project specificities (i.e. unconventional materials and joining technics)

- CERN-WP4 drives the detailed design of the cryomodule
- CERN-WP4 establishes the actions needed to comply with the ESRs

Technical documentation for Crab cryomodules

Manufacturer shall demonstrate compliance

EDMS and MTF are mandatory

Strategy for Crab Cryomodule

CONTENT:

AUTHOR:

CERN-WP4

- Refers. to the corresponding Engineering Specification
- Demonstration of compliance, ESR by ESR

Intended for CERN internal use and for HSE, available for consultation

- 2 main documents for the cryomodule
- engineering specification
- guideline for compliance with CERN safety rule

+

2 main documents per relevant component:

- engineering specification
- guideline for compliance with CERN safety rule

Respect of engineering specification = compliance with CERN safety Rules

Ad-hoc agreements with Collaborating Entities based on described strategy / documentation can be discussed

HILUMI

CONTENT

- to catch the HL-LHC needs (functional and technical requirements)
- to comply with ESRs
- List of required documentation

AUTHOR: CERN-WP4 involving Collaborating Entities

Crab cryomodules

Name	ID code	Engineering Specification [EDMS number]	Guideline for compliance with CERN Safety Requirements [EDMS number]	
Dressed cavities, including HOMs (ACFHC), Pick-up antennas (ACFPU), Cold magnetic shield (ACFCM)	ACFDC, including ACFHC, ACFPU, ACFCM	1389669	2058183	
Cryogenic circuits	ACFQC	2093032	2101920	
Thermal shield	ACFTS	2101922	2101923	
MLI	ACFTS	2144140	Not needed	
Vacuum vessel	ACFVT	2101924	2101925	
Warm Magnetic shield	ACFWM	2101926	Not present	
Alignment monitoring system	ACFAM	Not present	Not present	
Support and alignment system	ACFAH	Not present	Not present	
RF internal lines	ACFRL	Not present	Not present	
Instrumentation	ACFIS	2145054	Not present	
Vacuum Valves (beam line)	VVG <mark>(????)</mark>	2101929	2101930	
Cold-Warm transition (beam line) + Intercavity Chamber	ACFVW + ACFVC	2101931	2101932	
Fundamental Power Coupler	ACFMC	2101934	2101936	
Tuning system	ACFTU	2101938	2101939	
Safety protecting devices	<mark>????</mark>	2101940	2101943	
Beam screen	ACFVS	2101950	2101951	

Cryomodule:

- EDMS 2043014 Engineering
- specification
- EDMS 2043016 Guideline for
- compliance with CERN safety rule

ς >

Example for Engineering Specification

4.2.7.2	Qualificat	ions	(prior to production) For the dressed cavit						ssed cavities		
The elect Table 13	4.2.7.3	Ele	ectron beam welds: acceptance criteria for non-destructive tests								
to be use	The fol	4.2	.7.4	Electron	beam welds: speci	ial requirements for acceptance criteria for joints	on RF surfaces				
Qualifica to the he	quality	The	e follo	wing req	uirements are valid	for qualification tests and for tests during produ	ction.				
treatmer	levels f level B			4.2.7	.5 Extent of no	on-destructive tests of electron beam welds	(qualificatio	<u>on)</u>			
of docun			IS	Con	orning the NDT o	af alastron beam wolded joints the follow	ing tosts are	roquirodu			
			re		4.3.3 Non-dest	tructive tests of Nb and Nb55Ti welded jo	oints during p	production	n		
	Page 2		50		The same requi	irements apply for Nb and Nb55Ti welded	joints.				
Weldin			50		Production pro	ocedure:	-				
					As per	qualified joints					
			50		Production test	ts:					
	CERN			Repa	Visual	Testing (VT): a 100 % visual inspection o	f welds is re	quired (ex	xternal su	rfaces and inte	ernal
Electro	Y			4.2.	surface	es wherever possible):					
			50	In a	0	 <u>Before welding</u>: surface inspection is intended to detect any possible defects, ensuring that 					
				conf		the plates do not have burrs or are unevenly cut (thus interfering with the weiding process),					
				elec		and specifications.					
Person	Electr			be c	0	 <u>After welding</u>: the visual inspection shall be carried out prior to any other non-destructive 					
	niobiu		50	agre		test and any defect found will be repa	ired in com	pliance w	ith the sp	pecified accept	ance
Operat	titaniı		l I	_		criteria.					
	Qualit				 Radiogram 	raphic Testing (RT): X-ray inspection of 25	% of the tota	al "circum	ferential"	seams and 100	% of
					the tota	al "longitudinal" seams, according to §4.2.	7. Note that	corner joi	nts and ar	eas of high ben	ding
	 Peno perf 		511		stress s	shall be treated as longitudinal seams."					
	• Cha				• 100% H	100% Helium leak test according to Section 4.3.5.					
	 Mag 				Acceptance chi	Acceptance criteria during production as specified in §4.2.7.					
	Frac		515	; 	Repair of defec	tive welds shall be discussed and agreed t	between an p	Jarties.			
it is reque	ested that				concavity	[↑] h	mm				
									Г	Accentance	
			501	3	Shrinkage		Not			Critoria incl	
					groove		acceptable		L		uueu:

