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The sum of all the ΦnD2 and ΦnF 2 terms can be written as:

Lh,g = 1
2
(DµΦ)i Kij[Φ] (DµΦ)j − 1

4
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µν Jab[Φ] F b µν (position-dependent metric in the field space).

[arXiv:1803.08001]
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The kinetic terms are rendered canonical via: ϕ̃i = (K
1
2)ijϕj, Ãa

µ = (J
1
2)abAb

µ,

which brings the bilinear terms to the familiar form:

Lkin,mass = −1
4
ÃT

µνÃ
µν + 1

2
ÃT

µ(MTM)Ãµ + 1
2
(∂µϕ̃)T (∂µϕ̃)− 1

2ξ
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2
ϕ̃T (MMT )ϕ̃,

with M b
j ≡ [K

1
2(iT a)v]j (J−

1
2)ab (real matrix).
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Singular Value Decomposition: M = UTΣV , Σij = 0 when i 6= j, U, V – orthogonal matrices.

⇒ MMT = UT (ΣΣT )U and MTM = V T (ΣTΣ)V .

Mass eigenstates: φi = Uijϕ̃j, W a
µ = V abÃb

µ.

Diagonal mass matrices: m2
φ = ΣΣT =

[

D

0

]

m×m
m2

W = ΣTΣ =

[

D

0

]

n×n

The bilinear terms in the mass eigenbasis take the standard form:
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4
W T

µνW
µν + 1

2
W T

µ m2
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2
(∂µφ)T (∂µφ)− 1
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(∂µWµ)T (∂νWν)− ξ

2
φTm2

φφ.
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Ghost sector and BRST

Infinitesimal gauge transformations in the initial basis:

δϕ = −iαaT a (ϕ + v), δAa
µ = ∂µα

a − fabcAb
µα

c.

The corresponding BRST variations:

δBRSTϕ = −iǫNaT a (ϕ + v) , δBRSTA
a
µ = ǫ

(

∂µN
a − fabcAb

µN
c
)

.
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Mass eigenstates: η = V J
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The ghost bilinear terms in the mass eigenbasis take the standard form:

LFP = η̄T
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Expressing N complex fields in terms of 2N real fields:

Φ = U
(

H
H⋆

)

, U = S√
2

(

1N×N 1N×N

−i1N×N i1N×N

)

, S – arbitrary orthogonal matrix.

DµH =
(

∂µ + iAa
µC

a
)

H ⇒ DµΦ =
(

∂µ + iAa
µT

a
)

Φ with T a = iS

(

ImCa ReCa

−ReCa ImCa

)

ST .
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The particular case of SMEFT:

Choose S =









0 0 1 0

1 0 0 0
0 0 0 −1

0 1 0 0









, then H = 1√
2

(

φ2 + iφ1

φ4 − iφ3

)

, Aa
µ = (W 1

µ ,W
2
µ,W

3
µ , Bµ)a and

T 1 = ig
2
S

(

0 σ1

−σ1 0

)

ST , T 2 = g
2
S

(

σ2 0
0 σ2

)

ST , T 3 = ig
2
S

(

0 σ3

−σ3 0

)

ST , T 4 = ig′

2
S

(

0 1
−1 0

)

ST .

(same as in arXiv:1803.08001)
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Matrices in the kinetic terms:

J =









1 + J+ 0 0 0

0 1 + J+ 0 0
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0 0 J3 1 + J2









≡
(

JC 02×2

02×2 JN

)

(and similarly for K)
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Gauge boson masses:

M 2
W = g2v2

4

1+K+

1+J+
, M 2

Z = v2

4

(

g2 + g′2 + g′2J1 + 2gg′J3 + g2J2

)

1+K1

det JN

.
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(
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det JN

.

At the dimension-six level in the Warsaw basis:

J+ = J1 = −2v2

Λ2 C
ϕW , J2 = −2v2

Λ2 C
ϕB, J3 = v2

Λ2C
ϕWB,

K+ = K3 = 0, K1 = v2

2Λ2C
ϕD, K2 = v2

2Λ2(C
ϕD − 4Cϕ�).

QϕW = ϕ†ϕW I
µν
W Iµν QϕD =

(

ϕ†Dµϕ
)⋆(

ϕ†Dµϕ
)

QϕB = ϕ†ϕBµνB
µν Qϕ� = (ϕ†ϕ)�(ϕ†ϕ)

QϕWB = ϕ†τ IϕW I
µν
Bµν

⇒ same results as in arXiv:1704.0388. 7
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from operators with at most first (covariant) derivatives of Φ, and

no derivatives of F .

• Once this is done, all such bilinear terms can be resummed into the

propagators.

• Specifying the gauge-fixing and ghost terms, as well as the BRST variations

proceeds along the same lines as in a renormalizable theory with non-canonical

kinetic terms.

• Standard relations between the masses of gauge bosons, would-be

Goldstone bosons and ghosts remain valid. However, their interactions

are affected by the presence of higher-dimensional operators.
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BACKUP SLIDE

Square roots in neutral sector:

J
1/2
N = 1√

J ′

1+J ′

2

(

J ′1 J3

J3 J ′2

)

, J
−1/2
N = 1√

(J ′

1+J ′

2) detJN

(

J ′2 −J3

−J3 J ′1

)

, where J ′i = 1 + Ji +
√

detJN .

SVD matrices in this sector:

UN =

(

cosω sinω

− sinω cosω

)

, VN =

(

cos θ − sin θ

sin θ cos θ

)

, with

{

ω = arctan(K3/K
′
1),

θ = arctan[(g′J ′1 + gJ3)/(gJ ′2 + g′J3)].

In the limit Λ→∞, we have ω → 0 and θ → θW ≡ arctan(g′/g).
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