Example for Guideline

For the dressed cavities

Jacketed cavity

Actions for compliance / Specs / Develop. strategies

Material

- Certificate 3.1 + PMA from Desy
- Extensive test campaign (effect of forming, effect of heat treatment, tests at cold, Charpy tests planned)
- Extensive verification of the supplied material

Design

• Elastic – plastic calculation (most advanced available tool according to Eu harmonized standards)

Manufacturing

- Forming simulation matching very well the real cavity (knowledge of hardened areas)
- Extensive test campaign on e-beam joints, brazed joints Nb-st.steel, brazed joints Ti-st.steel, bolted joints
- Qualification according to specification (with detailed report on mechanical properties) / Notified Body required for series
- Extensive metrology analyses on prototypes

Inspection and testing

- Extension of NDTs well defined (25% minimum)
- Selection of most stressed joints to test

Proof test

 Baseline: proof test maintained at 1.25xPS for DQW and RFD (difference form SPS tests)

Difficulties encountered

Materials

- Definition of Yield strength: evolution and unexpected surprises, during series production
- Huge amount of tests required (not planned)

Design

- Elastic plastic calculation (some plasticity allowed for Standards, plasticity to reduce for frequency performances)
- Not enormous margin (thin walls, complex shape)
- Analyses with frequency shift difficult to benchmark

Manufacturing

- Qualifications of joints in parallel with the design and manufacturing for prototype
- Difficult interactions with subcontractors (all the steps of manufacturing shall be accounted for in the qualification)
- Thickness reduction on real cavity (tolerances on specification drawing)

Inspection and testing

• Not 100% for the series

Proof test

• RFD is still in development

Conclusions

- Crab cryomodule: CAT 1 equipment according to PED, exempted form CE marking, "equipment liable to have major safety implications"
- CERN WP4 is manufacturer (PED meaning) of the cryomodule: CERN WP4 is responsible for compliance of the cryomodule with CERN rules and with PED ESRs
- Functional + technical + safety requirements

 Strategy: 2 driving documents: "Engineering Specification" + "Guideline for compliance with CERN safety rules" for cryomodule and for relevant components
- Presumption of compliance with CERN rules if strategy is followed (= if engineering specification is respected)
- Jacketed cavity: nice object, with a lot of technics (and some difficulties...) behind!

Thank you...

Back-up slides: LHC crab cryomodules

Few technical considerations

- Very low risk components: each component is treated independently
- Assessment of the assembly according to PED (ANNEX 1: 2.3., 2.8., 2.9.)
- <u>Notified body not</u> required

Component		Maximu	m	Volume		Biggest diameter		Fluid	PED cat.
		Allowab	le						
		Pressure	- (PS)						
				DQW ^[1]	RFD (LHC)	DQW ¹⁴¹	RFD		
Duranad	(40500)	[bara]	[barg]	UI During (and	[I] 2	[mm]	լտոյ	Linuid II.	
Dressed	(ACFDC)	2.1	1.1	2x59 (2	2x66	NA		Liquid He	
cavity				pick-up				(1.9 K)	
				added)					
Upper cryo.	(ACFQC)	2.1	1.1	31 => 35	35 to 45	103		Liquid He	
line						mm		(1.9 K)	
Bottom	(ACFOC)	2.1	1.1	5	4	28 mm		Liquid He	
crvo line	(···=· <u>_</u> =)			-				(19K)	
ном	(ACEHC)	2.1	11	Included in	Included in	28 mm		Liquid He	
cooling line	(ACITIC)	2.1	1.1	the bottom	the bottom	2011111			
cooling line				c. l.	c. l.			(1.9 K)	
TOTAL		2.1	1.1	154	171/181			Liquid He	1
1.9K*								(1.9 K)	
Beam	(ACFVS)	20	19			As per	8 mm	Gas He	SEP
screen c. l.						RFD	(jumper)	(20K)	
							4.76		
							pipe		
FPC c. l.	(ACFMC)	7	6			40 mm	As per	Water	SEP
							DQW	(300 K)	
Thermal	(ACFTS)	25	24			15.2	15.2	Gas He	SEP
shield line						mm		(30/40 K	
								inlet + 60	
								K outlet	
								maxi)	
Cold-warm	(ACFVW)	NA,	NA,						NA
transition		passive	passive						
		cooling	cooling						
Vacuum	(ACFVT)	1.5	0.5	Not rel.	Not rel.	NA	NA	Insulation	NA
vessel								vacuum	
					L				

Table 4 – main components of the cryogenic lines

*the 2 K volume until the jumper is considered as unique volume for the definition of the category according to PED [5].

LHC doc: status and tentative deadlines

		Status		Deadline		
SSA System Safety Assessment		Draft (EDMS 2010001), circulated for feedback				
	Status	of the End Spec	Status of the Guidelines for Safety		Deadline	
Cryomodule	Draft in Canada	work, shared with a and UK	Draft			
Dressed cavities	Approv manag Releas	ved by ement, not yet ed in EDMS	Engineering check			
Cryogenic lines	Draft		Not started			
Warm magnetic shield	Advanc with Ca	ed draft, shared nada and UK	Not neded			
Thermal Shield	Waiting	for decision	Not started			
Vacuum vessel	Advanc with Ca	ed draft, shared nada and UK	Not started			
Main coupler	Not sta	rted	Not started			
		Status		Deadline		
Protection device		Started (calculation on-going)				

Strength assessment (LHC) - 1

	Assessment	Material Model	Loads	Others	Acceptability
	Gross Plastic Deformation EN-13445-3, B.8.2 [2]	Elastic perfectly plastic $RM = R_{p0.2}$ $RM_d = \frac{RM}{1.5} \frac{\sqrt{3}}{2}$	$\gamma_R = 1.2$ P = 2.16 bar a = 1.2 g	Large deflection OFF	Maximum principal strain below 5 %
According to EN 13445-3 Direct Route Material model as described in the standard: elastic-perfectly plastic Design checks: • Gross plastic deformation • Progressive plastic deformation • Instability	Progressive Plastic Deformation (Ratcheting) EN-13445-3, B.8.3 [2]	Elastic perfectly plastic $RM = R_{p0.2}$ $RM_d = \frac{RM}{1.5}$	$\gamma_R = 1$ P = 1.8 bar a = g	Large deflection OFF (First order theory, B.8.3.1)	 Principal strain below % after number of cycles specified for the load case or Shakedown to elastic behaviour
	Instability (Buckling) EN-13445-3, B.8.4 [2]	Elastic perfectly plastic $RM = R_{p0.2}$ $RM_d = RM$ (as per B.8.4.4b)	$\gamma_R = 1.2$ (safety factor of actions as per B.8.4.4a) $\gamma_R = 1.5$ (partial safety factor as per B.8.4.4c) Thus: $\gamma_R = 1.2 *$ 1.5 = 1.8	Large deflection ON in the non-linear buckling	Convergence reached with a load multiplier of, at least, 1.8 and maximum principal strain below 5 %

•

•

(Minimum

load multiplier)

total

Strength assessment (LHC) - 2

Risk analysis

EDMS 2142606 : work in progress

Based on EDMS 1758727, done for the SPS test prototype

Luca Dassa (EN-MME) - 21/06/2019 22/16

Cryogenic circuits and safety protection (LHC)

WORK IN PROGRESS

Individual safety devices for each cryomodule (sized according to according to ISO-4126):

- Helium guarded operating valve at 1.8 bara
- Dedicated rupture disc at 2.1 bara, sized to cover beam vacuum break
- Vacuum vessel protection (vacuum barrier in the jumper) : disk at 1.05 bara

Beam screen circuits and thermal shield circuits protected OUTSIDE the cryomodule

Courtesy of M. Sisti / M. Spitoni (IN WORK)

Pressure bearing components (DQW)

24

Material tests

Materials:

- Ti Gr. 2, Ti Gr. 5, high purity Nb and 55Ti-45Nb not considered in the Harmonised Standards
- conformity with the ESRs required
- compliance with PED would require PMA
 - For Ti -> PMA (DESY) + material certificate + internal tests (EDMS 1538192)
 - For Nb and NbTi -> PMA on similar material (DESY XFEL) -> material certificate + internal tests (EDMS 1722302 for Nb and EDMS 1493400 for NbTi)

25

Material tests (2)

Tests:

- To verify compliance of the supplied material with CERN specification (i.e. Material for DQW production at RI): some problems have been encountered with the Nb supply from Ningxia for the pre-series cavity
- To evaluate the effect of the forming process on Nb properties
- To evaluate the effect of het treatment for hydrogen disease on Nb
- To evaluate the performances of joints
- To improve knowledge of material behavior at cryogenic properties (ductility)

Test on new brazed joints

Ongoing tests to validate the utilization of brazed joint between titanium and stainless steel

27

Back-up slides: SPS test cryomodules

The SPS cryomodule

- prototype approach
- in house manufacturing and assembly
- materials not considered in harmonised standards
- unconventional configuration (bolted vessel, edge-welded bellows...)
- proof test with high risk to impact on RF performances

<u>Valid only</u> for SPS cryomodule	 Crab SPS prototype cryomodule According to PED Annex 2, the cryomodule belongs to risk category I equipment liable to have major Safety implications (GSI-M-4) exempted from EC-marking the equipment shall meet the Essential Safety Requirements (ESRs) stated PED 97/23/EC. EU harmonized standards used whenever possible If not possible, ASME Section VIII Div. 2 + compensatory measures in view of compliance with the ESRs of the PED. Difficulties in the definition of the PS (1.8 bara VS 2.1 bara) and in the sizing of the protecting devices Hydrostatic proof test will be replaced by alternative methods / 	Review and discussion with HSE unit (EDMS 1494776 + EDMS 1541969)
--	--	---

Loads:

- PS = 1.8 bar abs
- T= 300 K
- Static pre-tuning = 0.2 mmLoads not considered:
- Dynamic fine tuning (only at cold)
- Other remarks
 - Fatigue life: not applicable (cycles < 500)
 - Pressure test: derogation

- HOM assessment -> EDMS 1433086
- Vessel assessment -> EDMS 1712011
- Biphase line assessment -> EDMS 1727787

Figure 8 - Deformation of the vacuum vessel.

30

Cavities:

- ANSYS stress intensity > 50 MPa
- analysis of linearized stress according to EN13445-3 ✓

Courtesy of C. Zanoni, 11/11/2015 - SPS Cryo-module Engineering Review

Strength assessment: bolts and welds

Bolt model:

- beam
- extremities constrained
- cross section properties according to VDI 2230:2
- length = distance between head and first thread in the plate

Welds:

• no fatigue

 average stress on each weld assessed

11 November 2015 9 / 20

Name	Units	Bolts	Bolts + Welds
Preload	[N]	4500	4500
Max axial force	[N]	4650	4655
Max bending moment	[Nmm]	3430	1630
Max shear force	[N]	525	245
Equivalent stress	[MPa]	620	480
Proof stress	[MPa]	830	830
Safety factor	-	1.34	1.74

The friction between plates is not taken into account (very conservative assumption)

Courtesy of C. Zanoni, 11/11/2015 - SPS Cryomodule Engineering Review

32

Strength assessment: results (welds)

Weld	Material	R _{р0.2} [МРа]	Stress [MPa]	Allowable stress (= $0.7 \cdot R_{p0.2}/1.5$) [MPa]	Safety facto
W1.1			22.10		5.91
W1.2			26.74		4.89
W2.1			34.33		3.81
W2.2			14.89		8.78
W3.1.1			26.66		4.90
W3.1.2			24.17		5.41
W3.1.3			23.85		5.48
W3.1.4			26.57		4.92
W3.2.1			33.10		3.95
W3.2.2			33.89		3.86
W4.1	Ti gr. 2	280	12.63	131	10.35
W4.2			11.90		10.98
W5.1			11.83		11.05
W5.2			10.60		12.33
W5.3			11.79		11.08
W6.1.1			15.33		8.55
W6.1.2			13.90		9.42
W6.1.3			13.94		9.39
W6.1.4			14.06		9.32
W6.2.1			14.37		9.12
W6.2.2			14.46		9.06

Courtesy of C. Zanoni, 11/11/2015 - SPS Cryo-module Engineering Review

12/20

Cryog. circuits and safety protection (SPS tests)

Courtesy of K. Brodzinski, Crab cavities SPS Test Stand Safety Review – CERN – 9 November 2016

Preliminary tests on components

Bolted He vessel = unusual pressure vessel

Report EDMS 1705731

Prototype: goal

- 1. confirm the tank structural resistance
- 2. verify the geometry is good for assembling/welding
- 3. test the assembly procedure
- 4. test welding procedure and welds quality
- 5. verify **leak tightness** along a load cycle representative of real conditions
- 6. verify bolts do not loose preload during a load cycle
- 7. validate FE model with an estimate of the force on bolts, stress/strain and displacement on few tank locations

Courtesy of C. Zanoni, 11/11/2015 -SPS Cryo-module Engineering Review

11 November 2015

13/2

35

Figure 3: Representative stress-strain curve for a 4 K tensile test

Test on welded joints

 EDMS 1458356 Technical Report: Titanium Welding Test for Crab Cavities project.

Figure 1: Location of the crossweld (left) and sample before cutting (right)

 EDMS 1716204 Metallographic Weld Analyses for Crab Cavity Helium Tank Prototype

 EDMS 1562825 WELDING HELIUM TANK PROTOTYPE CRAB CAVITY-DQW

36

Test on explosion bonding joints

Explosion bonding (Nickel interlayer) -> EDMS 1705993 Explosion bonding (Copper interlayer) -> EDMS 1724598 Explosion bonding (Tantalum interlayer) -> EDMS 1739621 Tests

- Leak
- Traction
- Metallographic
- Ultrasonic
- + thermal cycles on the real component + leak test

%	AMP	dB
120 -		-1.58
110-		- 0.83
100 -		-0.00
90 -		0.92
80 -		1.94
70 -		3.10
60 -	- the second second	4.44
50 -		6.02
40 -		7.96
30 -	ANI CONTRACTOR	10.46
20 -		13.98
10-		20.00
t _o		Ł_infini

37

Manufacturing & Inspection (SPS tests)

Bare cavity

- EDMS 1581039 CERN documentation for welding qualification and tests
- EDMS 1685099 Welding Book Crab Cavity DQW. Extremities and Final assembly. : ASSETS HCACFCA004-CR000001 & CR000002.
- EDMS 1758810, WELDING DOCUMENT CRAB CAVITY DQW

Material traceability:

 EDMS 1549318 Summary of materials for Crab Cavity and He tank manufacturing at CERN

Ti vessel:

• welding book in progress

Documentation for SPS test proto

- a 💋 Engineering drafts & notes
 - a 🥼 DQW Crab Cavities Cryomodule (SPS)
 - DQW Cryomodule Assembly
 - DQW Cryomodule Components
- design
- a 💋 DQW Dressed Cavities Assembly
 - a 💋 Specifications

DQW Dressed Cavities

- I 1389669 (v.2.1) Engineering Specification for the dressed bulk niobium Crab Cavities
- a 🥼 Engineering calculations & tests
 - 1458356 (v.1) Technical Report: Titanium Welding Test for Crab Cavities project.
 - 1549819 (v.4) DQW dressed cavity strength assessment
 - 1576057 (v.2) Dressed CRAB cavity strength assessment guidelines according to ASME

cryomodule components

And similar for other components...

- a 🧔 Functional drawings & models
 - 1347072 (v.5) DQW CRAB Cavity + HOM + FPC Parametrized 3D Models
 - 1347072 (v.4) BNL CRAB Cavity + HOM Hooks + FPC Hooks
 - 1393174 (v.6) DQW cavity + magnetic shield + helium vessel
- a 💋 DQW Cryomodule Components
 - DQW Cryogenic circuits
 - DQW Thermal Shield & MLI
 - a 💋 DQW Vacuum Vessel
 - a 🧔 Manufacturing drawings
 - I1710424 (v.1) Drawing folder CRAB DQW Vacuum tank
 - a 🕼 Manufacturing procedures
 - 1716297 (v.1) CRAB Cavity Vacuum Vessel Technical Specification for Manufacturing
 - Inspection & test procedures
 - 📁 Qualifications
 - 📁 Manufacturing records
 - DQW Warm Magnetic Shield
 - DQW Alignment Monitoring System
 - DQW Support and Alignment System
 - DQW RF Internal Lines

CERN

CERN-0000115183 CERN-0000115182

- CERN-0000115182
- 1728883 (v.1) Materials Analyses 9/2015

1493400 (v.1) Tensile tests of Nb samples 1462732 (v.1) Niowave test procedures

1711164 (v.1) Analysis of Nb from Niowave

1728884 (v.1) Analyses of Niobium Material 10/2015

1509802 (v.1) Niowave Fabrication Drawings for DQW Cavity 1455150 (v.2) Prototype Beam Tube Weld Map

1721591 (v.1) Thermal treatment procedure for niobium cavities

1472180 (v.1) Metallurgical gualification of EB welded Nb plate samples

1556016 (v.1) Analysis of large grain size, low ductility niobium material

1687692 (v.1) Surface Pollution Study of RRR 300 Niobium sheets

1685099 (v.1) CERN WELDING BOOK DQW CRAB CAVITY HCACFCA004

1703145 (v.1) GAMME FABRICATION : MAIN BODY / CAP / BOWL / WELDING

1707210 (v.1) CERN MANUFACTURING INSPECTION PLAN (M.I.P): CRAB CAVITY DC

1722302 (v.1) Tensile Tests of Niobium RRR 300 for Crab Cavity Production at Ambient a 1712865 (v.1) Surface analysis of RRR 300 niobium sheets after different forming steps

1606329 (v.1) Chemical polishing CRAB DQW

Image: Image:

- 1728888 (v.1) Qualification of EB welds
- 1728891 (v.1) Alumina pollution on Nb sheets ¿ history and current status 6/2016

1727700 (v.1) Effect of water jet cutting on the surface state of RRR 300 niobium

1729769 (v.1) Step-by-step list of Flanges

a 🧔 Qualifications

Fabrication, Assembly and Verification drafts & notes

DQW Dressed Cavities Assembly
 DQW Bare cavities

Manufacturing drawings

Manufacturing procedures

▲ d Inspection & test procedures

DQW Cryomodule Components

DQW Cryomodule Assembly

DQW Dressed Cavities

- 1472180 (v.1) Metallurgical qualification of EB welded Nb plate samples
- 1549318 (v.1) Summary materials for Crab Cavity manufacturing at CERN
- 1493400 (v.1) Tensile tests of Nb samples
- 1612289 (v.1) J-LAB documentation for welding qualification
- 1615813 (v.1) NIOWAVE documentation for welding qualification
- 1581039 (v.1) CERN documentation for welding qualification and tests
- \triangleright 📄 1710978 (v.1) Surface pollution and chemical cleaning study of niobium sheets for RF cav

a 🃁 Manufacturing records

- O HCACFCA004-CR000001 DQW Bare Cavity (variant #1)
- O HCACFCA004-CR000002 DQW Bare Cavity (variant #1)
- 1597118 (v.1) MATERIAL CERTIFICATES. FABRICATION AT CERN

DQWCC USLARP

1669129 (v.0.1) Planning Manufacturing DQW Cavity

only for bare cavity